1
|
Cai M, Li X, Liang J, Liao M, Han Y. An effective deep learning fusion method for predicting the TVB-N and TVC contents of chicken breasts using dual hyperspectral imaging systems. Food Chem 2024; 456:139847. [PMID: 38925007 DOI: 10.1016/j.foodchem.2024.139847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/06/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Total volatile basic nitrogen (TVB-N) and total viable count (TVC) are important freshness indicators of meat. Hyperspectral imaging combined with chemometrics has been proven to be effective in meat detection. However, a challenge with chemometrics is the lack of a universally applicable processing combination, requiring trial-and-error experiments with different datasets. This study proposes an end-to-end deep learning model, pyramid attention features fusion model (PAFFM), integrating CNN, attention mechanism and pyramid structure. PAFFM fuses the raw visible and near-infrared range (VNIR) and shortwave near-infrared range (SWIR) spectral data for predicting TVB-N and TVC in chicken breasts. Compared with the CNN and chemometric models, PAFFM obtains excellent results without a complicated processing combinatorial optimization process. Important wavelengths that contributed significantly to PAFFM performance are visualized and interpreted. This study offers valuable references and technical support for the market application of spectral detection, benefiting related research and practical fields.
Collapse
Affiliation(s)
- Mingrui Cai
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Xiaoxin Li
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, 486 Wushan Road, Guangzhou 510642, China; National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology, South China Agricultural University, Guangzhou 510642, China.
| | - Juntao Liang
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, 486 Wushan Road, Guangzhou 510642, China; National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology, South China Agricultural University, Guangzhou 510642, China.
| | - Ming Liao
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China.
| | - Yuxing Han
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
2
|
Tong X, Han X, Wu S, Pang J, Fu J, Sun J, Qiao Y, Zhang Y. Characteristics of changes in volatile organic compounds and bacterial communities in physically preserved pigeon breast meat. Food Res Int 2024; 191:114651. [PMID: 39059903 DOI: 10.1016/j.foodres.2024.114651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024]
Abstract
To understand the relationship between changes in aroma and bacteria in pigeon breast meat (PBM) during preservation, bacterial communities and volatile compounds in PBM were analyzed using high-throughput sequencing and gas chromatography-ion mobility spectrometry. Analyses of total viable bacteria counts revealed that modified atmospheric packaging (MAP) and electron beam irradiation (EBI) could be used to extend the shelf-life of PBM to 10 d and 15 d, respectively. Furthermore, Lactococcus spp. and Psychrobacter spp. were the dominant bacterial genera of the MAP and EBI groups, respectively. The results of the study revealed 91 volatile organic compounds, one of which, butanal, was the most intense volatile organic compound while being an important source of aroma differences between the physical preservation techniques. Alpha-terpinolene, acetoin-M, gamma-butyrolactone, 1-hexanol-M, and 2,6-dimethyl-4-heptanone may be markers of PBM spoilage. During preservation, the MA group (treatment with 50 % CO2 + 50 % N2) demonstrated greater stabilization of PBM aroma. A Spearman correlation analysis showed that Lactococcus spp., Psychrobacter spp., and Pseudomonas spp. were the dominant bacterial genera of PBM during preservation and were closely related to an increase in the intensity of anisole, 2-methyl-3-furanthiol, and 5-methyl-2-furanmethanol, respectively. Lactococcus spp. and Psychrobacter spp. play crucial roles in the sensory degradation of PBM. In this study, we analyzed the changes in bacterial genera and volatile organic compounds of PBM under different physical preservation techniques to identify a suitable method for preserving PBM and evaluating its freshness.
Collapse
Affiliation(s)
- Xiaoyang Tong
- Research Center for Agricultural Products Preservation and Processing, Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xueqin Han
- Research Center for Agricultural Products Preservation and Processing, Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Songheng Wu
- Research Center for Agricultural Products Preservation and Processing, Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jinxin Pang
- Research Center for Agricultural Products Preservation and Processing, Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Juan Fu
- Research Center for Agricultural Products Preservation and Processing, Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jianguang Sun
- Shanghai Shenyu Pigeon Breeding Professional Cooperative, Shanghai 200000, China
| | - Yongjin Qiao
- Research Center for Agricultural Products Preservation and Processing, Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Yi Zhang
- Research Center for Agricultural Products Preservation and Processing, Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
3
|
Skandamis P, Nychas GJ. Next generation challenges: New era in food microbiology. Int J Food Microbiol 2024; 420:110762. [PMID: 38839510 DOI: 10.1016/j.ijfoodmicro.2024.110762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
|
4
|
Wen X, Zhang D, Morton JD, Wang S, Chai X, Li X, Yang Q, Li J, Yang W, Hou C. Contribution of mono- and co-culture of Pseudomonas paralactis, Acinetobacter MN21 and Stenotrophomonas maltophilia to the spoilage of chill-stored lamb. Food Res Int 2024; 186:114313. [PMID: 38729689 DOI: 10.1016/j.foodres.2024.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Exploring the contribution of common microorganisms to spoilage is of great significance in inhibiting spoilage in lamb. This work investigated the extent of protein degradation and profile changes of free amino acids (FAAs), free fatty acids (FFAs) and volatile organic compounds (VOCs) in lamb caused by single- and co-culture of the common aerobic spoilage bacteria, P. paralactis, Ac. MN21 and S. maltophilia. Meanwhile, some key VOCs produced by the three bacteria during lamb spoilage were also screened by orthogonal partial least square discriminant analysis and difference value in VOCs content between inoculated groups and sterile group. Lamb inoculated with P. paralactis had the higher total viable counts, pH, total volatile base nitrogen and TCA-soluble peptides than those with the other two bacteria. Some FAAs and FFAs could be uniquely degraded by P. paralactis but not Ac. MN21 and S. maltophilia, such as Arg, Glu, C15:0, C18:0 and C18:1n9t. Co-culture of the three bacteria significantly promoted the overall spoilage, including bacterial growth, proteolysis and lipolysis. Key VOCs produced by P. paralactis were 2, 3-octanedione, those by Ac. MN21 were 1-octanol, octanal, hexanoic acid, 1-pentanol and hexanoic acid methyl ester, and that by S. maltophilia were hexanoic acid. The production of extensive key-VOCs was significantly and negatively correlated with C20:0, C23:0 and C18:ln9t degradation. This study can provide a basis for inhibiting common spoilage bacteria and promoting high-quality processing of fresh lamb.
Collapse
Affiliation(s)
- Xiangyuan Wen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - James D Morton
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Su Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiaoyu Chai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Qingfeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinhuo Li
- Hebei Jinhong Halal Meat Co., Ltd, Dingzhou 073000, China
| | - Wei Yang
- Sunrise Material Co., Ltd, Jiangyin 214411, China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
5
|
Yi Z, Qiu M, Xiao X, Ma J, Yang H, Wang W. Quantitative characterization and dynamics of bacterial communities in ready-to-eat chicken using high-throughput sequencing combined with internal standard-based absolute quantification. Food Microbiol 2024; 118:104419. [PMID: 38049274 DOI: 10.1016/j.fm.2023.104419] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/07/2023] [Accepted: 10/29/2023] [Indexed: 12/06/2023]
Abstract
Ready-to-eat (RTE) chicken products are prone to bacterial contamination, posing foodborne illness risks. High-throughput sequencing (HTS) has been widely used to study the distribution of pathogenic and spoilage bacteria in RTE chicken products but lacks quantitative data on taxa abundances. In this study, we employed a method combining HTS with absolute quantification, using Edwardsiella tarda as an internal standard strain, to achieve the relative and absolute abundances of microbiota in RTE chicken products stored at 4 and 25 °C. The results showed that the addition of appropriate concentration of internal standard strains exhibited no significant impact on the structure composition, relative abundance, and absolute abundance of bacterial communities in chicken meat, achieving comprehensive absolute quantification in RTE chicken products. Furthermore, the absolute abundance of bacterial genera at the end of storage followed a log-normal distribution, with most genera having an absolute abundance between 103 and 105 CFU/g. This study provides insights into the quantification of bacterial communities in RTE chicken products, laying a foundation for the development of strategies to extend the shelf life of RTE products.
Collapse
Affiliation(s)
- Zhengkai Yi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Mengjia Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiele Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|