1
|
Mullaivendhan J, Ahamed A, Gurusamy R, Akbar I. Synthesis of omega-3 mediated copper (ω-3-Cu) and copper oxide (ω-3-CuO) nanocatalyst dual application of dye decolourization and aerobic oxidation of eco-friendly sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58176-58195. [PMID: 39312113 DOI: 10.1007/s11356-024-34941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
In this study, ω-3-Cu and ω-3-CuO nanocatalysts were investigated for industrial environmental issues. Nowadays, green methodology is very important for addressing industrial environmental issues. In this regard, the current study focuses on ω-3-Cu and ω-3-CuO used for aerobic oxidation and dye decolourization via an eco-friendly approach. The synthesised ω-3-Cu and ω-3-CuO nanocatalysts were characterised using FT-IR, UV, XRD, TEM, GC-MS, 1H and 13C NMR. The results showed that the prepared ω-3-Cu catalyst was almost spherical with forms and sizes typically less than 20 nm and the ω-3-CuO nanocatalyst 10 nm. The ω-3 Cu and ω-3-CuO nanocatalysts were investigated for the conversion of pentan-2-ol into pentan-2-one, which was observed by GC-MS analysis. The ω-3-CuO nanocatalyst decolourised the Brilliant Blue dye more quickly (100% in 30 min) than ω-3-Cu (85% in 60 min) and ω-3 (no colour in 60 min), and Rhodamine B was not decolourised because our ω-3-Cu and ω-3-CuO nanocatalysts inactivated the rhodamine B dye. The aerobic oxidation process using the ω-3-CuO nanocatalyst as the end product of pentan-2-one resulted in a retention time of 30.33. To the best of our knowledge, ω-3-Cu and ω-3-CuO nanocatalysts have not been documented for their application in decolourisation and aerobic oxidation. By highlighting the potential use for the continued advancement and innovation of ω-3-CuO nanocatalysts in the long-term future, cost-effective and eco-friendly methods for producing reusable ω-3-CuO nanocatalysts have the potential to be applied in advanced technical fields, particularly in the areas of dye decolourisation and aerobic oxidation. Finally, we successfully accomplished these processes using the ω-3-CuO nanocatalyst. The ω-3-CuO nanocatalyst evaporated more quickly than the ω-3-Cu and ω-3-CuO nanocatalyst, without any additional energy. ω-3-CuO is the most effective nanocatalyst for dye decolourization and aerobic oxidation (Dual application). ω-3-CuO is used in textile and pharmaceutical industries.
Collapse
Affiliation(s)
- Janani Mullaivendhan
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Tamil Nadu, Puthanampatti, 621007, India
| | - Anis Ahamed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Raman Gurusamy
- Department of Life Science, Yeungnan University, Gyeondsan-38541, Gyeondsan-Buk, South Korea
| | - Idhayadhulla Akbar
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Tamil Nadu, Puthanampatti, 621007, India.
| |
Collapse
|
2
|
Rasheed S, Amin A, Sarwar A, Saleem HGM, Hassan A. Evaluation of Antimicrobial Effect of Silver Nanoparticle Based Whey Emulsions and Edible Films for the Extension of Shelf Life of Fruits and Vegetables. Curr Microbiol 2023; 80:158. [PMID: 37002374 DOI: 10.1007/s00284-023-03275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/19/2023] [Indexed: 04/04/2023]
Abstract
The purpose of this study was to develop and assess the antimicrobial properties of silver nanoparticles (AgNPs)-based whey emulsions and edible films for extending the shelf life of fruits and vegetables. The AgNPs were synthesized using a biological method, and their morphological and topographical characteristics were evaluated using scanning electron microscopy (SEM). The AgNPs were incorporated into the emulsions and films to increase their antimicrobial efficacy. Bacterial and fungal strains were identified by DNA regions, including 16S and 18S rRNA, TEF-1α, and RPB2 to evaluate antimicrobial activity. AgNPs-based emulsions and films were used to extend the shelf life of fruits and vegetables for up to 15 days. The results showed that the use of AgNPs in the coated samples significantly increased their effectiveness against bacterial and fungal strains. SEM analysis revealed the presence of AgNPs of varying sizes, ranging from 21 to 62 nm. The zones of inhibition were measured against Staphylococcus aureus, Escherichia coli, Salmonella enterica, Aspergillus flavus, Aspergillus tamari, and Aspergillus niger. The total viable count (log cfu/ml) decreased from 6.423 in the control group to 3.301 in the treated samples. The antioxidant activity of the treated fruits and vegetables was also significantly improved, with values of 56.12, 23.36, 26.10, 7.6, 36.04, and 33.81% for strawberry, taro root, guava, peas, green chili, and carrot, respectively (p < 0.05). The AgNPs-based whey protein emulsions were found to exhibit the highest antimicrobial activity and are therefore a promising approach to extend the shelf life of fruits and vegetables.
Collapse
Affiliation(s)
- Sunbul Rasheed
- Department of Microbiology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan
| | - Aatif Amin
- Department of Microbiology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan.
| | - Arslan Sarwar
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | - Hafiz Ghulam Murtaza Saleem
- Department of Medical Laboratory Technology, College of Rehabilitation and Allied Health Sciences, Riphah International University, 28-M Quaid-e-Azam, Industrial Estate Kot Lakhpat, Lahore, 54000, Pakistan
| | - Ammara Hassan
- Food and Biotechnology Research Centre, Laboratories Complex, Pakistan Council of Scientific and Industrial Research (PCSIR), Ferozepur Road, Lahore, 54600, Pakistan
| |
Collapse
|
3
|
The Mediating Effects of Green Innovation and Corporate Social Responsibility on the Link between Transformational Leadership and Performance: An Examination Using SEM Analysis. MATHEMATICS 2022. [DOI: 10.3390/math10152685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Since the inauguration of the United Nations Sustainable Development Goals (UNSDGs), environmental performance and sustainability have become more important to decision makers, scientists and leaders of organizations than before. In response to this, leaders of different organizations spend all endeavors conserving resources and ensuring environmental sustainability. In this context, transformational leaders have the capacity to ensure the green performance of their organization. The purpose of this study is to test the link between green transformational leadership (GTL), green innovation (GI), corporate social responsibility (CSR) and green performance (GP) in the hotel industry in the Kingdom of Saudi Arabia (KSA). The study empirically tests the mediating effect of GI and CSR on the link between GTL and GP. The study used a quantitative research method via a pre-test instrument, self-distributed and collected from employees in large hotels at different regions of the KSA. The findings from 732 valid responses, analyzed with structural equation modeling (SEM) showed that GTL had a significant effect on GI (β = +0.72, t-value = 14.603, p < 0.001), CSR (β = +0.58, t-value = 8.511, p < 0.001) and GP (β = +0.17, t-value = 2.585, p < 0.001). Moreover, GI and CSR had a direct positive effect on GP (β = +0.10, t-value = 2.866, p < 0.01 and β = +0.61, t-value = 4.358, p < 0.001, respectively). GI had a partial mediation effect (p = 0.048 < 0.05) on the link between GTL and GP. On the other hand, CSR had a perfect mediation effect (p = 0.077 > 0.05) on the link between GTL and GP. This reflects the vital part that CSR plays in this relationship, which can be changed based on the status of CSR. In addition, this reflects the value of CSR in achieving GP, which contributes to the achievement of environmental sustainability at a national level (i.e., the Green Saudi Initiative) at a regional level (i.e., the Green Middle East Initiative) and at an international level (i.e., UNSDGs).
Collapse
|
4
|
Gohara-Beirigo AK, Matsudo MC, Cezare-Gomes EA, Carvalho JCMD, Danesi EDG. Microalgae trends toward functional staple food incorporation: Sustainable alternative for human health improvement. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Zhou C, Okonkwo CE, Inyinbor AA, Yagoub AEA, Olaniran AF. Ultrasound, infrared and its assisted technology, a promising tool in physical food processing: A review of recent developments. Crit Rev Food Sci Nutr 2021; 63:1587-1611. [PMID: 34404303 DOI: 10.1080/10408398.2021.1966379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Traditional food processing techniques can no longer meet the ever increasing demand for high quality food across the globe due to its low process efficiency, high energy consumption and low product yield. This review article is focused on the mechanism and application of Infrared (IR) and ultrasound (US) technologies in physical processing of food. We herein present the individual use of IR and US (both mono-frequency and multi-frequency levels) as well as IR and US supported with other thermal and non-thermal technologies to improve their food processing performance. IR and US are recent thermal and non-thermal technologies which have now been successfully used in food industries to solve the demerits of conventional processing technologies. These environmentally-friendly technologies are characterized by low energy consumption, reduced processing time, high mass-transfer rates, better nutrient retention, better product quality, less mechanical damage and improved shelf life. This work could be, with no doubt, useful to the scientific world and food industries by providing insights on recent advances in the use of US and IR technology, which can be applied to improve food processing technologies for better quality and safer products.
Collapse
Affiliation(s)
- Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Clinton E Okonkwo
- Department of Agricultural and Biosystems Engineering, College of Engineering, Landmark University, Omu-Aran, Kwara state, Nigeria
| | - Adejumoke A Inyinbor
- Department of Physical Sciences, Industrial Chemistry Programme, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abiola F Olaniran
- Department of Food Science and Nutrition, College of Agricultural Sciences, Landmark University, Omu-Aran, Kwara state, Nigeria
| |
Collapse
|
6
|
Lu Y, Bao T, Mo J, Ni J, Chen W. Research advances in bioactive components and health benefits of jujube ( Ziziphus jujuba Mill.) fruit. J Zhejiang Univ Sci B 2021; 22:431-449. [PMID: 34128368 DOI: 10.1631/jzus.b2000594] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Jujube (Ziziphus jujuba Mill.), a highly nutritious and functional fruit, is reported to have various health benefits and has been extensively planted worldwide, especially in China. Many studies have shown that bioactive components derived from jujube fruit have significant nutritional and potential biological effects. In this paper, the latest progress in research on major bioactive compounds obtained from jujube is reviewed, and the potential biological functions of jujube fruit resources are discussed. As a dietary supplement, jujube fruit is well recognized as a healthy food which contains a variety of bioactive substances, such as polysaccharides, polyphenols, amino acids, nucleotides, fatty acids, dietary fiber, alkaloids, and other nutrients. These nutrients and non-nutritive phytochemicals obtained from jujube fruit have physiological functions including anticancer, antioxidant, anti-inflammatory, anti-hyperlipidemic, anti-hyperglycemic, immunoregulatory, neuroprotective, sedative, and antiviral functions. Of note is that new constituents, including alkaloids, dietary fiber, and other bioactive substances, as well as the antiviral, hypoglycemic, lipid-lowering, and neuroprotective effects of jujube fruit, are systematically reviewed here for the first time. Meanwhile, problems affecting the exploitation of jujube fruit resources are discussed and further research directions proposed. Therefore, this review provides a useful bibliography for the future development of jujube-based products and the utilization of jujube nutritional components in functional foods.
Collapse
Affiliation(s)
- Yang Lu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Tao Bao
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jingdan Ni
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.,Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|