1
|
Yildiz AY, Öztekin S, Anaya K. Effects of plant-derived antioxidants to the oxidative stability of edible oils under thermal and storage conditions: Benefits, challenges and sustainable solutions. Food Chem 2025; 479:143752. [PMID: 40086382 DOI: 10.1016/j.foodchem.2025.143752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/25/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
The stability of edible oils significantly influences their quality, safety, and shelf life. While synthetic antioxidants have traditionally been used, the growing consumer interest in food safety and sustainability has shifted focus towards natural alternatives. Plant-derived antioxidants offer a promising solution, enhancing oxidative stability while meeting clean-label demands. This review examines recent advancements in using plant-derived antioxidants, such as extracts, essential oils, and agro-industrial by-products, to inhibit lipid peroxidation and improve edible oils' oxidative and thermal stability. Natural antioxidants from peels, seeds, spices, fruits, and vegetables effectively reduce hydrolysis, polymerization, and secondary oxidation products. Despite their potential, challenges remain, including impacts on sensory attributes, regulatory compliance, and the need for standardized extraction and application protocols. Addressing these limitations can advance sustainable food preservation and encourage the integration of natural antioxidants in the food industry, contributing to a more sustainable economy and shelf life.
Collapse
Affiliation(s)
- Aysun Yurdunuseven Yildiz
- Department of Food Engineering, Faculty of Engineering, Pamukkale University, Denizli, 20160, Türkiye.
| | - Sebahat Öztekin
- Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, 69000, Türkiye.
| | - Katya Anaya
- Health Sciences College of Trairi, Federal University of Rio Grande do Norte, Santa Cruz, RN, Brazil.
| |
Collapse
|
2
|
Falcón-Piñeiro A, Zaguirre-Martínez J, Ibáñez-Hernández AC, Guillamón E, Santander K, Barrero-Domínguez B, López-Feria S, Garrido D, Baños A. Evaluation of the Biostimulant Activity and Verticillium Wilt Protection of an Onion Extract in Olive Crops ( Olea europaea). PLANTS (BASEL, SWITZERLAND) 2024; 13:2499. [PMID: 39273983 PMCID: PMC11397703 DOI: 10.3390/plants13172499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
The olive tree is crucial to the Mediterranean agricultural economy but faces significant threats from climate change and soil-borne pathogens like Verticillium dahliae. This study assesses the dual role of an onion extract formulation, rich in organosulfur compounds, as both biostimulant and antifungal agent. Research was conducted across three settings: a controlled climatic chamber with non-stressed olive trees; an experimental farm with olive trees under abiotic stress; and two commercial olive orchards affected by V. dahliae. Results showed that in the climatic chamber, onion extract significantly reduced MDA levels in olive leaves, with a more pronounced reduction observed when the extract was applied by irrigation compared to foliar spray. The treatment also increased root length by up to 37.1% compared to controls. In field trials, irrigation with onion extract increased the number of new shoots by 148% and the length of shoots by 53.5%. In commercial orchards, treated trees exhibited reduced MDA levels, lower V. dahliae density, and a 26.7% increase in fruit fat content. These findings suggest that the onion extract effectively reduces oxidative stress and pathogen colonization, while enhancing plant development and fruit fat content. This supports the use of the onion extract formulation as a promising, sustainable alternative to chemical treatments for improving olive crop resilience.
Collapse
Affiliation(s)
- Ana Falcón-Piñeiro
- DMC Research Center, Camino de Jayena 82, 18620 Alhendín, Granada, Spain
| | - Javier Zaguirre-Martínez
- Department of Plant Physiology, University of Granada, Fuentenueva s/n, 18071 Granada, Granada, Spain
| | | | - Enrique Guillamón
- DMC Research Center, Camino de Jayena 82, 18620 Alhendín, Granada, Spain
| | | | | | - Silvia López-Feria
- Dcoop Sociedad Cooperativa Andaluza, Carretera Córdoba s/n, 29200 Antequera, Málaga, Spain
| | - Dolores Garrido
- Department of Plant Physiology, University of Granada, Fuentenueva s/n, 18071 Granada, Granada, Spain
| | - Alberto Baños
- DMC Research Center, Camino de Jayena 82, 18620 Alhendín, Granada, Spain
| |
Collapse
|
3
|
Zhao Z, Liu S, Yun C, Liu J, Yao L, Wang H. Melatonin alleviates UV-B stress and enhances phenolic biosynthesis in rosemary (Rosmarinus officinalis) callus. PHYSIOLOGIA PLANTARUM 2024; 176:e14453. [PMID: 39091124 DOI: 10.1111/ppl.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Although used in in vitro culture to boost secondary metabolite production, UV-B radiation can seriously affect plant growth if not properly dosed. Rosemary callus can be used as an important source of effective ingredients in the food and medicine industry. To balance the positive and negative effects of UV-B on rosmary callus, this study investigated the effects of melatonin on rosemary callus under UV-B radiation. The results showed that melatonin improved rosemary callus growth, with fresh weight and dry weight increased by 15.81% and 8.30%, respectively. The addition of 100 μM melatonin increased antioxidant enzyme activity and NO content in rosemary callus. At the same time, melatonin also significantly reduced membrane lipid damage and H2O2 accumulation in rosemary callus under UV-B stress, with malondialdehyde (MDA) and H2O2 contents reduced by 13.03% and 14.55%, respectively. In addition, melatonin increased the total phenol and rosmarinic acid contents in rosemary callus by 19% and 54%, respectively. Melatonin significantly improved the antioxidant activity of the extracts from rosemary callus. These results suggest that exogenous melatonin can alleviate the adverse effects of UV-B stress on rosemary callus by promoting NO accumulation while further enhancing phenolic accumulation and biological activity.
Collapse
Affiliation(s)
- Zhuowen Zhao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, Hangzhou, China
- Department of Agriculture and Animal Husbandry Engineering, Cangzhou Technical College, Cangzhou, Hebei, China
| | - Siyu Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, Hangzhou, China
| | - Cholil Yun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- College of Forest Science, Kim Il Sung University, Pyongyang, DPR of Korea
| | - Jianing Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Liuyang Yao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Huimei Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, Hangzhou, China
| |
Collapse
|
4
|
Stefanidis S, Ordoudi SA, Nenadis N, Pyrka I. Improving the functionality of virgin and cold-pressed edible vegetable oils: Oxidative stability, sensory acceptability and safety challenges. Food Res Int 2023; 174:113599. [PMID: 37986461 DOI: 10.1016/j.foodres.2023.113599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
In recent years, there has been a growing demand for minimally processed foods that offer health benefits and premium sensory characteristics. This trend has led to increased consumption of virgin (VOs) and cold-pressed (CPOs) oils, which are rich sources of bioactive substances. To meet consumer needs for new oil products conferring multi-functional properties over a longer storage period, the scientific community has been revisiting traditional enrichment practices while exploring novel fortification technologies. In the last four years, the interest has been growing faster; an ascending number of annually published studies are about the addition of different plant materials, agri-food by-products, or wastes (intact or extracts) to VOs and CPOs using traditional or innovative fortification processes. Considering this trend, the present review aims to provide an overview and summarize the key findings from relevant papers that were retrieved from extensively searched databases. Our meta-analysis focuses on exposing the most recent trends regarding the exploitation of VOs and CPOs as substrates, the fortification agents and their form of use, as well as the fortification technologies employed. The review critically discusses possible health claim and labeling issues and highlights some chemical and microbial safety concerns along with authenticity issues and gaps in quality specifications that manufacturers have yet to address. All these aspects are examined from the perspective of developing new oil products with well-balanced techno-, senso- and bio-functional characteristics.
Collapse
Affiliation(s)
- Stavros Stefanidis
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Stella A Ordoudi
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Ioanna Pyrka
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
5
|
Kacalova T, Jarosova A. How storage time affects sensory, chemical, and physical characteristics of flavored olive oil. Food Sci Nutr 2023; 11:6648-6659. [PMID: 37823106 PMCID: PMC10563722 DOI: 10.1002/fsn3.3613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 10/13/2023] Open
Abstract
The objectives of this study were to evaluate sensory, chemical, and physical characteristics of olive oil prepared by three flavoring methods and analyze changes during storage (0, 3, and 6 months). Favored olive oil was prepared by three flavoring methods (fresh, dried, and essential oil). Selected sensory, chemical, and color parameters were monitored based on international standards. The color was determined by spectrophotometer. The results confirmed that storage time and flavoring method affect sensory characteristics of the oil. Fresh garlic oil had significantly lower (p < .05) fruity smell. The level of pungent taste significantly increased (p < .05) in the dried rosemary oil, rosemary essential oil, and fresh and dried garlic flavored oils. The intensity of rosemary smell in the sample flavored with essential oil significantly decreased (p < .05) during storage. Opposite effect was observed in the sample flavored with dried rosemary, where the smell significantly increased (p < .05) during storage. The intensity of taste significantly increased (p < .05) in samples flavored by dried rosemary during storage. The peroxide value of all flavored oils samples increased (p < .05) during storage compared to unflavored oil where peroxide value did not change. Color indicators L*, a*, and b* show that addition of fresh rosemary causes the greatest change in olive oil color. The color change, especially the turbidity, was not perceived positive by tasters.
Collapse
Affiliation(s)
- Tereza Kacalova
- Department of Food TechnologyMendel University in BrnoBrnoCzechia
| | - Alzbeta Jarosova
- Department of Food TechnologyMendel University in BrnoBrnoCzechia
| |
Collapse
|
6
|
Zhao Z, Yun C, Gu L, Liu J, Yao L, Wang W, Wang H. Melatonin enhances biomass, phenolic accumulation, and bioactivities of rosemary (Rosmarinus officinalis) in vitro shoots under UV-B stress. PHYSIOLOGIA PLANTARUM 2023; 175:e13956. [PMID: 37327069 DOI: 10.1111/ppl.13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
Melatonin is a stress-related hormone that plays a critical role in triggering the plant defence system and regulating secondary metabolism when plants are exposed to stress. To explore the potential roles of melatonin in response to Ultraviolet-B (UV-B) radiation, we examined the effects of exogenous melatonin on rosemary in vitro shoots under UV-B stress. The application of melatonin (50 μM) alleviated the adverse effects of UV-B stress on the biomass, photosynthetic pigment contents, and membrane lipids of the rosemary in vitro shoots. Melatonin significantly increased superoxide dismutase (1.15.1.1, SOD), peroxidase (1.11.1.7, POD), and catalase (1.11.1.6, CAT) activities by 62%, 99%, and 53%, respectively. The contents of total phenols, rosmarinic acid, and carnosic acid increased under UV-B stress, and they further increased by the melatonin treatment by 41%, 68%, and 67%, respectively, compared with the control group. Under UV-B stress, the increased total phenol content in melatonin-pretreated plants could be attributed to the activation of phenylalanine ammonia-lyase (4.3.1.5, PAL) and tyrosine aminotransferase (2.6.1.5, TAT). In addition, melatonin enhanced the antioxidant and antibacterial activities of the rosemary in vitro shoots under UV-B stress. These results suggest that melatonin can alleviate the damage caused by UV-B stress and also enhance the secondary metabolism and bioactivity of rosemary in vitro shoots.
Collapse
Affiliation(s)
- Zhuowen Zhao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Cholil Yun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- College of Forest Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Lin Gu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Jianing Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Liuyang Yao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Wenjie Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Huimei Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Chahdoura H, Mzoughi Z, Ziani BEC, Chakroun Y, Boujbiha MA, Bok SE, M'hadheb MB, Majdoub H, Mnif W, Flamini G, Mosbah H. Effect of Flavoring with Rosemary, Lemon and Orange on the Quality, Composition and Biological Properties of Olive Oil: Comparative Study of Extraction Processes. Foods 2023; 12:foods12061301. [PMID: 36981228 PMCID: PMC10048770 DOI: 10.3390/foods12061301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The goal of this work was to investigate the impact of the flavoring of some aromatic plants/spices, including rosemary (R), lemon (L) and orange (O) at the concentration of 5% and 35% (w/w) added by 2 methods (conventional maceration and direct flavoring), on quality attributes, chemical changes and oxidative stability of extra virgin olive oil (EVOO). Six flavored oils were obtained (EVOO + O, O + O, EVOO + R, O + R, EVOO + L and O + L). The physicochemical parameters (water content, refractive index, acidity and peroxide value, extinction coefficient, fatty acids, volatile aroma profiles, Rancimat test, phenols and pigments composition) of the flavored oils were investigated. Based on the results obtained, it was observed that flavoring with a conventional process provided increased oxidative stability to the flavored oils, especially with rosemary (19.38 ± 0.26 h), compared to that of unflavored oil. The volatile profiles of the different flavored oils revealed the presence of 34 compounds with the dominance of Limonene. The fatty acid composition showed an abundance of mono-unsaturated fatty acids followed by poly-unsaturated ones. Moreover, a high antioxidant activity, a significant peripheral analgesic effect (77.7% of writhing inhibition) and an interesting gastroprotective action (96.59% of ulcer inhibition) have been observed for the rosemary-flavored oil. Indeed, the flavored olive oils of this study could be used as new functional foods, leading to new customers and further markets.
Collapse
Affiliation(s)
- Hassiba Chahdoura
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir 5000, Tunisia
| | - Zeineb Mzoughi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Borhane E C Ziani
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques CRAPC, Tipaza 42000, Algeria
| | - Yasmine Chakroun
- Laboratory of Bioresources: Integrative Biology and Valorization (BIOLIVAL), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue TaherHadded BP 74, Monastir 5000, Tunisia
| | - Mohamed Ali Boujbiha
- Laboratory of Bioresources: Integrative Biology and Valorization (BIOLIVAL), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue TaherHadded BP 74, Monastir 5000, Tunisia
| | - Safia El Bok
- Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), Department of Biology, Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 2092, Tunisia
| | - Manel Ben M'hadheb
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir 5000, Tunisia
| | - Hatem Majdoub
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia
| | - Guido Flamini
- Diparitmento di Farmacia, Via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Habib Mosbah
- Laboratory of Bioresources: Integrative Biology and Valorization (BIOLIVAL), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue TaherHadded BP 74, Monastir 5000, Tunisia
| |
Collapse
|
8
|
Gonçalves TR, Galastri Teixeira G, Santos PM, Matsushita M, Valderrama P. Excitation-Emission matrices and PARAFAC in the investigation of the bioactive compound effects from the flavoring process in olive oils. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
An electronic tongue as a tool for assessing the impact of carotenoids’ fortification on cv. Arbequina olive oils. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03964-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Innovative and Sustainable Technologies to Enhance the Oxidative Stability of Vegetable Oils. SUSTAINABILITY 2022. [DOI: 10.3390/su14020849] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To meet consumers’ demand for natural foods, edible oil producers and food processing industries are searching for alternatives to synthetic antioxidants to protect oils against oxidation. Antioxidant compounds extracted from different plant parts (e.g., flowers, leaves, roots, and seeds) or sourced from agri-food industries, including residues left after food processing, attract consumers for their health properties and natural origins. This review, starting from a literature research analysis, highlights the role of natural antioxidants in the protection of edible oils against oxidation, with an emphasis on the emerging and sustainable strategies to preserve oils against oxidative damage. Sustainability and health are the main concerns of food processing industries. In this context, the aim of this review is to highlight the emerging strategies for the enrichment of edible oils with biomolecules or extracts recovered from plant sources. The use of extracts obtained from vegetable wastes and by-products and the blending with oils extracted from various oil-bearing seeds is also pointed out as a sustainable approach. The safety concerns linked to the use of natural antioxidants for human health are also discussed. This review, using a multidisciplinary approach, provides an updated overview of the chemical, technological, sustainability, and safety aspects linked to oil protection.
Collapse
|
11
|
Hrebień-Filisińska AM, Bartkowiak A. Antioxidative Effect of Sage (Salvia officinalis L.) Macerate as “Green Extract” in Inhibiting the Oxidation of Fish Oil. Antioxidants (Basel) 2021; 11:antiox11010100. [PMID: 35052604 PMCID: PMC8773343 DOI: 10.3390/antiox11010100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/21/2023] Open
Abstract
The aim of the study was to assess the antioxidant effect of concentrated oil macerate of sage (M) as a “green extract” in inhibiting the oxidation of Fish Oil (FO). In the homogenization-assisted maceration process, FO was used as a solvent for the sage active substances to produce M, which was then added to FO (25% w/w) and evaluated for its effect by monitoring the level of oxidation during refrigerated and room temperature storage. The macerate also examined polyphenols, plant pigments, DPPH antioxidant potential, oxidation level and sensory quality. It was shown that the maceration process made it possible to obtain aromatized M, containing polyphenols (carnosic acid, carnosol) and pigments, but with an increased level of peroxides, free fatty acids, compared to the control oil. M showed antioxidant properties and inhibited FO oxidation. It showed the best efficiency in FO during refrigerated storage, in the third month it reduced the level of peroxides by about 9 times, compared to the control. M retains unchanged quality at refrigerated temperature for up to 3 months. Sage macerates are “green extracts” that can be used as effective natural antioxidant additives, following preparation improvements to reduce the amount of peroxide formed.
Collapse
Affiliation(s)
- Agnieszka M. Hrebień-Filisińska
- Department of Fish, Plant and Gastronomy Technology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, 71-459 Szczecin, Poland
- Correspondence: ; Tel.: +48-91-449-65-22
| | - Artur Bartkowiak
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, 71-270 Szczecin, Poland;
| |
Collapse
|
12
|
Rodrigues N, Silva K, Veloso ACA, Pereira JA, Peres AM. The Use of Electronic Nose as Alternative Non-Destructive Technique to Discriminate Flavored and Unflavored Olive Oils. Foods 2021; 10:foods10112886. [PMID: 34829167 PMCID: PMC8618962 DOI: 10.3390/foods10112886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023] Open
Abstract
Cv. Arbequina extra virgin olive oils (EVOO) were flavored with cinnamon, garlic, and rosemary and characterized. Although flavoring significantly affected the physicochemical quality parameters, all oils fulfilled the legal thresholds for EVOO classification. Flavoring increased (20 to 40%) the total phenolic contents, whereas oxidative stability was dependent on the flavoring agent (a slight increase for rosemary and a decrease for cinnamon and garlic). Flavoring also had a significant impact on the sensory profiles. Unflavored oils, cinnamon, and garlic flavored oils had a fruity-ripe sensation while rosemary flavored oils were fruity-green oils. Fruit-related sensations, perceived in unflavored oils, disappeared with flavoring. Flavoring decreased the sweetness, enhanced the bitterness, and did not influence the pungency of the oils. According to the EU regulations, flavored oils cannot be commercialized as EVOO. Thus, to guarantee the legal labelling requirement and to meet the expectations of the market-specific consumers for differentiated olive oils, a lab-made electronic nose was applied. The device successfully discriminated unflavored from flavored oils and identified the type of flavoring agent (90 ± 10% of correct classifications for the repeated K-fold cross-validation method). Thus, the electronic nose could be used as a practical non-destructive preliminary classification tool for recognizing olive oils’ flavoring practice.
Collapse
Affiliation(s)
- Nuno Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; (N.R.); (K.S.); (J.A.P.)
| | - Kevin Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; (N.R.); (K.S.); (J.A.P.)
| | - Ana C. A. Veloso
- Instituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; (N.R.); (K.S.); (J.A.P.)
| | - António M. Peres
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; (N.R.); (K.S.); (J.A.P.)
- Correspondence: ; Tel.: +351-273303220
| |
Collapse
|