1
|
Cera S, Tuccillo F, Knaapila A, Sim F, Manngård J, Niklander K, Verni M, Rizzello CG, Katina K, Coda R. Role of tailored sourdough fermentation in the flavor of wholegrain-oat bread. Curr Res Food Sci 2024; 8:100697. [PMID: 38487179 PMCID: PMC10937307 DOI: 10.1016/j.crfs.2024.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Sourdough technology has been known for its role in the improvement of texture, flavor, and quality of mainly wheat and rye-based breads for decades. However, little is reported about its use in the improvement of whole-grain oat bread, especially concerning flavor formation, which is one major consumer drivers. This study investigated the effects of sourdough obtained by different lactic acid bacteria and yeast starters consortia on the texture and flavor of 100% oat bread. Four different consortia were selected to obtain four oat sourdoughs, which were analyzed to assess the main features due to the different starter fermentation metabolism. Sourdoughs were added to breads as 30% dough weight. Bread quality was technologically monitored via hardness and volume measurements. Sourdough breads were softer and had higher specific volume. The sensory profile of sourdoughs and breads was assessed by a trained panel in sensory laboratory conditions, and the volatile profile was analyzed by HS-SPME-GC-MS. Sourdoughs were rated with higher intensities than untreated control for most of attributes, especially concerning sour aroma and flavor attributes. Sourdough breads were rated with higher intensities than control bread for sour vinegar flavor and total odor intensity, in addition they had richer volatile profile. Our results confirmed that sourdough addition can lead to an enhanced flavor, moreover, it demonstrated that the use of different consortia of lactic acid bacteria and yeast strains leads to the improvement of texture and altered sensory profile of whole-oat bread.
Collapse
Affiliation(s)
- Silvia Cera
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Fabio Tuccillo
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Antti Knaapila
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Finlay Sim
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Jessica Manngård
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Katariina Niklander
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Michela Verni
- Department of Environmental Biology, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Kati Katina
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
| | - Rossana Coda
- Department of Food and Nutrition, P.O. Box 66 (Agnes Sjöbergin Katu 2), University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Sustainability Science, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Cardinali F, Belleggia L, Reale A, Cirlini M, Boscaino F, Di Renzo T, Del Vecchio L, Cavalca N, Milanović V, Garofalo C, Cesaro C, Rampanti G, Osimani A, Aquilanti L. Exploitation of Black Olive ( Olea europaea L. cv. Piantone di Mogliano) Pomace for the Production of High-Value Bread. Foods 2024; 13:460. [PMID: 38338595 PMCID: PMC10855532 DOI: 10.3390/foods13030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, the morpho-textural features, total phenolic content (TPC), and antioxidant capacity (AOC) of bread fortified with olive (Olea europaea L.) pomace were evaluated. Fresh olive pomace was subjected to microbiological and chemical (TPC, AOC, and fiber) analyses; then, the same olive pomace was analyzed during 1 to 6 months of storage at 4 °C or -20 °C. All olive pomace samples were used in 10%, 15%, or 20% amounts to produce type 0 soft wheat (Triticum aestivum) and whole wheat bread samples. The volatile organic compounds (VOCs) in the bread samples were also analyzed to assess the effect of the addition of the olive pomace on the flavor profile of the baked products. The TPC and AOC evaluation of olive pomace showed no differences among the analyzed samples (fresh, refrigerated, or frozen). Regarding the bread containing olive pomace, the specific volume was not affected by the amount or the storage methods of the added pomace. Bread samples produced with soft wheat flour showed the lowest hardness values relative to those produced with whole wheat flour, irrespective of the amount or storage method of the olive pomace. Regarding color, the crust and crumb of the bread samples containing 20% olive pomace were significantly darker. The bread samples containing 20% olive pomace had the highest TPC. The bread samples with fresh olive pomace were characterized by terpenoids, ketones, and aldehydes, whereas the bread samples containing refrigerated olive pomace were characterized by alcohols (mainly ethanol), acids, esters, and acetate. Finally, the bread samples with frozen olive pomace showed a volatile profile similar to that of bread produced with fresh olive pomace. Olive pomace was shown to be a suitable ingredient for producing bread with high nutritional value.
Collapse
Affiliation(s)
- Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.C.); (L.B.); (V.M.); (C.G.); (C.C.); (G.R.); (L.A.)
| | - Luca Belleggia
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.C.); (L.B.); (V.M.); (C.G.); (C.C.); (G.R.); (L.A.)
| | - Anna Reale
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy; (A.R.); (F.B.); (T.D.R.)
| | - Martina Cirlini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.C.); (L.D.V.); (N.C.)
| | - Floriana Boscaino
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy; (A.R.); (F.B.); (T.D.R.)
| | - Tiziana Di Renzo
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche, Via Roma 64, 83100 Avellino, Italy; (A.R.); (F.B.); (T.D.R.)
| | - Lorenzo Del Vecchio
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.C.); (L.D.V.); (N.C.)
| | - Natascia Cavalca
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.C.); (L.D.V.); (N.C.)
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.C.); (L.B.); (V.M.); (C.G.); (C.C.); (G.R.); (L.A.)
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.C.); (L.B.); (V.M.); (C.G.); (C.C.); (G.R.); (L.A.)
| | - Cristiana Cesaro
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.C.); (L.B.); (V.M.); (C.G.); (C.C.); (G.R.); (L.A.)
| | - Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.C.); (L.B.); (V.M.); (C.G.); (C.C.); (G.R.); (L.A.)
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.C.); (L.B.); (V.M.); (C.G.); (C.C.); (G.R.); (L.A.)
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.C.); (L.B.); (V.M.); (C.G.); (C.C.); (G.R.); (L.A.)
| |
Collapse
|
3
|
Danciu CA, Tulbure A, Stanciu MA, Antonie I, Capatana C, Zerbeș MV, Giurea R, Rada EC. Overview of the Sustainable Valorization of Using Waste and By-Products in Grain Processing. Foods 2023; 12:3770. [PMID: 37893664 PMCID: PMC10606821 DOI: 10.3390/foods12203770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
In an increasingly resource-constrained era, using waste and by-products from grain processing has a wide appeal. This is due to the nutritive value and economic aspects of this process and due to its compatibility with the trend towards more sustainable food systems. Following the fundamentals of circular economy, a current need is the effective utilization of grain waste and by-products for conversion into value-added products in the food industry. The aim of this study is twofold: (1) using bibliometrics and the literature found in various databases, we aim to understand the progress of valorizing grain waste and by-products in human nutrition. The literature within various databases, namely, Google Scholar, Web of Science, and Elsevier Scopus, has been evaluated for its merits and values. (2) We aim to explore knowledge-based strategies by reviewing the literature concerning the possible use of grain waste and by-products for the food processing industry, reducing the burden on virgin raw materials. The review allowed us to unlock the latest advances in upcycling side streams and waste from the grain processing industry.
Collapse
Affiliation(s)
- Cristina-Anca Danciu
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Anca Tulbure
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Mirela-Aurora Stanciu
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Iuliana Antonie
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Ciprian Capatana
- Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550012 Sibiu, Romania; (C.-A.D.); (M.-A.S.); (I.A.); (C.C.)
| | - Mihai Victor Zerbeș
- Department of Industrial Engineering and Management, Lucian Blaga University of Sibiu, 4 Emil Cioran Street, 550025 Sibiu, Romania; (M.V.Z.); (R.G.)
| | - Ramona Giurea
- Department of Industrial Engineering and Management, Lucian Blaga University of Sibiu, 4 Emil Cioran Street, 550025 Sibiu, Romania; (M.V.Z.); (R.G.)
| | - Elena Cristina Rada
- Department of Theoretical and Applied Sciences, University of Insubria, 46 Via G.B. Vico, 21100 Varese, Italy;
| |
Collapse
|
4
|
Olakanmi SJ, Jayas DS, Paliwal J. Applications of imaging systems for the assessment of quality characteristics of bread and other baked goods: A review. Compr Rev Food Sci Food Saf 2023; 22:1817-1838. [PMID: 36916025 DOI: 10.1111/1541-4337.13131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
One of the most widely researched topics in the food industry is bread quality analysis. Different techniques have been developed to assess the quality characteristics of bakery products. However, in the last few decades, the advancement in sensor and computational technologies has increased the use of computer vision to analyze food quality (e.g., bakery products). Despite a large number of publications on the application of imaging methods in the bakery industry, comprehensive reviews detailing the use of conventional analytical techniques and imaging methods for the quality analysis of baked goods are limited. Therefore, this review aims to critically analyze the conventional methods and explore the potential of imaging techniques for the quality assessment of baked products. This review provides an in-depth assessment of the different conventional techniques used for the quality analysis of baked goods which include methods to record the physical characteristics of bread and analyze its quality, sensory-based methods, nutritional-based methods, and the use of dough rheological data for end-product quality prediction. Furthermore, an overview of the image processing stages is presented herein. We also discuss, comprehensively, the applications of imaging techniques for assessing the quality of bread and other baked goods. These applications include studying and predicting baked goods' quality characteristics (color, texture, size, and shape) and classifying them based on these features. The limitations of both conventional techniques (e.g., destructive, laborious, error-prone, and expensive) and imaging methods (e.g., illumination, humidity, and noise) and the future direction of the use of imaging methods for quality analysis of bakery products are discussed.
Collapse
Affiliation(s)
- Sunday J Olakanmi
- Department of Biosystems Engineering, 75 Chancellors Circle, University of Manitoba, Winnipeg, Manitoba, R3T 5V6, Canada
| | - Digvir S Jayas
- Department of Biosystems Engineering, 75 Chancellors Circle, University of Manitoba, Winnipeg, Manitoba, R3T 5V6, Canada
| | - Jitendra Paliwal
- Department of Biosystems Engineering, 75 Chancellors Circle, University of Manitoba, Winnipeg, Manitoba, R3T 5V6, Canada
| |
Collapse
|
5
|
Influence of partial substitution of wheat flour with sprouted oat flours on physicochemical and textural characteristics of wheat bread. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
6
|
Wang Y, Jian C. Sustainable plant-based ingredients as wheat flour substitutes in bread making. NPJ Sci Food 2022; 6:49. [PMID: 36307422 PMCID: PMC9614748 DOI: 10.1038/s41538-022-00163-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Bread as a staple food has been predominantly prepared from refined wheat flour. The world's demand for food is rising with increased bread consumption in developing countries where climate conditions are unsuitable for wheat cultivation. This reliance on wheat increases the vulnerability to wheat supply shocks caused by force majeure or man-made events, in addition to negative environmental and health consequences. In this review, we discuss the contribution to the sustainability of food systems by partially replacing wheat flour with various types of plant ingredients in bread making, also known as composite bread. The sustainable sources of non-wheat flours, their example use in bread making and potential health and nutritional benefits are summarized. Non-wheat flours pose techno-functional challenges due to significantly different properties of their proteins compared to wheat gluten, and they often contain off-favor compounds that altogether limit the consumer acceptability of final bread products. Therefore, we detail recent advances in processing strategies to improve the sensory and nutritional profiles of composite bread. A special focus is laid on fermentation, for its accessibility and versatility to apply to different ingredients and scenarios. Finally, we outline research needs that require the synergism between sustainability science, human nutrition, microbiomics and food science.
Collapse
Affiliation(s)
- Yaqin Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Ching Jian
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Liu Y, Zhang H, Yu H, Li J, Brennan MA, Brennan CS, Qin Y. Wheat Bread Fortified with
Dictyophora Indusiata
Powder
: Evaluation of Quality Attributes, Antioxidant Characteristics and Bread Staling. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yudi Liu
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunming650550China
| | - Heng Zhang
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunming650550China
| | - Hongda Yu
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunming650550China
| | - Jiang Li
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunming650550China
| | - Margaret A Brennan
- School of ScienceRoyal Melbourne Institute of Technology UniversityMelbourne3000Australia
| | - Charles S Brennan
- School of ScienceRoyal Melbourne Institute of Technology UniversityMelbourne3000Australia
| | - Yuyue Qin
- Faculty of Food Science and EngineeringKunming University of Science and TechnologyKunming650550China
| |
Collapse
|
8
|
Dziki D, Gawlik-Dziki U, Tarasiuk W, Różyło R. Fiber Preparation from Micronized Oat By-Products: Antioxidant Properties and Interactions between Bioactive Compounds. Molecules 2022; 27:molecules27092621. [PMID: 35565971 PMCID: PMC9099853 DOI: 10.3390/molecules27092621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 12/05/2022] Open
Abstract
This study aimed to investigate the possibility of utilizing oat by-products for fiber preparation. Oat husk (OH) and oat bran (OB) were micronized and used to prepare a novel product rich in fiber and with enhanced antioxidant properties. The basic chemical composition and phenolic acid profile were determined in OH and OB. The antioxidant properties of OH and OB were also analyzed. The type and strength of interactions between the biologically active compounds from their mixtures were characterized by an isobolographic analysis. The analyses showed that the sum of phenolic acids was higher in OH than in OB. Ferulic acid was dominant in both OH and OB; however, its content in OH was over sixfold higher than that in OB. The results also suggested that both OH and OB can be used for preparing fiber with enhanced antioxidant properties. The optimal composition of the preparation, with 60–70% of OH and 30–40% of OB, allows for obtaining a product with 60–70% fiber and enhanced antioxidant activity due to bioactive substances and their synergistic effect. The resulting product can be a valuable additive to various food and dietary supplements.
Collapse
Affiliation(s)
- Dariusz Dziki
- Poland Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
- Fibrecare Sp. z o.o., Słowackiego 16, 40-094 Katowice, Poland;
| | - Urszula Gawlik-Dziki
- Fibrecare Sp. z o.o., Słowackiego 16, 40-094 Katowice, Poland;
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
- Correspondence:
| | - Wojciech Tarasiuk
- Fibrecare Sp. z o.o., Słowackiego 16, 40-094 Katowice, Poland;
- Faculty of Mechanical Engineering Bialystok, Bialystok University of Technology, Wiejska 45A, 15-351 Białystok, Poland
| | - Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, Głęboka St. 28, 20-950 Lublin, Poland;
| |
Collapse
|