1
|
Chen SH, Fegan N, Kocharunchitt C, Bowman JP, Duffy LL. Changes of the bacterial community diversity on chicken carcasses through an Australian poultry processing line. Food Microbiol 2020; 86:103350. [DOI: 10.1016/j.fm.2019.103350] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
|
2
|
Medley S, Ponder M, Alexander KA. Anthropogenic landscapes increase Campylobacter jejuni infections in urbanizing banded mongoose (Mungos mungo): A one health approach. PLoS Negl Trop Dis 2020; 14:e0007888. [PMID: 32182238 PMCID: PMC7077801 DOI: 10.1371/journal.pntd.0007888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/28/2019] [Indexed: 11/17/2022] Open
Abstract
Background Campylobacter is a common, but neglected foodborne-zoonotic pathogen, identified as a growing cause of foodborne disease worldwide. Wildlife and domestic animals are considered important reservoirs, but little is known about pathogen infection dynamics in free-ranging mammalian wildlife particularly in sub-Saharan Africa. In countries like Botswana, there is significant overlap between humans and wildlife, with the human population having one of the highest HIV infection rates in the world, increasing vulnerability to infection. Methodology/Principal findings We investigated Campylobacter occurrence in archived human fecal samples (children and adults, n = 122, 2011), feces from free-ranging banded mongooses (Mungos mungo, n = 201), surface water (n = 70), and river sediment samples (n = 81) collected in 2017 from the Chobe District, northern Botswana. Campylobacter spp. was widespread in humans (23.0%, 95% CI 13.9–35.4%), with infections dominantly associated with C. jejuni (82.1%, n = 28, 95% CI 55.1–94.5%). A small number of patients presented with asymptomatic infections (n = 6). While Campylobacter spp. was rare or absent in environmental samples, over half of sampled mongooses tested positive (56%, 95% CI 45.6–65.4%). Across the urban-wilderness continuum, we found significant differences in Campylobacter spp. detection associated with the type of den used by study mongooses. Mongooses utilizing man-made structures as den sites had significantly higher levels of C. jejuni infection (p = 0.019) than mongooses using natural dens. Conversely, mongooses using natural dens had overall higher levels of detection of Campylobacter at the genus level (p = 0.001). Conclusions These results suggest that landscape features may have important influences on Campylobacter species exposure and transmission dynamics in wildlife. In particular, data suggest that human-modified landscapes may increase C. jejuni infection, a primarily human pathogen, in banded mongooses. Pathogen circulation and transmission in urbanizing wildlife reservoirs may increase human vulnerability to infection, findings that may have critical implications for both public and animal health in regions where people live in close proximity to wildlife. Campylobacter infections are increasing worldwide but we still know little about the true burden of disease in the developing world, and even less about the role of wildlife and environmental reservoirs in human exposure and infection. Here we take a one-health approach evaluating Campylobacter infections in humans, banded mongooses (Mungos mungo), and the environment. We found evidence of widespread infection with Campylobacter spp. infecting nearly a quarter of sampled adults and children (23.0%, n = 122, 2011), dominantly with C. jejuni. Banded mongooses live in close association with humans in the area and over half of the animals sampled were found positive for Campylobacter spp. (56%, n = 201, 2017). Infection with C. jejuni was greater among mongooses utilizing human-made structures as den sites than those using natural dens. These data suggest that wildlife utilization of anthropogenic landscapes may increase C. jejuni exposure and infection. In turn, pathogen circulation and transmission in urbanizing wildlife reservoirs may increase human vulnerability to infection, particularly impoverished populations, where greater environmental exposures are expected.
Collapse
Affiliation(s)
- Sarah Medley
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, United States of America.,Chobe Research Institute, Centre for Conservation of African Resources, Animals, Communities, and Land use (CARACAL), Kasane, Botswana
| | - Monica Ponder
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Kathleen A Alexander
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, United States of America.,Chobe Research Institute, Centre for Conservation of African Resources, Animals, Communities, and Land use (CARACAL), Kasane, Botswana
| |
Collapse
|
3
|
Guy RA, Arsenault J, Kotchi SO, Gosselin-Théberge M, Champagne MJ, Berthiaume P. Campylobacter in recreational lake water in southern Quebec, Canada: presence, concentration, and association with precipitation and ruminant farm proximity. JOURNAL OF WATER AND HEALTH 2018; 16:516-529. [PMID: 30067235 DOI: 10.2166/wh.2018.222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Campylobacter is an important cause of gastrointestinal illness and exposure to recreational water is one potential source of infection. The objective of this study was to investigate the presence and concentrations of Campylobacter, and determine the influence of agricultural activities and precipitation on their presence, at lake beaches used for water recreation in southern Quebec, Canada. A total of 413 water samples were collected from June to August, from 22 beaches, between 2011 and 2013. The overall proportion of positive water samples was estimated to be 33.9% (95% CI: 27.7, 40.1) for C. jejuni and 49.7% (95% CI: 41.8, 57.6) for Campylobacter spp. The concentrations of both thermotolerant Campylobacter spp. and C. jejuni ranged from 20 to 900 bacteria/L of water. Logistic regressions showed that the presence of C. jejuni and Campylobacter spp. was significantly associated with the year and season. Other significant predictors of C. jejuni, but not Campylobacter spp., included the presence of precipitation the day before sampling and the presence of ruminant farms within a 5 km radius of the beach. The present study provides insights into the risk of Campylobacter presence in recreational lake water for better understanding public health risks.
Collapse
Affiliation(s)
- Rebecca A Guy
- National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Quebec, Canada E-mail: ; Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Julie Arsenault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Serge Olivier Kotchi
- National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Quebec, Canada E-mail:
| | - Maxime Gosselin-Théberge
- National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Quebec, Canada E-mail: ; Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Marie-Josée Champagne
- National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Quebec, Canada E-mail:
| | - Philippe Berthiaume
- National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Quebec, Canada E-mail:
| |
Collapse
|
4
|
Lamas A, Regal P, Vázquez B, Miranda JM, Cepeda A, Franco CM. Salmonella and Campylobacter biofilm formation: a comparative assessment from farm to fork. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4014-4032. [PMID: 29424050 DOI: 10.1002/jsfa.8945] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/16/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
It takes several steps to bring food from the farm to the fork (dining table), and contamination with food-borne pathogens can occur at any point in the process. Campylobacter spp. and Salmonella spp. are the main microorganisms responsible for foodborne disease in the EU. These two pathogens are able to persist throughout the food supply chain thanks to their ability to form biofilms. Owing to the high prevalence of Salmonella and especially of Campylobacter in the food supply chain and the huge efforts of food authorities to reduce these levels, it is of great importance to fully understand their mechanisms of persistence. Diverse studies have evaluated the biofilm-forming capacity of foodborne pathogens isolated at different steps of food production. Nonetheless, the principal obstacle of these studies is to reproduce the real conditions that microorganisms encounter in the food supply chain. While there are a wide number of Salmonella biofilm studies, information on Campylobacter biofilms is still limited. A comparison between the two microorganisms could help to develop new research in the field of Campylobacter biofilms. Therefore, this review evaluates relevant work in the field of Salmonella and Campylobacter biofilms and the applicability of the data obtained from these studies to real working conditions. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexandre Lamas
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Patricia Regal
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Beatriz Vázquez
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - José M Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Alberto Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Carlos M Franco
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
5
|
Oh E, Andrews KJ, Jeon B. Enhanced Biofilm Formation by Ferrous and Ferric Iron Through Oxidative Stress in Campylobacter jejuni. Front Microbiol 2018; 9:1204. [PMID: 29928267 PMCID: PMC5998592 DOI: 10.3389/fmicb.2018.01204] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022] Open
Abstract
Campylobacter is a leading foodborne pathogen worldwide. Biofilm formation is an important survival mechanism that sustains the viability of Campylobacter under harsh stress conditions. Iron affects biofilm formation in some other bacteria; however, the effect of iron on biofilm formation has not been investigated in Campylobacter. In this study, we discovered that ferrous (Fe2+) and ferric (Fe3+) iron stimulated biofilm formation in Campylobacter jejuni. The sequestration of iron with an iron chelator prevented the iron-mediated biofilm stimulation. The level of total reactive oxygen species (ROS) in biofilms was increased by iron. However, the supplementation with an antioxidant prevented the total ROS level from being increased in biofilms by iron and also inhibited iron-mediated biofilm stimulation in C. jejuni. This suggests that iron promotes biofilm formation through oxidative stress. Based on the results of fluorescence microscopic analysis, Fe2+ and Fe3+ enhanced both microcolony formation and biofilm maturation. The levels of extracellular DNA and polysaccharides in biofilms were increased by iron supplementation. The effect of iron on biofilm formation was also investigated with 70 C. jejuni isolates from raw chicken. Regardless of the inherent levels of biofilm formation, iron stimulated biofilm formation in all tested strains; however, there were strain variations in iron concentrations affecting biofilm formation. The biofilm formation of 92.9% (65 of 70) strains was enhanced by either 40 μM Fe2+ or 20 μM Fe3+ or both (the iron concentrations that enhanced biofilm formation in C. jejuni NCTC 11168), whereas different iron concentrations were required to promote biofilms in the rest of the strains. The findings in this study showed that Fe2+ and Fe3+ contributed to the stimulation of biofilm formation in C. jejuni through oxidative stress.
Collapse
Affiliation(s)
- Euna Oh
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Katelyn J Andrews
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Byeonghwa Jeon
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Johnson TJ, Shank JM, Johnson JG. Current and Potential Treatments for Reducing Campylobacter Colonization in Animal Hosts and Disease in Humans. Front Microbiol 2017; 8:487. [PMID: 28386253 PMCID: PMC5362611 DOI: 10.3389/fmicb.2017.00487] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/08/2017] [Indexed: 12/18/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacteria-derived gastroenteritis worldwide. In the developed world, Campylobacter is usually acquired by consuming under-cooked poultry, while in the developing world it is often obtained through drinking contaminated water. Once consumed, the bacteria adhere to the intestinal epithelium or mucus layer, causing toxin-mediated inhibition of fluid reabsorption from the intestine and invasion-induced inflammation and diarrhea. Traditionally, severe or prolonged cases of campylobacteriosis have been treated with antibiotics; however, overuse of these antibiotics has led to the emergence of antibiotic-resistant strains. As the incidence of antibiotic resistance, emergence of post-infectious diseases, and economic burden associated with Campylobacter increases, it is becoming urgent that novel treatments are developed to reduce Campylobacter numbers in commercial poultry and campylobacteriosis in humans. The purpose of this review is to provide the current status of present and proposed treatments to combat Campylobacter infection in humans and colonization in animal reservoirs. These treatments include anti-Campylobacter compounds, probiotics, bacteriophage, vaccines, and anti-Campylobacter bacteriocins, all of which may be successful at reducing the incidence of campylobacteriosis in humans and/or colonization loads in poultry. In addition to reviewing treatments, we will also address several proposed targets that may be used in future development of novel anti-Campylobacter treatments.
Collapse
Affiliation(s)
- Tylor J Johnson
- Department of Microbiology, The University of Tennessee, Knoxville TN, USA
| | - Janette M Shank
- Department of Microbiology, The University of Tennessee, Knoxville TN, USA
| | - Jeremiah G Johnson
- Department of Microbiology, The University of Tennessee, Knoxville TN, USA
| |
Collapse
|
7
|
Dwivedi R, Nothaft H, Garber J, Xin Kin L, Stahl M, Flint A, van Vliet AHM, Stintzi A, Szymanski CM. L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni. Mol Microbiol 2016; 101:575-89. [PMID: 27145048 DOI: 10.1111/mmi.13409] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/15/2016] [Indexed: 11/28/2022]
Abstract
Campylobacter jejuni and Campylobacter coli are zoonotic pathogens once considered asaccharolytic, but are now known to encode pathways for glucose and fucose uptake/metabolism. For C. jejuni, strains with the fuc locus possess a competitive advantage in animal colonization models. We demonstrate that this locus is present in > 50% of genome-sequenced strains and is prevalent in livestock-associated isolates of both species. To better understand how these campylobacters sense nutrient availability, we examined biofilm formation and chemotaxis to fucose. C. jejuni NCTC11168 forms less biofilms in the presence of fucose, although its fucose permease mutant (fucP) shows no change. In a newly developed chemotaxis assay, both wild-type and the fucP mutant are chemotactic towards fucose. C. jejuni 81-176 naturally lacks the fuc locus and is unable to swim towards fucose. Transfer of the NCTC11168 locus into 81-176 activated fucose uptake and chemotaxis. Fucose chemotaxis also correlated with possession of the pathway for C. jejuni RM1221 (fuc+) and 81116 (fuc-). Systematic mutation of the NCTC11168 locus revealed that Cj0485 is necessary for fucose metabolism and chemotaxis. This study suggests that components for fucose chemotaxis are encoded within the fuc locus, but downstream signals only in fuc + strains, are involved in coordinating fucose availability with biofilm development.
Collapse
Affiliation(s)
- Ritika Dwivedi
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Harald Nothaft
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Jolene Garber
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Lin Xin Kin
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Martin Stahl
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Annika Flint
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Arnoud H M van Vliet
- Institute of Food Research, Gut Health and Food Safety Programme, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Alain Stintzi
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Christine M Szymanski
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
8
|
Drozd M, Chandrashekhar K, Rajashekara G. Polyphosphate-mediated modulation of Campylobacter jejuni biofilm growth and stability. Virulence 2015; 5:680-90. [PMID: 25127528 DOI: 10.4161/viru.34348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biofilms increase C. jejuni's resilience to detergents, antibiotics, and environmental stressors. In these investigations, we studied the modulation of biofilm in response to phosphate related stressors. We found that the deletion of ppk1, phoX, and ppk2 (polyphosphate associated [poly P] genes) in C. jejuni modulated different stages of biofilm formation such as attached microcolonies, air-liquid biofilms, and biofilm shedding. Additionally, inorganic phosphate also modulated attached microcolonies, air-liquid biofilms, and biofilm shedding both independently of and additively in the poly P associated mutants. Furthermore, we observed that these different biofilm stages were affected by biofilm age: for example, the adherent microcolonies were maximum on day 2, while biofilm growth at the air-liquid interface and shedding was highest on day 3. Also, we observed altered calcofluor white reactive polysaccharides in poly P-associated mutants, as well as increased secretion of autoinducer-2 (AI-2) quorum sensing molecules in the ∆ppk2 mutant. Further, the polysaccharide and flagellar biosynthesis genes, that are associated with biofilm formation, were altered in these poly P-associated mutants. We conclude that the phosphate limiting condition modulates C. jejuni biofilm formation.
Collapse
Affiliation(s)
- Mary Drozd
- Food Animal Health Research Program; Ohio Agricultural Research and Development Center; Department of Veterinary Preventive Medicine; The Ohio State University; Wooster, OH USA
| | - Kshipra Chandrashekhar
- Food Animal Health Research Program; Ohio Agricultural Research and Development Center; Department of Veterinary Preventive Medicine; The Ohio State University; Wooster, OH USA
| | - Gireesh Rajashekara
- Food Animal Health Research Program; Ohio Agricultural Research and Development Center; Department of Veterinary Preventive Medicine; The Ohio State University; Wooster, OH USA
| |
Collapse
|
9
|
Henry R, Schang C, Chandrasena GI, Deletic A, Edmunds M, Jovanovic D, Kolotelo P, Schmidt J, Williamson R, McCarthy D. Environmental monitoring of waterborne Campylobacter: evaluation of the Australian standard and a hybrid extraction-free MPN-PCR method. Front Microbiol 2015; 6:74. [PMID: 25709604 PMCID: PMC4321596 DOI: 10.3389/fmicb.2015.00074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/21/2015] [Indexed: 11/13/2022] Open
Abstract
Campylobacter is the leading agent of diarrheal disease worldwide. This study evaluates a novel culture-PCR hybrid (MPN-PCR) assay for the rapid enumeration of Campylobacter spp. from estuarine and wastewater systems. To first evaluate the current, culture-based, Australian standard, an inter-laboratory study was conducted on 69 subsampled water samples. The proposed Most-Probable Number (MPN)-PCR method was then evaluated, by analysing 147 estuarine samples collected over a 2 year period. Data for 14 different biological, hydrological and climatic parameters were also collated to identify pathogen-environment relationships and assess the potential for method specific bias. The results demonstrated that the intra-laboratory performance of the MPN-PCR was superior to that of AS/NZS (σ = 0.7912, P < 0.001; κ = 0.701, P < 0.001) with an overall diagnostic accuracy of ~94%. Furthermore, the analysis of both MPN-PCR and AS/NZS identified the potential for the introduction of method specific bias during assessment of the effects of environmental parameters on Campylobacter spp. numbers.
Collapse
Affiliation(s)
- Rebekah Henry
- Environmental and Public Health Laboratory, Department of Civil Engineering, Monash UniversityClayton, VIC, Australia
| | - Christelle Schang
- Environmental and Public Health Laboratory, Department of Civil Engineering, Monash UniversityClayton, VIC, Australia
| | - Gayani I. Chandrasena
- Environmental and Public Health Laboratory, Department of Civil Engineering, Monash UniversityClayton, VIC, Australia
| | - Ana Deletic
- Environmental and Public Health Laboratory, Department of Civil Engineering, Monash UniversityClayton, VIC, Australia
| | - Mark Edmunds
- Environmental and Public Health Laboratory, Department of Civil Engineering, Monash UniversityClayton, VIC, Australia
| | - Dusan Jovanovic
- Environmental and Public Health Laboratory, Department of Civil Engineering, Monash UniversityClayton, VIC, Australia
| | - Peter Kolotelo
- Environmental and Public Health Laboratory, Department of Civil Engineering, Monash UniversityClayton, VIC, Australia
| | | | - Richard Williamson
- Environmental and Public Health Laboratory, Department of Civil Engineering, Monash UniversityClayton, VIC, Australia
| | - David McCarthy
- Environmental and Public Health Laboratory, Department of Civil Engineering, Monash UniversityClayton, VIC, Australia
| |
Collapse
|
10
|
Enhanced transmission of antibiotic resistance in Campylobacter jejuni biofilms by natural transformation. Antimicrob Agents Chemother 2014; 58:7573-5. [PMID: 25267685 DOI: 10.1128/aac.04066-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Campylobacter jejuni is a leading food-borne pathogen, and its antibiotic resistance is of serious concern to public health worldwide. C. jejuni is naturally competent for DNA transformation and freely takes up foreign DNA harboring genetic information responsible for antibiotic resistance. In this study, we demonstrate that C. jejuni transfers antibiotic resistance genes more frequently in biofilms than in planktonic cells by natural transformation.
Collapse
|
11
|
Bronowski C, James CE, Winstanley C. Role of environmental survival in transmission of Campylobacter jejuni. FEMS Microbiol Lett 2014; 356:8-19. [PMID: 24888326 DOI: 10.1111/1574-6968.12488] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 11/29/2022] Open
Abstract
Campylobacter species are the most common cause of bacterial gastroenteritis, with C. jejuni responsible for the majority of these cases. Although it is clear that livestock, and particularly poultry, are the most common source, it is likely that the natural environment (soil and water) plays a key role in transmission, either directly to humans or indirectly via farm animals. It has been shown using multilocus sequence typing that some clonal complexes (such as ST-45) are more frequently isolated from environmental sources such as water, suggesting that strains vary in their ability to survive in the environment. Although C. jejuni are fastidious microaerophiles generally unable to grow in atmospheric levels of oxygen, C. jejuni can adapt to survival in the environment, exhibiting aerotolerance and starvation survival. Biofilm formation, the viable but nonculturable state, and interactions with other microorganisms can all contribute to survival outside the host. By exploiting high-throughput technologies such as genome sequencing and RNA Seq, we are well placed to decipher the mechanisms underlying the variations in survival between strains in environments such as soil and water and to better understand the role of environmental persistence in the transmission of C. jejuni directly or indirectly to humans.
Collapse
Affiliation(s)
- Christina Bronowski
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
12
|
Oh E, Jeon B. Role of alkyl hydroperoxide reductase (AhpC) in the biofilm formation of Campylobacter jejuni. PLoS One 2014; 9:e87312. [PMID: 24498070 PMCID: PMC3909096 DOI: 10.1371/journal.pone.0087312] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/20/2013] [Indexed: 11/18/2022] Open
Abstract
Biofilm formation of Campylobacter jejuni, a major cause of human gastroenteritis, contributes to the survival of this pathogenic bacterium in different environmental niches; however, molecular mechanisms for its biofilm formation have not been fully understood yet. In this study, the role of oxidative stress resistance in biofilm formation was investigated using mutants defective in catalase (KatA), superoxide dismutase (SodB), and alkyl hydroperoxide reductase (AhpC). Biofilm formation was substantially increased in an ahpC mutant compared to the wild type, and katA and sodB mutants. In contrast to the augmented biofilm formation of the ahpC mutant, a strain overexpressing ahpC exhibited reduced biofilm formation. A perR mutant and a CosR-overexpression strain, both of which upregulate ahpC, also displayed decreased biofilms. However, the introduction of the ahpC mutation to the perR mutant and the CosR-overexpression strain substantially enhanced biofilm formation. The ahpC mutant accumulated more total reactive oxygen species and lipid hydroperoxides than the wild type, and the treatment of the ahpC mutant with antioxidants reduced biofilm formation to the wild-type level. Confocal microscopy analysis showed more microcolonies were developed in the ahpC mutant than the wild type. These results successfully demonstrate that AhpC plays an important role in the biofilm formation of C. jejuni.
Collapse
Affiliation(s)
- Euna Oh
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Byeonghwa Jeon
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
13
|
Bae J, Jeon B. Increased emergence of fluoroquinolone-resistant Campylobacter jejuni in biofilm. Antimicrob Agents Chemother 2013; 57:5195-6. [PMID: 23896469 PMCID: PMC3811428 DOI: 10.1128/aac.00995-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Junghee Bae
- Department of Public Health Sciences, School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
14
|
Maal-Bared R, Bartlett KH, Bowie WR, Hall ER. Phenotypic antibiotic resistance of Escherichia coli and E. coli O157 isolated from water, sediment and biofilms in an agricultural watershed in British Columbia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 443:315-323. [PMID: 23202379 DOI: 10.1016/j.scitotenv.2012.10.106] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/25/2012] [Accepted: 10/25/2012] [Indexed: 05/22/2023]
Abstract
This study examined the distribution of antibiotic resistant Escherichia coli and E. coli O157 isolated from water, sediment and biofilms in an intensive agricultural watershed (Elk Creek, British Columbia) between 2005 and 2007. It also examined physical and chemical water parameters associated with antibiotic resistance. Broth microdilution techniques were used to determine minimum inhibitory concentrations (MIC) for E. coli (n=214) and E. coli O157 (n=27) recovered isolates for ampicillin, cefotaxime, ciprofloxacin, nalidixic acid, streptomycin and tetracycline. Both E. coli and E. coli O157 isolates showed highest frequency of resistance to tetracycline, ampicillin, streptomycin and nalidixic acid; respectively. For E. coli, the highest frequency of resistance was observed at the most agriculturally-impacted site, while the lowest frequency of resistance was found at the headwaters. Sediment and river rock biofilms were the most likely to be associated with resistant E. coli, while water was the least likely. While seasonality (wet versus dry) had no relationship with resistance frequency, length of biofilm colonization of the substratum in the aquatic environment only affected resistance frequency to nalidixic acid and tetracycline. Multivariate logistic regressions showed that water depth, nutrient concentrations, temperature, dissolved oxygen and salinity had statistically significant associations with frequency of E. coli resistance to nalidixic acid, streptomycin, ampicillin and tetracycline. The results indicate that antibiotic resistant E. coli and E. coli O157 were prevalent in an agricultural stream. Since E. coli is adept at horizontal gene transfer and prevalent in biofilms and sediment, where ample opportunities for genetic exchange with potential environmental pathogens present themselves, resistant isolates may present a risk to ecosystem, wildlife and public health.
Collapse
Affiliation(s)
- Rasha Maal-Bared
- Resource Management and Environmental Studies, University of British Columbia, Vancouver, Canada.
| | | | | | | |
Collapse
|