1
|
Abadi DRV, Tahmasbizadeh M, Arfaeinia H, Masjedi MR, Ramavandi B, Poureshgh Y. Biomonitoring of unmetabolized polycyclic aromatic hydrocarbons (PAHs) in urine of waterpipe/cigarette café workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22728-22742. [PMID: 36306072 DOI: 10.1007/s11356-022-23822-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Fresh tobacco or the smoke resulting from waterpipe and cigarette contains large amounts of polycyclic aromatic hydrocarbons (PAHs), which consumption can cause releasing of these contaminants into the indoor air of cigarette and waterpipe cafés. This study was conducted to investigate the urinary concentrations of unmetabolized PAH compounds among the employed workers as well as the customers in waterpipe and cigarette cafés along with its association with oxidative stress factors plus kidney injury biomarkers. For this, 35 staffs and 35 customers in these cafés (as an exposed group (EG)), 20 staffs in non-smoking cafés (as 1st control group (CG-1)), and 20 of the public population (as 2nd control group 2 (CG-2)) were chosen and their urine specimens were collected. The results indicated that there is a significant difference between urinary concentration of ƩPAHs in the exposed and control groups (P value < 0.05). Also, "type of tobacco" can be considered as an influential and determining factor for the urinary levels of PAHs among the subjects. Considering the contribution of PAHs to the total toxic equivalents, benzo[a]pyrene (BaP), dibenzo[a,h]anthracene (DahA), and fluoranthene (Flrt) with 32.76%, 27.62%, and 18.65% claimed the largest share in waterpipe/cigarette cafés. The results also indicated a positive and significant relationship between some PAHs and oxidative stress biomarkers as well as uKIM-1 (biomarker for assessing and diagnosing glomerular damage) and TIMP-1 (biomarker of stress in primary steps of injury in tubular cell). Thus, it can be expressed that the workers of these smoking cafés are prone to the detrimental health impacts. Accordingly, proper policies and decisions should be taken to limit the activity of these cafés or proper protective strategies should be adopted to protect the health of exposed individuals.
Collapse
Affiliation(s)
- Dariush Ranjbar Vakil Abadi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Masoumeh Tahmasbizadeh
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Mohammad Reza Masjedi
- Tobacco Control Research Center (TCRC), Iranian Anti-Tobacco Association, Tehran, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Yousef Poureshgh
- Department of Environmental Health Engineering, Faculty of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
2
|
Barbosa F, Rocha BA, Souza MCO, Bocato MZ, Azevedo LF, Adeyemi JA, Santana A, Campiglia AD. Polycyclic aromatic hydrocarbons (PAHs): Updated aspects of their determination, kinetics in the human body, and toxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:28-65. [PMID: 36617662 DOI: 10.1080/10937404.2022.2164390] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are legacy pollutants of considerable public health concern. Polycyclic aromatic hydrocarbons arise from natural and anthropogenic sources and are ubiquitously present in the environment. Several PAHs are highly toxic to humans with associated carcinogenic and mutagenic properties. Further, more severe harmful effects on human- and environmental health have been attributed to the presence of high molecular weight (HMW) PAHs, that is PAHs with molecular mass greater than 300 Da. However, more research has been conducted using low molecular weight (LMW) PAHs). In addition, no HMW PAHs are on the priority pollutants list of the United States Environmental Protection Agency (US EPA), which is limited to only 16 PAHs. However, limited analytical methodologies for separating and determining HMW PAHs and their potential isomers and lack of readily available commercial standards make research with these compounds challenging. Since most of the PAH kinetic data originate from animal studies, our understanding of the effects of PAHs on humans is still minimal. In addition, current knowledge of toxic effects after exposure to PAHs may be underrepresented since most investigations focused on exposure to a single PAH. Currently, information on PAH mixtures is limited. Thus, this review aims to critically assess the current knowledge of PAH chemical properties, their kinetic disposition, and toxicity to humans. Further, future research needs to improve and provide the missing information and minimize PAH exposure to humans.
Collapse
Affiliation(s)
- Fernando Barbosa
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Bruno A Rocha
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Marília C O Souza
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Mariana Z Bocato
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lara F Azevedo
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Joseph A Adeyemi
- Department of Biology, School of Sciences, Federal University of Technology, Akure, Nigeria
| | - Anthony Santana
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Andres D Campiglia
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
3
|
Arfaeinia H, Dobaradaran S, Mahmoodi M, Farjadfard S, Tahmasbizadeh M, Fazlzadeh M. Urinary profile of PAHs and related compounds in women working in beauty salons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158281. [PMID: 36029813 DOI: 10.1016/j.scitotenv.2022.158281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of chemical compounds which interest to human biological monitoring researches because of their potential carcinogenic, mutagenic, and teratogenic properties. However, the exposure of female beauticians to these contaminants is not well-reported. For biomonitoring of potential exposure of female cosmeticians to PAHs in beauty salons, urine samples were taken from cosmetologist women (n = 50.00) and housewives (n = 35.00) as the exposure group (EG) and control group (CG), respectively. Next, unmetabolized PAHs levels as well as the concentration of - 1-hydroxypyrene (1-OHP) were analyzed in these specimens. In addition, since benzene has some common source with PAHs, in this study t, t'-Muconic acid (TTMA) level was also determined as the metabolite and indicator of exposure to benzene. The results indicated a high detection frequency of the target compounds (PAHs, 1-OHP and TTMA) in the urine specimens of beauticians. The results also showed that there is a significant difference between the concentration of these pollutants in the urine specimens of the exposure and control groups. The median concentration of ΣPAHs, 1-OHP, and TTMA in the before exposure (BE) specimens collected from the exposure group were 337.42 ng/L, 593.92 ng/L, and 247.90 μg/L, respectively. However, a higher concentration of these contaminants was observed in the after exposure specimens with a median concentration of 423.29 ng/L, 745.03 ng/L, and 310.97 μg/L, respectively. In terms of contribution of PAHs compounds in total toxic equivalents, DahA, BaP, and IndP with 59.03, 28.73, and 2.86 % had the largest share. In this study, it was also observed that some kidney damage biomarkers as well as some oxidative stress injury biomarkers are positively and significantly correlated with the urinary values of ∑PAHs. Thus, it can be concluded that high health risks threaten the female beauticians regarding kidney injury and DNA oxidative stress.
Collapse
Affiliation(s)
- Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Marzieh Mahmoodi
- Department of Biostatistics and Epidemiology, School of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sima Farjadfard
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Masoumeh Tahmasbizadeh
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mehdi Fazlzadeh
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Tehran, Iran; Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
4
|
Determination of Unmetabolized Petroleum Hydrocarbons in the Urine of Occupationally Exposed Persons in Port-Harcourt, Nigeria by Gas Chromatography-Mass Spectrometry (GC-MS). CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Lin XY, Liu YX, Zhang YJ, Shen HM, Guo Y. Polycyclic aromatic hydrocarbon exposure and DNA oxidative damage of workers in workshops of a petrochemical group. CHEMOSPHERE 2022; 303:135076. [PMID: 35649444 DOI: 10.1016/j.chemosphere.2022.135076] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The petrochemical industry has promoted the development of economy, while polycyclic aromatic hydrocarbons (PAHs) produced by the industry become the threat for environment and humans. Data on human occupational exposure in petrochemical industry are limited. In the present study, urinary hydroxylated PAH metabolites (OH-PAHs) and a biomarker of DNA oxidative damage (8-hydroxy-2'-deoxyguanosine (8-OHdG)) were measured in 546 workers of a petrochemical group in Northeast China, to investigate PAH exposure and related potential health risk. The concentrations of ∑9OH-PAH in all workers were 0.25-175 μg/g Cre with a median value of 4.41 μg/g Cre. Metabolites of naphthalene were the predominant compounds. The levels of PAH metabolites were significantly different for workers with different jobs, which were the highest for recycling workers (13.7 μg/g Cre) and the lowest for agency managers (5.12 μg/g Cre). Besides, higher levels of OH-PAHs were usually found in males and older workers. There was a dose-response relationship between levels of 8-OHdG and ∑9OH-PAHs (p < 0.01). No difference was observed in concentrations of 8-OHdG for workers of different gender or ages, work history as well as noise. Furthermore, workers simultaneously exposed to other potential pollutants and higher levels of ∑9OH-PAH had significantly higher levels of 8-OHdG compared with those in the corresponding subgroups. Our results suggested that exposure to PAHs or co-exposure to PAHs and potential toxics in the petrochemical plant may cause DNA damage. We call for more researches on the associations among noise, chemical pollution and oxidative stress to workers in the real working environment.
Collapse
Affiliation(s)
- Xiao-Ya Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yan-Xiang Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Hui-Min Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Louro H, Gomes BC, Saber AT, Iamiceli AL, Göen T, Jones K, Katsonouri A, Neophytou CM, Vogel U, Ventura C, Oberemm A, Duca RC, Fernandez MF, Olea N, Santonen T, Viegas S, Silva MJ. The Use of Human Biomonitoring to Assess Occupational Exposure to PAHs in Europe: A Comprehensive Review. TOXICS 2022; 10:toxics10080480. [PMID: 36006159 PMCID: PMC9414426 DOI: 10.3390/toxics10080480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 06/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the chemicals with proven impact on workers' health. The use of human biomonitoring (HBM) to assess occupational exposure to PAHs has become more common in recent years, but the data generated need an overall view to make them more usable by regulators and policymakers. This comprehensive review, developed under the Human Biomonitoring for Europe (HBM4EU) Initiative, was based on the literature available from 2008-2022, aiming to present and discuss the information on occupational exposure to PAHs, in order to identify the strengths and limitations of exposure and effect biomarkers and the knowledge needs for regulation in the workplace. The most frequently used exposure biomarker is urinary 1-hydroxypyrene (1-OH-PYR), a metabolite of pyrene. As effect biomarkers, those based on the measurement of oxidative stress (urinary 8-oxo-dG adducts) and genotoxicity (blood DNA strand-breaks) are the most common. Overall, a need to advance new harmonized approaches both in data and sample collection and in the use of appropriate biomarkers in occupational studies to obtain reliable and comparable data on PAH exposure in different industrial sectors, was noted. Moreover, the use of effect biomarkers can assist to identify work environments or activities of high risk, thus enabling preventive risk mitigation and management measures.
Collapse
Affiliation(s)
- Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Bruno Costa Gomes
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Anne Thoustrup Saber
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| | | | - Thomas Göen
- IPASUM, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kate Jones
- Health and Safety Executive, Buxton, Derbyshire SK17 9JN, UK
| | - Andromachi Katsonouri
- Cyprus State General Laboratory, Ministry of Health, P.O. Box 28648, Nicosia 2081, Cyprus
| | - Christiana M. Neophytou
- Cyprus State General Laboratory, Ministry of Health, P.O. Box 28648, Nicosia 2081, Cyprus
- Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
- National Food Institute, Technical University of Denmark, Kemitorvet, Bygning 202, DK-2800 Kgs Lyngby, Denmark
| | - Célia Ventura
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Axel Oberemm
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Radu Corneliu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), 1, Rue Louis Rech, 3555 Dudelange, Luxembourg
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), O&N 5b, Herestraat 49, 3000 Leuven, Belgium
| | - Mariana F. Fernandez
- Centre of Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Nicolas Olea
- Centre of Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Tiina Santonen
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Susana Viegas
- Public Health Research Centre, NOVA National School of Public Health, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| |
Collapse
|
7
|
Joksić AŠ, Tratnik JS, Mazej D, Kocman D, Stajnko A, Eržen I, Horvat M. Polycyclic aromatic hydrocarbons (PAHs) in men and lactating women in Slovenia: Results of the first national human biomonitoring. Int J Hyg Environ Health 2022; 241:113943. [DOI: 10.1016/j.ijheh.2022.113943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023]
|
8
|
Pena A, Duarte S, Pereira AMPT, Silva LJG, Laranjeiro CSM, Oliveira M, Lino C, Morais S. Human Biomonitoring of Selected Hazardous Compounds in Portugal: Part I-Lessons Learned on Polycyclic Aromatic Hydrocarbons, Metals, Metalloids, and Pesticides. Molecules 2021; 27:242. [PMID: 35011472 PMCID: PMC8746698 DOI: 10.3390/molecules27010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022] Open
Abstract
Human biomonitoring (HBM) data provide information on total exposure regardless of the route and sources of exposure. HBM studies have been applied to quantify human exposure to contaminants and environmental/occupational pollutants by determining the parent compounds, their metabolites or even their reaction products in biological matrices. HBM studies performed among the Portuguese population are disperse and limited. To overcome this knowledge gap, this review gathers, for the first time, the published Portuguese HBM information concerning polycyclic aromatic hydrocarbons (PAHs), metals, metalloids, and pesticides concentrations detected in the urine, serum, milk, hair, and nails of different groups of the Portuguese population. This integrative insight of available HBM data allows the analysis of the main determinants and patterns of exposure of the Portuguese population to these selected hazardous compounds, as well as assessment of the potential health risks. Identification of the main difficulties and challenges of HBM through analysis of the enrolled studies was also an aim. Ultimately, this study aimed to support national and European policies promoting human health and summarizes the most important outcomes and lessons learned through the HBM studies carried out in Portugal.
Collapse
Affiliation(s)
- Angelina Pena
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Sofia Duarte
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
- Centro de Investigação Vasco da Gama-Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama, Av. José R. Sousa Fernandes, Campus Universitário-Bloco B, 3020-210 Coimbra, Portugal
| | - André M. P. T. Pereira
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Liliana J. G. Silva
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Célia S. M. Laranjeiro
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Marta Oliveira
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.O.); (S.M.)
| | - Celeste Lino
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Simone Morais
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.O.); (S.M.)
| |
Collapse
|
9
|
Kim U, Karthikraj R. Solid‐phase microextraction for the human biomonitoring of environmental chemicals: Current applications and future perspectives. J Sep Sci 2020; 44:247-273. [DOI: 10.1002/jssc.202000830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/18/2020] [Accepted: 11/13/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Un‐Jung Kim
- Department of Earth & Environmental Sciences University of Texas at Arlington Arlington Texas USA
| | | |
Collapse
|
10
|
Rehman MYA, Taqi MM, Hussain I, Nasir J, Rizvi SHH, Syed JH. Elevated exposure to polycyclic aromatic hydrocarbons (PAHs) may trigger cancers in Pakistan: an environmental, occupational, and genetic perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42405-42423. [PMID: 32875453 DOI: 10.1007/s11356-020-09088-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/27/2020] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds which are emitted through incomplete combustion of organic materials, fossil fuels, consumption of processed meat, smoked food, and from various industrial activities. High molecular mass and mobility make PAHs widespread and lethal for human health. A cellular system in human detoxifies these toxicants through specialized enzymatic machinery called xenobiotic-metabolizing (CYP450) and phase-II (GSTs) enzymes (XMEs). These metabolizing enzymes include cytochromes P450 family (CYP1, CYP2), glutathione s-transferases, and ALDHs. Gene polymorphisms in XMEs encoding genes can compromise their metabolizing capacity to detoxify ingested carcinogens (PAHs etc.) that may lead to prolong and elevated exposure to ingested toxicants and may consequently lead to cancer. Moreover, PAHs can induce cancer through reprograming XMEs' gene functions by altering their epigenetic markers. This review article discusses possible interplay between individual's gene polymorphism in XMEs' genes, their altered epigenetic markers, and exposure to PAHs in cancer susceptibility in Pakistan.
Collapse
Affiliation(s)
- Muhammad Yasir Abdur Rehman
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, PO, 45320, Pakistan
| | | | - Imran Hussain
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, PO, 45320, Pakistan
- Business Unit Environmental Resources and Technologies, Center for Energy, Austrian Institute of Technology (AIT), Vienna, Austria
| | - Jawad Nasir
- Earth Sciences Directorate, Pakistan Space and Upper Atmosphere Research Commission (SUPARCO), P.O. Box 8402, Karachi, 75270, Pakistan
| | - Syed Hussain Haider Rizvi
- Earth Sciences Directorate, Pakistan Space and Upper Atmosphere Research Commission (SUPARCO), P.O. Box 8402, Karachi, 75270, Pakistan
| | - Jabir Hussain Syed
- Department of Meteorology, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan.
| |
Collapse
|
11
|
Xu X, Wei D, Li Y, Wei Q, Li Y, Jin M, Zhao B, Zhang S, Han J, Xie D. Determination of unmetabolized polycyclic aromatic hydrocarbons in children urine by low temperature partitioning extraction and gas chromatography triple quadrupole tandem mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Frigerio G, Campo L, Mercadante R, Mielżyńska-Švach D, Pavanello S, Fustinoni S. Urinary Mercapturic Acids to Assess Exposure to Benzene and Other Volatile Organic Compounds in Coke Oven Workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1801. [PMID: 32164281 PMCID: PMC7084241 DOI: 10.3390/ijerph17051801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/11/2023]
Abstract
Coke production was classified as carcinogenic to humans by the International Agency for Research on Cancer. Besides polycyclic aromatic hydrocarbons, coke oven workers may be exposed to benzene and other volatile organic compounds (VOCs). The aim of this study was to assess the exposure to several VOCs in 49 coke oven workers and 49 individuals living in the same area by determining urinary mercapturic acids. Active tobacco smoking was an exclusion criterion for both groups. Mercapturic acids were investigated by a validated isotopic dilution LC-MS/MS method. Linear models were built to correct for different confounding variables. Urinary levels of N-acetyl-S-phenyl-L-cysteine (SPMA) (metabolite of benzene), N-acetyl-S-(2-hydroxy-1/2-phenylethyl)-L-cysteine (PHEMA) (metabolite of styrene), N-acetyl-S-(2-cyanoethyl)-L-cysteine (CEMA) (metabolite of acrylonitrile), N-acetyl-S-[1-(hydroxymethyl)-2-propen-1-yl)-L-cysteine and N-acetyl-S-(2-hydroxy-3-buten-1-yl)-L-cysteine (MHBMA) (metabolites of 1,3-butadiene) were 2-10 fold higher in workers than in controls (p < 0.05). For SPMA, in particular, median levels were 0.02 and 0.31 µg/g creatinine in workers and controls, respectively. Among workers, coke makers were more exposed to PHEMA and SPMA than foremen and engine operators. The comparison with biological limit values shows that the exposure of workers was within 20% of the limit values for all biomarkers, moreover three subjects exceeded the restrictive occupational limit value recently proposed by the European Chemicals Agency (ECHA) for SPMA.
Collapse
Affiliation(s)
- Gianfranco Frigerio
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Laura Campo
- Environmental and Industrial Toxicology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Rosa Mercadante
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Danuta Mielżyńska-Švach
- Department of Medical Biology and Genetics, Faculty of Medicine, WST University of Technology, 40-555 Katowice, Poland
| | - Sofia Pavanello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padua, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
- Environmental and Industrial Toxicology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
13
|
Santos PM, del Nogal Sánchez M, Pavón JLP, Cordero BM. Determination of polycyclic aromatic hydrocarbons in human biological samples: A critical review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Hair analysis for the biomonitoring of polycyclic aromatic hydrocarbon exposure: comparison with urinary metabolites and DNA adducts in a rat model. Arch Toxicol 2018; 92:3061-3075. [DOI: 10.1007/s00204-018-2298-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/23/2018] [Indexed: 12/29/2022]
|
15
|
Campo L, Polledri E, Bechtold P, Gatti G, Quattrini G, Olgiati L, Romolo M, Ranzi A, Lauriola P, Carrozzi G, Fustinoni S. ETS Exposure and PAH Body Burden in Nonsmoking Italian Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1156. [PMID: 29865209 PMCID: PMC6025440 DOI: 10.3390/ijerph15061156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 11/17/2022]
Abstract
Active smoking is associated with increased body burden of polycyclic aromatic hydrocarbons (PAHs); the aim of this study was to assess whether environmental tobacco smoking (ETS) increases the internal dose of PAHs. In 344 nonsmoking Italian adults, out of 497 individuals selected as representative of the population of the town of Modena, ETS exposure was evaluated by a self-administered questionnaire and by the measurement of urinary cotinine (COT-U). PAH exposure was assessed by the measurement of urinary 1-hydroxypyrene (1-OHPYR) and of ten urinary PAHs. In all subjects, median (5th⁻95th percentile) COT-U was 0.47 (.
Collapse
Affiliation(s)
- Laura Campo
- Department of Clinical Sciences and Community Health, University of Milan and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy.
| | - Elisa Polledri
- Department of Clinical Sciences and Community Health, University of Milan and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy.
| | - Petra Bechtold
- Department of Public Health, Local Health Unit, 41121 Modena, Italy.
| | - Giulia Gatti
- Department of Public Health, Local Health Unit, 41121 Modena, Italy.
| | - Giulia Quattrini
- Department of Public Health, Local Health Unit, 41121 Modena, Italy.
| | - Luca Olgiati
- Department of Clinical Sciences and Community Health, University of Milan and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy.
| | - Michael Romolo
- Department of Public Health, Local Health Unit, 41121 Modena, Italy.
| | - Andrea Ranzi
- Environmental Health Reference Centre, Regional Agency for Environmental Prevention of Emilia Romagna, 41121 Modena, Italy.
| | - Paolo Lauriola
- Italian National Research Council, Institute of Clinical Physiology, Unit of Environmental Epidemiology and Disease Registries, 56124 Pisa, Italy.
| | - Giuliano Carrozzi
- Department of Public Health, Local Health Unit, 41121 Modena, Italy.
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy.
| |
Collapse
|
16
|
Martín Santos P, del Nogal Sánchez M, Pérez Pavón JL, Moreno Cordero B. Quantitative and qualitative analysis of polycyclic aromatic hydrocarbons in urine samples using a non-separative method based on mass spectrometry. Talanta 2018; 181:373-379. [DOI: 10.1016/j.talanta.2018.01.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/21/2022]
|
17
|
Ke S, Liu Q, Yao Y, Zhang X, Sui G. An in vitro cytotoxicities comparison of 16 priority polycyclic aromatic hydrocarbons in human pulmonary alveolar epithelial cells HPAEpiC. Toxicol Lett 2018. [PMID: 29526570 DOI: 10.1016/j.toxlet.2018.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In present study, we compared for the first time the cytotoxicities of the 16 priority polycyclic aromatic hydrocarbons (PAHs) in human pulmonary alveolar epithelial cells HPAEpiC. Moreover, we examined the effects of each PAH on oxidative stress (SOD, GSH, and ROS), cell viability, extracellular LDH, and apoptosis. The 16 priority PAHs were classified into four levels of cytotoxicity: (1) high cytotoxicity, BkF, BaP, and DBA; (2) moderate cytotoxicity, BbF, IND, BghiP, BaA, and CHR; (3) low cytotoxicity, PA, FL, and Pyr; and (4) mild cytotoxicity, Nap, AcPy, Acp, Flu, and Ant. Most of the PAHs showed benzene-ring-related cytotoxicity, except PA with 3-ring structure, cytotoxicity of which is similar to those of FL and Pyr with 4-ring structure. Results indicated the need for more studies on DBA, IND, and BghiP, among others, which are rarely investigated. PA, FL, and Pyr with little carcinogenicity should also be evaluated. This study will provide useful references for studies on the effects of PAHs on different cells or animal models.
Collapse
Affiliation(s)
- Shaorui Ke
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Qi Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Yuhan Yao
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Xinlian Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, 210044 PR China.
| |
Collapse
|
18
|
Cho SH, Lee SK, Kim CH. The determination of polycyclic aromatic hydrocarbons in human urine by high-resolution gas chromatography-mass spectrometry. Biomed Chromatogr 2018; 32:e4166. [DOI: 10.1002/bmc.4166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Sung-Hee Cho
- Center for Chemical Analysis; Korea Research Institute of Chemical Technology; Yuseong-gu, Daejeon Korea
| | - Sun-Kyung Lee
- Center for Chemical Analysis; Korea Research Institute of Chemical Technology; Yuseong-gu, Daejeon Korea
- Department of Chemistry; Korea University; Anam-dong Seongbuk-Gu, Seoul Korea
| | - Chong Hyeak Kim
- Center for Chemical Analysis; Korea Research Institute of Chemical Technology; Yuseong-gu, Daejeon Korea
| |
Collapse
|
19
|
Naccarato A, Gionfriddo E, Elliani R, Pawliszyn J, Sindona G, Tagarelli A. Investigating the robustness and extraction performance of a matrix-compatible solid-phase microextraction coating in human urine and its application to assess 2-6-ring polycyclic aromatic hydrocarbons using GC-MS/MS. J Sep Sci 2017; 41:929-939. [DOI: 10.1002/jssc.201700989] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/11/2017] [Accepted: 11/19/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Attilio Naccarato
- Dipartimento di Chimica e Tecnologie Chimiche; Università della Calabria; Arcavacata di Rende Italy
| | | | - Rosangela Elliani
- Dipartimento di Chimica e Tecnologie Chimiche; Università della Calabria; Arcavacata di Rende Italy
| | - Janusz Pawliszyn
- Department of Chemistry; University of Waterloo; Waterloo Ontario Canada
| | - Giovanni Sindona
- Dipartimento di Chimica e Tecnologie Chimiche; Università della Calabria; Arcavacata di Rende Italy
| | - Antonio Tagarelli
- Dipartimento di Chimica e Tecnologie Chimiche; Università della Calabria; Arcavacata di Rende Italy
| |
Collapse
|
20
|
Gatti MG, Bechtold P, Campo L, Barbieri G, Quattrini G, Ranzi A, Sucato S, Olgiati L, Polledri E, Romolo M, Iacuzio L, Carrozzi G, Lauriola P, Goldoni CA, Fustinoni S. Human biomonitoring of polycyclic aromatic hydrocarbonsand metals in the general population residing near the municipal solid waste incinerator of Modena, Italy. CHEMOSPHERE 2017; 186:546-557. [PMID: 28806681 DOI: 10.1016/j.chemosphere.2017.07.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND OBJECTIVES A cross-sectional biomonitoring study was carried out to investigate exposure to incinerator emission in relation to the body burden of selected biomarkers in the population living around the plant. METHODS Approximately 500 people, aged 18-69 yrs, living within 4 km from the incinerator were randomly selected form the population register. Exposure was measured through fall-out maps of particulate matter (PM), used as tracer for incinerator emissions. Ten metabolized polycyclic aromatic hydrocarbons (PAHs), from naphthalene to chrysene, 1-hydroxypyrene and twelve metals (Cd, Cr, Cu, Hg, Ni, Pb, Ni, Zn, V, Tl, As, Sn) were measured in spot urine samples. Confounders, such as diet, smoking, traffic, occupation and personal characteristics were assessed by questionnaires and objective measurements, and included into multivariate linear regression models. RESULTS Metal concentrations in urine were in line with or higher than Italian reference limits, besides Cr and V with more than twofold concentrations. Metal levels did not show clear association to exposure categories. Most abundant PAHs were naphthalene (median 26.2 ng/L) and phenanthrene (7.4 ng/L). All PAHs, but benz[a]anthracene and 1-hydroxypyrene, were found in more than 52% of samples, and included in regression models. Significant associations between urinary PAHs and exposure were found, strong for fluorene, and weaker for naphthalene, fluoranthene and pyrene. Results were confirmed by sensitivity analyses. Correlation with variables reported in literature were observed. CONCLUSIONS The study indicates that the emissions were very low and highlights that specific urinary PAHs provided useful information about the internal dose arising from incinerator emission.
Collapse
Affiliation(s)
- Maria Giulia Gatti
- Epidemiology and Risk Communication Unit, Department of Public Health, Local Health Unit, Strada Martiniana, 21, 41126, Modena, Italy.
| | - Petra Bechtold
- Epidemiology and Risk Communication Unit, Department of Public Health, Local Health Unit, Strada Martiniana, 21, 41126, Modena, Italy
| | - Laura Campo
- Department of Clinical Sciences and Community Health, University of Milan and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via S. Barnaba, 8, 20122, Milan, Italy
| | - Giovanna Barbieri
- Epidemiology and Risk Communication Unit, Department of Public Health, Local Health Unit, Strada Martiniana, 21, 41126, Modena, Italy
| | - Giulia Quattrini
- Epidemiology and Risk Communication Unit, Department of Public Health, Local Health Unit, Strada Martiniana, 21, 41126, Modena, Italy
| | - Andrea Ranzi
- Environmental Health Reference Centre, Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, Via Begarelli, 13, 41121, Modena, Italy
| | - Sabrina Sucato
- Department of Clinical Sciences and Community Health, University of Milan and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via S. Barnaba, 8, 20122, Milan, Italy
| | - Luca Olgiati
- Department of Clinical Sciences and Community Health, University of Milan and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via S. Barnaba, 8, 20122, Milan, Italy
| | - Elisa Polledri
- Department of Clinical Sciences and Community Health, University of Milan and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via S. Barnaba, 8, 20122, Milan, Italy
| | - Michael Romolo
- Epidemiology and Risk Communication Unit, Department of Public Health, Local Health Unit, Strada Martiniana, 21, 41126, Modena, Italy
| | - Laura Iacuzio
- Post Graduate School in Hygiene and Preventive Medicine, University of Modena and Reggio Emilia, Via Campi, 287, 41125, Modena, Italy
| | - Giuliano Carrozzi
- Epidemiology and Risk Communication Unit, Department of Public Health, Local Health Unit, Strada Martiniana, 21, 41126, Modena, Italy
| | - Paolo Lauriola
- Environmental Health Reference Centre, Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, Via Begarelli, 13, 41121, Modena, Italy
| | - Carlo A Goldoni
- Epidemiology and Risk Communication Unit, Department of Public Health, Local Health Unit, Strada Martiniana, 21, 41126, Modena, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via S. Barnaba, 8, 20122, Milan, Italy
| |
Collapse
|
21
|
Grova N, Faÿs F, Hardy EM, Appenzeller BMR. New insights into urine-based assessment of polycyclic aromatic hydrocarbon-exposure from a rat model: Identification of relevant metabolites and influence of elimination kinetics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:484-495. [PMID: 28575812 DOI: 10.1016/j.envpol.2017.03.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/25/2017] [Indexed: 05/18/2023]
Abstract
A gas chromatography tandem mass-spectrometry method dedicated to the analysis of 50 metabolites of polycyclic aromatic hydrocarbons (OH-PAHs) was applied to urine specimens collected from female Long Evans rats under controlled exposure to a mixture of PAHs (at 7 doses ranging from 0.01 to 0.8 mg/kg, by gavage, 3 times per week for 90 days). On four occasions (day 1, 28, 60 and 90), urine samples were collected over a 24 h period. Among these 50 OH-PAHs, 41 were detected in urine samples. Seven additional OH-PAHs were identified for the first time: 1 corresponding to metabolite of pyrene and 3 of anthracene. Strong linear dose versus urinary concentration relationships were observed for 25 of the 41 OH-PAHs detected in rat urine, confirming their suitability for assessing exposure to their respective parent compound. In addition, some isomers (e.g. 1-OH-pyrene, 3-OH-/4-OH-chrysene, 10-OH-benz[a]anthracene, 8-OH-benzo[k]fluoranthene, 11-OH-benzo[b]fluoranthene and 3-OH-benzo[a]pyrene) that were detected starting from the lowest levels of exposure or even in controls were considered particularly relevant biomarkers compared to metabolites only detected at higher levels of exposure. Finally, on the basis of the excretion profiles (on days 1, 28, 60 and 90) and urinary elimination kinetics of each OH-PAH detected at days 1 and 60, this study highlighted the fact that sampling time may influence the measurement of metabolites in urine. Taken together, these results provide interesting information on the suitability of the analysis of OH-PAHs in urine for the assessment of PAH exposure, which could be taken into consideration for the design of epidemiological studies in the future.
Collapse
Affiliation(s)
- N Grova
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg.
| | - F Faÿs
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - E M Hardy
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - B M R Appenzeller
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
22
|
Oliveira M, Slezakova K, Alves MJ, Fernandes A, Teixeira JP, Delerue-Matos C, Pereira MDC, Morais S. Firefighters’ exposure biomonitoring: Impact of firefighting activities on levels of urinary monohydroxyl metabolites. Int J Hyg Environ Health 2016; 219:857-866. [DOI: 10.1016/j.ijheh.2016.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/17/2016] [Accepted: 07/13/2016] [Indexed: 12/14/2022]
|
23
|
Zhang W, Zhang Y, Jiang Q, Zhao W, Yu A, Chang H, Lu X, Xie F, Ye B, Zhang S. Tetraazacalix[2]arence[2]triazine Coated Fe3O4/SiO2 Magnetic Nanoparticles for Simultaneous Dispersive Solid Phase Extraction and Determination of Trace Multitarget Analytes. Anal Chem 2016; 88:10523-10532. [DOI: 10.1021/acs.analchem.6b02583] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wenfen Zhang
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Daxue Road 75, Zhengzhou, Henan 450052, PR China
| | - Yanhao Zhang
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Daxue Road 75, Zhengzhou, Henan 450052, PR China
| | - Qiong Jiang
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Daxue Road 75, Zhengzhou, Henan 450052, PR China
| | - Wenjie Zhao
- School
of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Ajuan Yu
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Daxue Road 75, Zhengzhou, Henan 450052, PR China
| | - Hong Chang
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Daxue Road 75, Zhengzhou, Henan 450052, PR China
| | - Ximei Lu
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Daxue Road 75, Zhengzhou, Henan 450052, PR China
| | - Fuwei Xie
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan 450001, PR China
| | - Baoxian Ye
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Daxue Road 75, Zhengzhou, Henan 450052, PR China
| | - Shusheng Zhang
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Daxue Road 75, Zhengzhou, Henan 450052, PR China
| |
Collapse
|
24
|
De Craemer S, Croes K, van Larebeke N, Sioen I, Schoeters G, Loots I, Nawrot T, Nelen V, Campo L, Fustinoni S, Baeyens W. Investigating unmetabolized polycyclic aromatic hydrocarbons in adolescents' urine as biomarkers of environmental exposure. CHEMOSPHERE 2016; 155:48-56. [PMID: 27105152 DOI: 10.1016/j.chemosphere.2016.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are of interest to human biomonitoring studies due to their carcinogenic potential. Traditionally metabolites of these compounds, like 1-hydroxypyrene, are monitored in urine, but recent methods allow the determination of the parent compounds in urine, which give additional information regarding sources and toxicity of PAHs. In order to assess the feasibility of incorporating these methods in a human biomonitoring study, the 16 USEPA parent PAHs were determined in 20 urine samples. These samples were obtained from 10 boys and 10 girls aged 14-16 years, participating in the third Flemish Environment and Health Study (Flanders, Belgium). Of these 16 parent PAHs, nine could be determined in more than 95% of the samples and three (including benzo(a)pyrene) in more than 50%. Several correlations were found between different PAHs, but not between pyrene and its metabolite 1-hydroxypyrene. Diagnostic PAH ratios in urine and air samples pointed towards combustion sources and are in line with the ratios in environmental samples. Benzo(a)pyrene, naphthalene and fluorene have the highest carcinogenic potential in our cohort, when using toxic equivalency factors. Some associations between PAH congeners and determinants of exposure were found, while fluorene and acenaphthylene were positively associated with thyroid hormone levels and benzo(a)pyrene showed a positive correlation with DNA damage by comet assay. These results confirm that parent PAHs in urine are useful as biomarkers of exposure in biomonitoring studies.
Collapse
Affiliation(s)
- Sam De Craemer
- Department of Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Elsene, Belgium.
| | - Kim Croes
- Department of Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Elsene, Belgium
| | - Nicolas van Larebeke
- Department of Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Elsene, Belgium; Study Centre for Carcinogenesis and Primary Prevention of Cancer, Department of Radiotherapy and Nuclear Medicine, Ghent University, Belgium
| | - Isabelle Sioen
- Department of Public Health, Ghent University, Ghent, Belgium
| | - Greet Schoeters
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Ilse Loots
- Faculty of Political and Social Sciences, University of Antwerp, Antwerp, Belgium
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Department of Public Health & Primary Care, Occupational & Environmental Medicine, Leuven University (KU Leuven), Leuven, Belgium
| | - Vera Nelen
- Provincial Institute of Hygiene, Antwerp, Belgium
| | - Laura Campo
- Department of Prevention, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Department of Prevention, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Willy Baeyens
- Department of Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Elsene, Belgium
| |
Collapse
|
25
|
Campo L, Hanchi M, Olgiati L, Polledri E, Consonni D, Zrafi I, Saidane-Mosbahi D, Fustinoni S. Biological Monitoring of Occupational Exposure to Polycyclic Aromatic Hydrocarbons at an Electric Steel Foundry in Tunisia. ANNALS OF OCCUPATIONAL HYGIENE 2016; 60:700-16. [DOI: 10.1093/annhyg/mew024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/06/2016] [Indexed: 12/30/2022]
|
26
|
Liu B, Jia C. Effects of profession on urinary PAH metabolite levels in the US population. Int Arch Occup Environ Health 2015; 89:123-35. [DOI: 10.1007/s00420-015-1057-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
|
27
|
Karimi P, Peters KO, Bidad K, Strickland PT. Polycyclic aromatic hydrocarbons and childhood asthma. Eur J Epidemiol 2015; 30:91-101. [PMID: 25600297 DOI: 10.1007/s10654-015-9988-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 01/05/2015] [Indexed: 11/25/2022]
Abstract
Asthma is the most common chronic illness in children living in developed countries and the leading cause of childhood hospitalization and school absenteeism. Prevalence rates of asthma are increasing and show disparities across gender, geographic regions, and ethnic/racial groups. Common risk factors for developing childhood asthma include exposure to tobacco smoke, previous allergic reactions, a family history of asthma, allergic rhinitis or eczema, living in an urban environment, obesity and lack of physical exercise, severe lower respiratory tract infections, and male gender. Asthma exacerbation in children can be triggered by a variety of factors, including allergens (e.g., pollen, dust mites, and animal dander), viral and bacterial infections, exercise, and exposure to airway irritants. Recent studies have shown that exposure to polycyclic aromatic hydrocarbons (PAHs), a major component of fine particulate matter from combustion sources, is also associated with onset of asthma, and increasing asthmatic symptoms. In this paper, we review sources of childhood PAH exposure and the association between airborne PAH exposure and childhood asthma prevalence and exacerbation.
Collapse
Affiliation(s)
- Parisa Karimi
- Program in Occupational and Environmental Health, Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room E7535, Baltimore, MD, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Since the complexity origin of biological samples, the research trends have been directed to the development of new miniaturized sample preparation techniques. This review provides a comprehensive survey of past and present microextraction methods followed by GC analysis for preconcentration and determination of various analytes in urine samples. These techniques have been classified in three general groups, including liquid-, solid- and membrane-based techniques. The principal of different microextraction methods that are located in each general group as well as their various extraction modes and the recent developments introduced for them has been presented. Subsequently, a comparison survey has been carried out among different microextraction techniques and finally a future perspective has been predicted based on the existing literature.
Collapse
|