1
|
Cauble EL, Reynolds P, Epeldegui M, Andra SS, Magpantay L, Narasimhan S, Pulivarthi D, Von Behren J, Martinez-Maza O, Goldberg D, Spielfogel ES, Lacey JV, Wang SS. Associations between per- and poly-fluoroalkyl substance (PFAS) exposure and immune responses among women in the California Teachers study: A cross-sectional evaluation. Cytokine 2024; 184:156753. [PMID: 39299102 DOI: 10.1016/j.cyto.2024.156753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants that have been linked to a number of health outcomes, including those related to immune dysfunction. However, there are limited numbers of epidemiological-based studies that directly examine the association between PFAS exposure and immune responses. METHODS In this cross-sectional study nested in the California Teachers Study cohort, we measured nine PFAS analytes in serum. Of the 9 analytes, we further evaluated four (PFHxS [perfluorohexane sulfonate], PFNA [perfluorononanoic acid], PFOA [perfluorooctanoic acid], PFOS [perfluorooctanesulfonic acid]) that had detection levels of > 80 %, in relation to 16 systemic inflammatory/immune markers and corresponding immune pathways (Th1 [pro-inflammatory/macrophage activation], B-cell activation, and T-cell activation). Study participants (n = 722) were female, completed a questionnaire regarding various health measures and behaviors, and donated a blood sample between 2013-2016. The association between PFAS analytes and individual immune markers and pathways were evaluated by calculating odds ratios (OR) and 95 % confidence intervals (CI) in a logistic regression model. PFAS analytes were evaluated both as a dichotomous exposure (above or below the respective median) and as a continuous variable (per 1 unit increase [ng/mL]). RESULTS The prevalence of detecting any PFAS analyte rose with increasing age, with the highest PFAS prevalence observed among those aged 75 + years and the lowest PFAS prevalence observed among those aged 40-49 years (study participant age range: 40-95 years). Significant associations with BAFF (B-cell activating factor) levels above the median were observed among participants with elevated (defined as above the median) levels of PFHxS (OR=1.53), PFOA (OR=1.43), and PFOS (OR=1.40). Similarly, there were statistically significant associations between elevated levels of PFHxS and TNFRII (tumor necrosis factor receptor 2) levels (OR=1.78) and IL2Rα (interleukin 2 receptor subunit alpha) levels (OR=1.48). We also observed significant inverse associations between elevated PFNA and sCD14 (soluble cluster of differentiation 14) (OR=0.73). No significant associations were observed between elevated PFNA and any immune marker. Evaluation of PFAS exposures as continuous exposures in association with dichotomized cytokines were generally consistent with the dichotomized associations. CONCLUSIONS PFAS exposure was associated with altered levels of circulating inflammatory/immune markers; the associations were specific to PFAS analyte and immune marker. If validated, our results may suggest potential immune mechanisms underlying associations between the different PFAS analytes and adverse health outcomes.
Collapse
Affiliation(s)
- Emily L Cauble
- Division of Health Analytics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Peggy Reynolds
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Marta Epeldegui
- UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Syam S Andra
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Srinivasan Narasimhan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Divya Pulivarthi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julie Von Behren
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | | | - Debbie Goldberg
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Emma S Spielfogel
- Division of Health Analytics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - James V Lacey
- Division of Health Analytics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sophia S Wang
- Division of Health Analytics, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
2
|
Zong S, Wang L, Wang S, Wang Y, Jiang Y, Sun L, Zong Y, Li X. Exposure to per- and polyfluoroalkyl substances is associated with impaired cardiovascular health: a cross-sectional study. Front Public Health 2024; 12:1418134. [PMID: 39267634 PMCID: PMC11390656 DOI: 10.3389/fpubh.2024.1418134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Background Per- and polyfluoroalkyl substance (PFAS) exposure and cardiovascular disease are controversial. We aimed to assess the association between serum PFAS exposure and cardiovascular health (CVH) in U.S. adults. Methods We analyzed serum PFAS concentration data of U.S. adults reported in the National Health and Nutrition Examination Survey (NHANES) study (2005-2018). We employed two weighted logistic regression models and a restricted cubic spline (RCS) to examine the association between each PFAS and impaired CVH (defined as moderate and low CVH). Quantile g-computation (Qgcomp) and weighted quantile sum (WQS) analysis were used to estimate the effects of mixed exposures to PFASs on impaired CVH. Results PFAS were associated with an increased risk of impaired CVH (ORPFNA: 1.40, 95% CI: 1.09, 1.80; ORPFOA: 1.44, 95% CI: 1.10, 1.88; ORPFOS: 1.62, 95% CI: 1.25, 2.11). PFOA and PFOS exhibited nonlinear relationships with impaired CVH. Significant interactions were observed for impaired CVH between race/ethnicity and PFHxS (p = 0.02), marital status and PFOA (p = 0.03), and both marital status and race/ethnicity with PFOS (p = 0.01 and p = 0.02, respectively). Analysis via WQS and Qgcomp revealed that the mixture of PFAS was positively associated with an increased risk of impaired CVH. Conclusion PFNA, PFOA, and PFOS exposure are associated with an increased risk of impaired CVH in U.S. adults. Race/ethnicity and marital status may influence CVH. Reducing PFAS exposure could alleviate the burden of disease associated with impaired CVH.
Collapse
Affiliation(s)
- Shuli Zong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sutong Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongcheng Wang
- Department of Cardiovascular Diseases, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Yuehua Jiang
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Liping Sun
- Department of Endocrine Tumor Intervention, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingying Zong
- Department of Business Administration, Shandong Yingcai University, Jinan, China
| | - Xiao Li
- Department of Cardiovascular Diseases, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| |
Collapse
|
3
|
Pierpont TM, Elmore J, Redko A, Anannya O, Imbiakha B, O'Hare K, Villanueva A, Anronikov S, Bondah N, Chang S, Sahler J, August A. Effects of Perfluorohexane Sulfonate Exposure on Immune Cell Populations in Naive Mice. Immunohorizons 2024; 8:538-549. [PMID: 39109956 PMCID: PMC11374752 DOI: 10.4049/immunohorizons.2300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/10/2024] [Indexed: 09/08/2024] Open
Abstract
Perfluorohexane sulfonate (PFHxS) is a member of the per- and polyfluoroalkyls (PFAS) superfamily of molecules, characterized by their fluorinated carbon chains and use in a wide range of industrial applications. PFHxS and perfluorooctane sulfonate are able to accumulate in the environment and in humans with the approximated serum elimination half-life in the range of several years. More recently, some PFAS compounds have also been suggested as potential immunosuppressants. In this study, we analyze immune cell numbers in mice following 28-d repeated oral exposure to potassium PFHxS at 12, 120, 1,200, and 12,000 ng/kg/d, with resulting serum levels ranging up to ∼1,600 ng/ml, approximating ranges found in the general population and at higher levels in PFAS workers. The immunosuppressant cyclophosphamide was analyzed as a positive control. B cells, T cells, and granulocytes from the bone marrow, liver, spleen, lymph nodes, and thymus were evaluated. We found that at these exposures, there was no effect of PFHxS on major T or B cell populations, macrophages, dendritic cells, basophils, mast cells, eosinophils, neutrophils, or circulating Ab isotypes. By contrast, mice exposed to cyclophosphamide exhibited depletion of several granulocyte and T and B cell populations in the thymus, bone marrow, and spleen, as well as reductions in IgG1, IgG2b, IgG2c, IgG3, IgE, and IgM. These data indicate that exposures of up to 12,000 ng/kg of PFHxS for 28 d do not affect immune cell numbers in naive mice, which provides valuable information for assessing the risks and health influences of exposures to this compound.
Collapse
Affiliation(s)
| | - Jessica Elmore
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| | - Amie Redko
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| | - Orchi Anannya
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| | - Brian Imbiakha
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| | - Katelyn O'Hare
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| | - Alanis Villanueva
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| | - Sasha Anronikov
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| | - Narda Bondah
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| | | | - Julie Sahler
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| | - Avery August
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY
| |
Collapse
|
4
|
Huang H, Li X, Deng Y, San S, Qiu D, Xu A, Luo J, Xu L, Li Y, Zhang H, Li Y. Associations between prenatal exposure to per- and polyfluoroalkyl substances and plasma immune molecules in three-year-old children in China. Toxicol Appl Pharmacol 2024; 490:117044. [PMID: 39074624 DOI: 10.1016/j.taap.2024.117044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Many studies have reported that prenatal exposure to Per- and Polyfluoroalkyl Substances (PFASs) can disrupt immune function. However, little is known about the effects of PFASs on immune molecules. The study analyzed the association between prenatal exposure to mixed and single PFASs and plasma immune molecules in three-year-old children. METHODS Ten PFASs were measured in umbilical cord serum, while peripheral blood samples were collected at age three to measure immune molecules. Associations between exposure to individual and combined PFASs and immune molecules were analyzed using Generalized Linear Models and Weighted Quantile Sum (WQS) regression. RESULTS (1) Interleukin-4 (IL-4) increased by 23.85% (95% CI:2.99,48.94) with each doubling of Perfluorooctanoic Acid (PFOA), and Interleukin-6 (IL-6) increased by 39.07% (95%CI:4.06,85.86) with Perfluorotridecanoic Acid (PFTrDA). Elevated PFOA and Perfluorononanoic Acid (PFNA) were correlated with increases of 34.06% (95% CI: 6.41, 70.28) and 24.41% (95% CI: 0.99, 53.27) in Eotaxin-3, respectively. Additionally, the doubling of Perfluorohexane Sulfonic Acid (PFHxS) was associated with a 9.51% decrease in Periostin (95% CI: -17.84, -0.33). (2) The WQS analysis revealed that mixed PFASs were associated with increased IL-6 (β = 0.37, 95%CI:0.04,0.69), mainly driven by PFTrDA, PFNA, and 8:2 Chlorinated Perfluoroethyl Sulfonamide (8:2 Cl-PFESA). Moreover, mixed PFASs were linked to an increase in Eotaxin-3 (β = 0.32, 95% CI: 0.09,0.55), primarily influenced by PFOA, PFTrDA, and Perfluorododecanoic Acid (PFDoDA). CONCLUSIONS Prenatal PFASs exposure significantly alters the levels of immune molecules in three-year-old children, highlighting the importance of understanding environmental impacts on early immune development.
Collapse
Affiliation(s)
- Haiyun Huang
- School of Medicine and Health, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Xiaojun Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yican Deng
- School of Medicine and Health, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Siyi San
- School of Medicine and Health, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Dongmei Qiu
- School of Medicine and Health, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Ao Xu
- School of Medicine and Health, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Jiyu Luo
- School of Medicine and Health, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Lingyun Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Yang Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Hongling Zhang
- School of Medicine and Health, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
5
|
Kosarek NN, Preston EV. Contributions of Synthetic Chemicals to Autoimmune Disease Development and Occurrence. Curr Environ Health Rep 2024; 11:128-144. [PMID: 38653907 DOI: 10.1007/s40572-024-00444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW Exposure to many synthetic chemicals has been linked to a variety of adverse human health effects, including autoimmune diseases. In this scoping review, we summarize recent evidence detailing the effects of synthetic environmental chemicals on autoimmune diseases and highlight current research gaps and recommendations for future studies. RECENT FINDINGS We identified 68 recent publications related to environmental chemical exposures and autoimmune diseases. Most studies evaluated exposure to persistent environmental chemicals and autoimmune conditions including rheumatoid arthritis (RA), systemic lupus (SLE), systemic sclerosis (SSc), and ulcerative colitis (UC) and Crohn's disease. Results of recent original research studies were mixed, and available data for some exposure-outcome associations were particularly limited. PFAS and autoimmune inflammatory bowel diseases (UC and CD) and pesticides and RA appeared to be the most frequently studied exposure-outcome associations among recent publications, despite a historical research focus on solvents. Recent studies have provided additional evidence for the associations of exposure to synthetic chemicals with certain autoimmune conditions. However, impacts on other autoimmune outcomes, particularly less prevalent conditions, remain unclear. Owing to the ubiquitous nature of many of these exposures and their potential impacts on autoimmune risk, additional studies are needed to better evaluate these relationships, particularly for understudied autoimmune conditions. Future research should include larger longitudinal studies and studies among more diverse populations to elucidate the temporal relationships between exposure-outcome pairs and to identify potential population subgroups that may be more adversely impacted by immune modulation caused by exposure to these chemicals.
Collapse
Affiliation(s)
- Noelle N Kosarek
- Department of Biomedical Data Science, Dartmouth College, Hanover, NH, 03755, USA
| | - Emma V Preston
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Floor 14, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Davalos JCQ, Michaud MA, Lowe LE, Hanson EN, Gaulke EP, Owens JE. Dataset of surveyed PFAS in water, sediment, and soil of Fountain Creek Watershed, Colorado, USA. Data Brief 2023; 49:109280. [PMID: 37600128 PMCID: PMC10439269 DOI: 10.1016/j.dib.2023.109280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/25/2023] [Accepted: 05/23/2023] [Indexed: 08/22/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widespread and highly persistent organic chemicals with adverse health effects. The US Environmental Protection Agency has issued health advisory limits of 70 ng/L for aqueous concentrations of PFOA + PFOS. In the Colorado Springs, Colorado (USA), metro area, the Widefield Aquifer (groundwater) and Fountain Creek Watershed (surface water) have been contaminated by PFAS from aqueous film-forming foams. Here we present the concentrations of selected linear and branched isomers of legacy PFAS found in surface water (n = 95), soil (n = 83), and sediment (n = 34) samples collected from several creeks of the Fountain Creek Watershed. Collected samples were prepared for high-performance liquid chromatography tandem mass spectrometry (LC/MS/MS) analysis via liquid/liquid extraction and/or solid phase extraction (SPE). This dataset includes the geographic locations of sampled creeks, LC/MS/MS instrumental conditions, method verification data including percent recovery to assess method accuracy and background contamination of PFAS in laboratory reagents and supplies, and determined concentrations of PFAS in water, soil, and sediment samples. These locations were surveyed monthly for a full year and provide a rich dataset to assess influence of sampling location, temporal variability in concentration, and overall contaminant persistence.
Collapse
Affiliation(s)
- Jose Caleb Quezada Davalos
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, United States
- Fountain-Fort Carson High School, 900 Jimmy Camp Rd, Fountain, CO 80917, United States
| | - Michael A Michaud
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, United States
- Ultradent Products, Inc., 505 W 10200 S, South Jordan, UT 84095, United States
| | - Luis E Lowe
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, United States
| | - Emily N Hanson
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, United States
| | - Eric P Gaulke
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, United States
- Compounder's International Analytical Laboratory, 4760 Castleton Way Suite A, Castle Rock, CO 80109, United States
| | - Janel E Owens
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, United States
| |
Collapse
|
7
|
Beccacece L, Costa F, Pascali JP, Giorgi FM. Cross-Species Transcriptomics Analysis Highlights Conserved Molecular Responses to Per- and Polyfluoroalkyl Substances. TOXICS 2023; 11:567. [PMID: 37505532 PMCID: PMC10385990 DOI: 10.3390/toxics11070567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
In recent decades, per- and polyfluoroalkyl substances (PFASs) have garnered widespread public attention due to their persistence in the environment and detrimental effects on the health of living organisms, spurring the generation of several transcriptome-centered investigations to understand the biological basis of their mechanism. In this study, we collected 2144 publicly available samples from seven distinct animal species to examine the molecular responses to PFAS exposure and to determine if there are conserved responses. Our comparative transcriptional analysis revealed that exposure to PFAS is conserved across different tissues, molecules and species. We identified and reported several genes exhibiting consistent and evolutionarily conserved transcriptional response to PFASs, such as ESR1, HADHA and ID1, as well as several pathways including lipid metabolism, immune response and hormone pathways. This study provides the first evidence that distinct PFAS molecules induce comparable transcriptional changes and affect the same metabolic processes across inter-species borders. Our findings have significant implications for understanding the impact of PFAS exposure on living organisms and the environment. We believe that this study offers a novel perspective on the molecular responses to PFAS exposure and provides a foundation for future research into developing strategies for mitigating the detrimental effects of these substances in the ecosystem.
Collapse
Affiliation(s)
- Livia Beccacece
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Filippo Costa
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Jennifer Paola Pascali
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy
| | | |
Collapse
|
8
|
Dunder L, Salihovic S, Lind PM, Elmståhl S, Lind L. Plasma levels of per- and polyfluoroalkyl substances (PFAS) are associated with altered levels of proteins previously linked to inflammation, metabolism and cardiovascular disease. ENVIRONMENT INTERNATIONAL 2023; 177:107979. [PMID: 37285711 DOI: 10.1016/j.envint.2023.107979] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) have been linked to immunotoxic and cardiometabolic effects in both experimental and epidemiological studies, but with conflicting results. AIM The aim of the present study was to investigate potential associations between plasma PFAS levels and plasma levels of preselected proteomic biomarkers previously linked to inflammation, metabolism and cardiovascular disease. METHODS Three PFAS (perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexane sulfonic acid (PFHxS)) were measured by non-targeted metabolomics and 249 proteomic biomarkers were measured by the proximity extension assay (PEA) in plasma from 2,342 individuals within the Epidemiology for Health (EpiHealth) study from Sweden (45-75 years old, 50.6 % men). RESULTS After adjustment for age and sex, 92% of the significant associations between PFOS concentrations and proteins were inverse (p < 0.0002, Bonferroni-adjusted). The results were not as clear for PFOA and PFHxS, but still with 80% and 64 % of the significant associations with proteins being inverse. After adjustment for age, sex, smoking, education, exercise habits and alcohol consumption, levels of epidermal growth factor receptor (EGFR), and paraoxonase type 3 (PON3) remained positively associated with all three PFAS, while resistin (RETN) and urokinase plasminogen activator surface receptor (uPAR) showed inverse associations with all three PFAS. CONCLUSIONS Our findings imply that PFAS exposure is cross-sectionally linked to altered levels of proteins previously linked to inflammation, metabolism and cardiovascular disease in middle-aged humans.
Collapse
Affiliation(s)
- Linda Dunder
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden.
| | | | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - Sölve Elmståhl
- Division of Geriatric Medicine, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Pini L, Salvalaggio A, Wennberg AM, Dimakou A, Matteoli M, Corbetta M. The pollutome-connectome axis: a putative mechanism to explain pollution effects on neurodegeneration. Ageing Res Rev 2023; 86:101867. [PMID: 36720351 DOI: 10.1016/j.arr.2023.101867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
The study of pollutant effects is extremely important to address the epochal challenges we are facing, where world populations are increasingly moving from rural to urban centers, revolutionizing our world into an urban world. These transformations will exacerbate pollution, thus highlighting the necessity to unravel its effect on human health. Epidemiological studies have reported that pollution increases the risk of neurological diseases, with growing evidence on the risk of neurodegenerative disorders. Air pollution and water pollutants are the main chemicals driving this risk. These chemicals can promote inflammation, acting in synergy with genotype vulnerability. However, the biological underpinnings of this association are unknown. In this review, we focus on the link between pollution and brain network connectivity at the macro-scale level. We provide an updated overview of epidemiological findings and studies investigating brain network changes associated with pollution exposure, and discuss the mechanistic insights of pollution-induced brain changes through neural networks. We explain, in detail, the pollutome-connectome axis that might provide the functional substrate for pollution-induced processes leading to cognitive impairment and neurodegeneration. We describe this model within the framework of two pollutants, air pollution, a widely recognized threat, and polyfluoroalkyl substances, a large class of synthetic chemicals which are currently emerging as new neurotoxic source.
Collapse
Affiliation(s)
- Lorenzo Pini
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy; Venetian Institute of Molecular Medicine, VIMM, Padova, Italy.
| | | | - Alexandra M Wennberg
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anastasia Dimakou
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy
| | - Michela Matteoli
- Neuro Center, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milano, Italy; CNR Institute of Neuroscience, Milano, Italy
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy; Venetian Institute of Molecular Medicine, VIMM, Padova, Italy
| |
Collapse
|
10
|
Savitz DA, Hattersley AM. Evaluating Chemical Mixtures in Epidemiological Studies to Inform Regulatory Decisions. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:45001. [PMID: 37022726 PMCID: PMC10078806 DOI: 10.1289/ehp11899] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/24/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Epidemiological studies are increasingly going beyond the evaluation of health effects of individual chemicals to consider chemical mixtures. To our knowledge, the advantages and disadvantages of addressing chemical mixtures for informing regulatory decisions-as opposed to obtaining a more comprehensive understanding of etiology-has not been carefully considered. OBJECTIVES We offer a framework for the study of chemical mixtures in epidemiological research intended to inform regulatory decisions. We identify a) the different ways mixtures originate (product source, pollution source, shared mode of action, or shared effect on health outcome), b) the use of indicator chemicals to address mixtures, and c) the requirements for epidemiological studies to be informative for regulatory purposes. DISCUSSION The principal advantage of considering mixtures is to obtain a more complete understanding of the role of the chemical environment as a determinant of health. Incorporating other exposures may improve the assessment of the net effect of the chemicals of interest. However, the increased complexity and potential loss of generalizability may limit the value of studies of mixtures, especially for mixtures based on mode of action or shared health outcomes. Our recommended strategy is to successively assess the marginal contribution of individual chemicals, joint effects with other specific chemicals, and hypothesis-driven evaluation of mixtures rather than applying hypothesis-free data exploration methods. Although more ambitious statistical approaches to mixtures may, in time, be helpful for guiding regulation, the authors believe conventional methods for assessing individual and combined effects of chemicals remain preferable. https://doi.org/10.1289/EHP11899.
Collapse
Affiliation(s)
- David A. Savitz
- Department of Epidemiology, Brown University School of Public Health, Brown University, Providence, Rhode Island, USA
| | - Anne M. Hattersley
- Global Safety Surveillance and Analysis, Procter & Gamble, Cincinnati, Ohio, USA
| |
Collapse
|
11
|
Zhao Y, Jin H, Qu J, Zhang S, Hu S, Xue J, Zhao M. The influences of perfluoroalkyl substances on the rheumatoid arthritis clinic. BMC Immunol 2022; 23:10. [PMID: 35246023 PMCID: PMC8895528 DOI: 10.1186/s12865-022-00483-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The effect of environmental factors on genetically susceptible individuals is a basic link in the pathogenesis of rheumatoid arthritis. Perfluoroalkyl substances (PFASs) are a class of synthetic organic fluorine chemicals, which have been mass-produced and widely used in the past 60 years, and also have been shown to be one of the major pollutants affecting human health. The impact of fluoride on the development of Rheumatoid Arthritis (RA) is unclear. This study explored the relationship between common fluoride and clinical manifestations of rheumatoid arthritis. RESULTS A cohort of 155 patients with RA and 145 health controls in Second Affiliated Hospital of Zhejiang University School of Medicine were investigated. Serum concentrations of all fluoride detected were higher in RA patients than in healthy controls. There were 43 male patients and 112 female patients in the RA cohort. Some of perfluoroalkyl substances (perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorotrdecanoate (PFTrA), perfluorooctanesulfonate (PFOS)) were correlated negatively with the Body Mass Index (BMI); some of them (PFOA, PFNA, PFTrA, PFOS, 8:2 Chlorinated polyfluorinated ether sulfonate (8:2Cl-PFESA)) were correlated positively with the Disease Activity Score 28 (DAS28); two (PFOA, PFOS) of them were correlated positively with the white blood cell count, and one (Perfluoroundecanoate (PFUnA)) of them was correlated negatively with the hemoglobin; two (Perfluorodecanoate (PFDA), PFUnA) of them were correlated negatively with the presence of interstitial lung disease. CONCLUSION These data suggest that exposure to perfluoroalkyl substances may promote the disease activity of rheumatoid arthritis and the visceral lesions.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Rheumatology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, People's Republic of China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, People's Republic of China
| | - Sunzhao Zhang
- Department of Laboratory Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Shilei Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, People's Republic of China
| | - Jing Xue
- Department of Rheumatology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, 310009, Zhejiang, People's Republic of China.
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, People's Republic of China.
| |
Collapse
|