1
|
Gutema FD, Okoth B, Agira J, Amondi CS, Busienei PJ, Simiyu S, Mberu B, Sewell D, Baker KK. Spatial-Temporal Patterns in the Enteric Pathogen Contamination of Soil in the Public Environments of Low- and Middle-Income Neighborhoods in Nairobi, Kenya. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1351. [PMID: 39457324 PMCID: PMC11506941 DOI: 10.3390/ijerph21101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Public spaces in countries with limited societal development can be contaminated with feces containing pathogenic microbes from animals and people. Data on contamination levels, spatial distribution, and the diversity of enteric pathogens in the public settings of low- and middle-income neighborhoods are crucial for devising strategies that minimize the enteric infection burden. The objective of this study was to compare spatial-temporal differences in the detection rate and diversity of enteric pathogens in the public spaces of low- and middle-income neighborhoods of Nairobi, Kenya. TaqMan array card (TAC) molecular assays were employed to analyze soil samples for 19 enteropathogens, along with a selective bacterial culture for pathogenic Enterobacteriaceae. An observational assessment was conducted during every site visit to document the hygienic infrastructure and sanitation conditions at the sites. We detected at least one pathogen in 79% (127/160) and ≥2 pathogens in 67.5% (108/160) of the soil samples tested. The four most frequently detected pathogens were EAEC (67.5%), ETEC (59%), EPEC (57.5%), and STEC (31%). The detection rate (91% vs. 66%) and mean number of enteric pathogens (5 vs. 4.7) were higher in low-income Kibera than in middle-income Jericho. The more extensive spatial distribution of pathogens in Kibera resulted in increases in the detection of different enteric pathogens from within-site (area < 50 m2) and across-site (across-neighborhood) movements compared to Jericho. The pathogen detection rates fluctuated seasonally in Jericho but remained at sustained high levels in Kibera. While better neighborhood conditions were linked with lower pathogen detection rates, pathogenic E. coli remained prevalent in the public environment across both neighborhoods. Future studies should focus on identifying how the sources of pathogen contamination are modified by improved environmental sanitation and hygiene and the role of these contaminated public environments in enteric infections in children.
Collapse
Affiliation(s)
- Fanta D. Gutema
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA;
- Department of Microbiology, Immunology and Veterinary Public Health, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia
| | - Bonphace Okoth
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - John Agira
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Christine S. Amondi
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Phylis J. Busienei
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Sheillah Simiyu
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Blessing Mberu
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Daniel Sewell
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA;
| | - Kelly K. Baker
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
2
|
Cha S, Jung S, Abera T, Beyene ET, Schmidt WP, Ross I, Jin Y, Bizuneh DB. Performance of Pit Latrines and Their Herd Protection Against Diarrhea: A Longitudinal Cohort Study in Rural Ethiopia. GLOBAL HEALTH, SCIENCE AND PRACTICE 2024; 12:e2200541. [PMID: 38834532 PMCID: PMC11216697 DOI: 10.9745/ghsp-d-22-00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/30/2024] [Indexed: 06/06/2024]
Abstract
In sanitation policies, "improved sanitation" is often broadly described as a goal with little rationale for the minimum standard required. We conducted a secondary analysis of data collected as part of a cluster randomized controlled trial in rural Ethiopia. We compared the performance of well-constructed and poorly constructed pit latrines in reducing child diarrhea. In addition, we explored whether having a well-constructed household latrine provides indirect protection to neighbors if cluster-level coverage reaches a certain threshold. We followed up children aged younger than 5 years (U5C) of 906 households in rural areas of the Gurage zone, Ethiopia, for 10 months after community-led total sanitation interventions. A study-improved latrine was defined as having all the following: pit of ≥2 m depth, slab of any material, drop-hole cover, wall, roof, door, and handwashing facilities (water and soap observed). U5C in households with a study-improved latrine had 54% lower odds of contracting diarrhea than those living in households with a latrine missing 1 or more of the characteristics (adjusted odds ratio [aOR]=0.46; 95% confidence interval [CI]=0.27, 0.81; P=.006). Analyses were adjusted for child age and sex, presence of improved water for drinking, and self-reported handwashing at 4 critical times. The odds of having diarrhea among those with an improved latrine based on the World Health Organization/UNICEF Joint Monitoring Program (JMP) definition (i.e., pit latrines with slabs) were not substantially different from those with a JMP-unimproved latrine (aOR=0.99; 95% CI=0.56, 1.79; P=.99). Of U5C living in households without a latrine or with a study-unimproved latrine, those in the high-coverage villages were less likely to contract diarrhea than those in low-coverage villages (aOR=0.55; 95% CI=0.35, 0.86; P=.008). We recommend that academic studies and routine program monitoring and evaluation should measure more latrine characteristics and evaluate multiple latrine categories instead of making binary comparisons only.
Collapse
Affiliation(s)
- Seungman Cha
- Department of Disease Control, Faculty of Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom.
- Department of Global Development and Entrepreneurship, Graduate School of Global Development and Entrepreneurship, Handong Global University, Pohang, South Korea
| | - Sunghoon Jung
- Department of Disease Control, Faculty of Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Ermias Tadesse Beyene
- Department of Human Ecology and Technology, Graduate School of Advanced Convergence, Handong Global University, Pohang, South Korea
| | - Wolf-Peter Schmidt
- Department of Disease Control, Faculty of Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ian Ross
- Department of Disease Control, Faculty of Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Yan Jin
- Department of Microbiology, Dongguk University College of Medicine, Gyeongju, Korea
| | | |
Collapse
|
3
|
Capone D, Barker T, Cumming O, Flemister A, Geason R, Kim E, Knee J, Linden Y, Manga M, Meldrum M, Nala R, Smith S, Brown J. Persistent Ascaris Transmission Is Possible in Urban Areas Even Where Sanitation Coverage Is High. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15969-15980. [PMID: 36288473 PMCID: PMC9671051 DOI: 10.1021/acs.est.2c04667] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
In low-income, urban, informal communities lacking sewerage and solid waste services, onsite sanitation (sludges, aqueous effluent) and child feces are potential sources of human fecal contamination in living environments. Working in informal communities of urban Maputo, Mozambique, we developed a quantitative, stochastic, mass-balance approach to evaluate plausible scenarios of localized contamination that could explain why the soil-transmitted helminth Ascaris remains endemic despite nearly universal coverage of latrines that sequester most fecal wastes. We used microscopy to enumerate presumptively viable Ascaris ova in feces, fecal sludges, and soils from compounds (i.e., household clusters) and then constructed a steady-state mass-balance model to evaluate possible contamination scenarios capable of explaining observed ova counts in soils. Observed Ascaris counts (mean = -0.01 log10 ova per wet gram of soil, sd = 0.71 log10) could be explained by deposits of 1.9 grams per day (10th percentile 0.04 grams, 90th percentile 84 grams) of child feces on average, rare fecal sludge contamination events that transport 17 kg every three years (10th percentile 1.0 kg, 90th percentile 260 kg), or a daily discharge of 2.7 kg aqueous effluent from an onsite system (10th percentile 0.09 kg, 90th percentile 82 kg). Results suggest that even limited intermittent flows of fecal wastes in this setting can result in a steady-state density of Ascaris ova in soils capable of sustaining transmission, given the high prevalence of Ascaris shedding by children (prevalence = 25%; mean = 3.7 log10 per wet gram, sd = 1.1 log10), the high Ascaris ova counts in fecal sludges (prevalence = 88%; mean = 1.8 log10 per wet gram, sd = 0.95 log10), and the extended persistence and viability of Ascaris ova in soils. Even near-universal coverage of onsite sanitation may allow for sustained transmission of Ascaris under these conditions.
Collapse
Affiliation(s)
- Drew Capone
- Department
of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, Indiana47401, United States
| | - Troy Barker
- Department
of Environmental Sciences and Engineering, Gillings School of Public
Health, University of North Carolina at
Chapel Hill, Chapel
Hill, North Carolina27599, United States
| | - Oliver Cumming
- Department
of Disease Control, London School of Hygiene
and Tropical Medicine, LondonWC1E 7HT, U.K.
| | - Abeoseh Flemister
- Department
of Biology, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina27599, United States
| | - Riley Geason
- Department
of Biology, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina27599, United States
| | - Elizabeth Kim
- Department
of Biology, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina27599, United States
| | - Jackie Knee
- Department
of Disease Control, London School of Hygiene
and Tropical Medicine, LondonWC1E 7HT, U.K.
| | - Yarrow Linden
- Department
of Environmental Sciences and Engineering, Gillings School of Public
Health, University of North Carolina at
Chapel Hill, Chapel
Hill, North Carolina27599, United States
| | - Musa Manga
- Department
of Environmental Sciences and Engineering, Gillings School of Public
Health, University of North Carolina at
Chapel Hill, Chapel
Hill, North Carolina27599, United States
| | - Mackenzie Meldrum
- Department
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Rassul Nala
- Ministério
da Saúde, Instituto Nacional de Saúde
Maputo, Maputo1102, Mozambique
| | - Simrill Smith
- Department
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Joe Brown
- Department
of Environmental Sciences and Engineering, Gillings School of Public
Health, University of North Carolina at
Chapel Hill, Chapel
Hill, North Carolina27599, United States
| |
Collapse
|