1
|
Sharew B, Moges F, Yismaw G, Mihret A, Lobie TA, Abebe W, Fentaw S, Frye S, Vestrheim D, Tessema B, Caugant DA. Molecular epidemiology of Streptococcus pneumoniae isolates causing invasive and noninvasive infection in Ethiopia. Sci Rep 2024; 14:21409. [PMID: 39271789 PMCID: PMC11399344 DOI: 10.1038/s41598-024-72762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024] Open
Abstract
Streptococcus pneumoniae, a medically important opportunistic bacterial pathogen of the upper respiratory tract, is a major public health concern, causing a wide range of pneumococcal illnesses, both invasive and noninvasive. It is associated with significant global morbidity and mortality, including pneumonia, meningitis, sepsis, and acute otitis media. The major purpose of this study was to determine the molecular epidemiology of Streptococcus pneumoniae strains that cause invasive and noninvasive infections in Ethiopia. A prospective study was undertaken in two regional hospitals between January 2018 and December 2019. Whole-genome sequencing was used to analyze all isolates. Serotypes and multilocus sequence types (MLST) were derived from genomic data. The E-test was used for antimicrobial susceptibility testing. Patient samples obtained 54 Streptococcus pneumoniae isolates, 33 from invasive and 21 from noninvasive specimens. Our findings identified 32 serotypes expressed by 25 Global Pneumococcal Sequence Clusters (GPSCs) and 42 sequence types (STs), including 21 new STs. The most common sequence types among the invasive isolates were ST3500, ST5368, ST11162, ST15425, ST15555, ST15559, and ST15561 (2/33, 6% each). These sequence types were linked to serotypes 8, 7 C, 15B/C, 16 F, 10 A, 15B, and 6 A, respectively. Among the noninvasive isolates, only ST15432, associated with serotype 23 A, had numerous isolates (4/21, 19%). Serotype 14 was revealed as the most resistant strain to penicillin G, whereas isolates from serotypes 3, 8, 7 C, and 10 A were resistant to erythromycin. Notably, all serotype 6 A isolates were resistant to both erythromycin and penicillin G. Our findings revealed an abnormally significant number of novel STs, as well as extremely diversified serotypes and sequence types, implying that Ethiopia may serve as a breeding ground for novel STs. Recombination can produce novel STs that cause capsular switching. This has the potential to influence how immunization campaigns affect the burden of invasive pneumococcal illness. The findings highlight the importance of continuous genetic surveillance of the pneumococcal population as a vital step toward enhancing future vaccine design.
Collapse
Affiliation(s)
- Bekele Sharew
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia.
| | - Feleke Moges
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | | | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Tekle Airgecho Lobie
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science andTechnology (NTNU), 7491, Trondheim, Norway
| | - Wondwossen Abebe
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Surafal Fentaw
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Stephan Frye
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Didrik Vestrheim
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Belay Tessema
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Community Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Bardach A, Ruvinsky S, Palermo MC, Alconada T, Sandoval MM, Brizuela ME, Wierzbicki ER, Cantos J, Gagetti P, Ciapponi A. Invasive pneumococcal disease in Latin America and the Caribbean: Serotype distribution, disease burden, and impact of vaccination. A systematic review and meta-analysis. PLoS One 2024; 19:e0304978. [PMID: 38935748 PMCID: PMC11210815 DOI: 10.1371/journal.pone.0304978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/09/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Invasive pneumococcal diseases (IPD) are associated with high morbidity, mortality, and health costs worldwide, particularly in Latin America and the Caribbean (LAC). Surveillance about the distribution of serotypes causing IPD and the impact of pneumococcal vaccination is an important epidemiological tool to monitor disease activity trends, inform public health decision-making, and implement relevant prevention and control measures. OBJECTIVES To estimate the serotype distribution for IPD and the related disease burden in LAC before, during, and after implementing the pneumococcal vaccine immunization program in LAC. METHODS Systematic literature review following Cochrane methods of studies from LAC. We evaluated the impact of the pneumococcal vaccine on hospitalization and death during or after hospitalizations due to pneumococcal disease and serotype-specific disease over time. We also analyzed the incidence of serotyped IPD in pneumococcal conjugate vaccine PCV10 and PCV13. The protocol was registered in PROSPERO (ID: CRD42023392097). RESULTS 155 epidemiological studies were screened and provided epidemiological data on IPD. Meta-analysis of invasive diseases in children <5 years old found that 57%-65% of causative serotypes were included in PCV10 and 66%-84% in PCV13. After PCV introduction, vaccine serotypes declined in IPD, and the emergence of non-vaccine serotypes varied by country. CONCLUSIONS Pneumococcal conjugate vaccines significantly reduced IPD and shifted serotype distribution in Latin America and the Caribbean. PCV10/PCV13 covered 57-84% of serotypes in children under 5, with marked decline in PCV serotypes post-vaccination. Continuous surveillance remains crucial for monitoring evolving serotypes and informing public health action.
Collapse
Affiliation(s)
- Ariel Bardach
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Argentina
- Centro de Investigaciones Epidemiológicas y Salud Pública (CIESP-IECS), CONICET, Buenos Aires, Argentina
| | - Silvina Ruvinsky
- Departamento de Investigación, Hospital Garrahan, Buenos Aires, Argentina
- Departamento de Evaluación de Tecnologías Sanitarias y Economía de la Salud, Instituto de Efectividad Clínica y Sanitaria, Buenos Aires, Argentina
| | - M. Carolina Palermo
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Argentina
| | - Tomás Alconada
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Argentina
| | - M. Macarena Sandoval
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Argentina
| | - Martín E. Brizuela
- Unidad de Pediatría, Hospital General de Agudos Vélez Sarsfield, Buenos Aires, Argentina
| | | | - Joaquín Cantos
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Argentina
| | - Paula Gagetti
- Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas (INEI)-ANLIS ‘‘Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Agustín Ciapponi
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Argentina
- Centro de Investigaciones Epidemiológicas y Salud Pública (CIESP-IECS), CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Mokaddas E, Asadzadeh M, Syed S, Albert MJ. High Prevalence of Novel Sequence Types in Streptococcus pneumoniae That Caused Invasive Diseases in Kuwait in 2018. Microorganisms 2024; 12:225. [PMID: 38276209 PMCID: PMC10819824 DOI: 10.3390/microorganisms12010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Multilocus sequence typing (MLST) is used to gain insight into the population genetics of bacteria in the form of sequence type (ST). MLST has been used to study the evolution and spread of virulent clones of Streptococcus pneumoniae in many parts of the world. Such data for S. pneumoniae are lacking for the countries of the Arabian Peninsula, including Kuwait. METHODS We determined the STs of all 31 strains of S. pneumoniae from invasive diseases received at a reference laboratory from various health centers in Kuwait during 2018 by MLST. The relationship among the isolates was determined by phylogenetic analysis. We also determined the serotypes by Quellung reaction, and antimicrobial susceptibility by Etest, against 15 antibiotics belonging to 10 classes. RESULTS There were 28 STs among the 31 isolates, of which 14 were new STs (45.2%) and 5 were rare STs (16.1%). Phylogenetic analysis revealed that 26 isolates (83.9%) were unrelated singletons, and the Kuwaiti isolates were related to those from neighboring countries whose information was gleaned from unpublished data available at the PubMLST website. Many of our isolates were resistant to penicillin, erythromycin, and azithromycin, and some were multidrug-resistant. Virulent serotype 8-ST53, and serotype 19A with new STs, were detected. CONCLUSIONS Our study detected an unusually large number of novel STs, which may indicate that Kuwait provides a milieu for the evolution of novel STs. Novel STs may arise due to recombination and can result in capsular switching. This can impact the effect of vaccination programs on the burden of invasive pneumococcal disease. This first report from the Arabian Peninsula justifies the continuous monitoring of S. pneumoniae STs for the possible evolution of new virulent clones and capsular switching.
Collapse
Affiliation(s)
| | | | | | - M. John Albert
- Department of Microbiology, College of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (E.M.); (M.A.); (S.S.)
| |
Collapse
|
4
|
Azarsa M, Mosadegh M, Habibi Ghahfarokhi S, Pourmand MR. Serotype Distribution and Multi Locus Sequence Type (MLST) of Erythromycin-Resistant Streptococcus Pneumoniae Isolates in Tehran, Iran. Rep Biochem Mol Biol 2023; 12:259-268. [PMID: 38317819 PMCID: PMC10838590 DOI: 10.61186/rbmb.12.2.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/04/2023] [Indexed: 02/07/2024]
Abstract
Background The number of erythromycin-resistant Streptococcus pneumoniae has significantly increased around the world. The present study aimed to determine the serotype distribution and molecular epidemiology of the erythromycin-resistant Streptococcus pneumoniae (ERSP) isolated from patients with invasive disease. Methods A total of 44 Streptococcus pneumoniae isolates were tested for susceptibility to several antimicrobial agents. Additionally, the polymerase chain reaction (PCR) was applied to evaluate ERSP isolates in terms of the presence of erythromycin resistance genes (e.g., ermB and mefA). The isolates were serotyped using the sequential multiplex-PCR method, and molecular epidemiology was assessed through the multilocus sequence typing (MLST) analysis. Results The results represented multidrug resistance (MDR) in approximately half of the pneumococcal isolates. Among 22 ERSP isolates, 20 (90.9%) and 12 (56%) ones contained ermB and mefA, respectively. Further, 14 (31.8%), 3 (22.7%), and 19A (18.1%) were the common serotypes among the isolates. No significant correlation was observed between serotypes and erythromycin resistance genes. Furthermore, the MLST results revealed 18 different sequence types (STs), the top ones of which were ST3130 (3 isolates) and ST166 (3 isolates). Population genetic analysis disclosed that CC63 (32%), CC156 (18%), and CC320 (18%) were identified as the predominant clonal complexes. Conclusions The ERSP isolates exhibited high genetic diversity. The large frequency of MDR isolates suggests the emergence of high resistant strains, as well as the need to implement vaccination in the immunization schedule of Iran. These accumulating evidences indicate that 13-valent pneumococcal conjugate vaccines provided higher serotype coverage in the ERSP isolates.
Collapse
Affiliation(s)
- Mohammad Azarsa
- Department of Microbiology, Khoy University of Medical Sciences, Khoy, Iran.
| | - Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Soheila Habibi Ghahfarokhi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Ktari S, Ben Ayed N, Ben Rbeh I, Garbi N, Maalej S, Mnif B, Rhimi F, Hammami A. Antibiotic resistance pattern, capsular types, and molecular characterization of invasive isolates of Streptococcus pneumoniae in the south of Tunisia from 2012 to 2018. BMC Microbiol 2023; 23:36. [PMID: 36739390 PMCID: PMC9898894 DOI: 10.1186/s12866-023-02784-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/25/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Streptococcus pneumoniae remains a leading cause of morbidity and mortality worldwide. In this study, we sought to analyze serotype distributions, antibiotic resistance, and genetic relationships of 106 clinical invasive pneumococcal isolates recovered in Tunisia between 2012 and 2018, prior to the routine use of pneumococcal conjugate vaccines (PCV). METHODS We used multiplex PCR, the disk diffusion method and/or E-test, and multi-locus sequence typing (MLST). RESULTS The most frequent serotypes were 14 (17%), 19F (14.2%), and 3 (11.3%). Of the 106 S. pneumoniae isolates, 67.9% were penicillin non-susceptible (29.4% were resistant), 45.3% were amoxicillin non-susceptible (17% were resistant), and 16% were cefotaxime non-susceptible. For antibiotics other than β-lactams, resistance rates to erythromycin, tetracycline, cotrimoxazole, and chloramphenicol were 62.3, 33, 22.6, and 4.7%, respectively. Two isolates were non-susceptible to levofloxacin. Among 66 erythromycin-resistant pneumococci, 77.3% exhibited the cMLSB phenotype, and 87.9% carried ermB gene. All tetracycline-resistant strains harbored the tetM gene. The potential coverage by 7-, 10-, and 13-valent pneumococcal conjugate vaccines were 55.7, 57.5, and 81.1%, respectively. A multilocus sequence typing analysis revealed great diversity. Fifty different sequence types (STs) were identified. These STs were assigned to 10 clonal complexes and 32 singletons. The most common STs were 179, 2918, 386, and 3772 - related mainly to 19F, 14, 6B/C, and 19A serotypes, respectively. CONCLUSIONS This study demonstrated that the majority of the serotypes of invasive pneumococci in the Tunisian population were 14, 19F, and 3. Moreover, we noted a high degree of genetic diversity among invasive S. pneumoniae isolates. The highest proportions of antibiotic non-susceptible isolates were for penicillin, erythromycin, and tetracycline. Further molecular characteristics are required to monitor the genetic variations and to follow the emergence of resistant pneumococci for the post-vaccination era in Tunisia.
Collapse
Affiliation(s)
- Sonia Ktari
- Laboratory of Microbiology, Faculty of Medicine Sfax, University of Sfax-Tunisia, Avenue Majida Boulila, 3027, Sfax, Tunisia. .,Research Laboratory Microorganisms and Human Disease "MPH LR03SP03", Sfax, Tunisia.
| | - Nourelhouda Ben Ayed
- Research Laboratory Microorganisms and Human Disease “MPH LR03SP03”, Sfax, Tunisia ,grid.413497.cLaboratory of Microbiology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Imen Ben Rbeh
- Research Laboratory Microorganisms and Human Disease “MPH LR03SP03”, Sfax, Tunisia
| | - Nourhène Garbi
- Medical Genetic Department, HediChaker Hospital, Sfax, Tunisia
| | - Sonda Maalej
- Research Laboratory Microorganisms and Human Disease “MPH LR03SP03”, Sfax, Tunisia ,grid.413497.cLaboratory of Microbiology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Basma Mnif
- Research Laboratory Microorganisms and Human Disease “MPH LR03SP03”, Sfax, Tunisia ,grid.413497.cLaboratory of Microbiology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Faouzia Rhimi
- Research Laboratory Microorganisms and Human Disease “MPH LR03SP03”, Sfax, Tunisia ,grid.413497.cLaboratory of Microbiology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Adnene Hammami
- grid.412124.00000 0001 2323 5644Laboratory of Microbiology, Faculty of Medicine Sfax, University of Sfax-Tunisia, Avenue Majida Boulila, 3027 Sfax, Tunisia ,Research Laboratory Microorganisms and Human Disease “MPH LR03SP03”, Sfax, Tunisia ,grid.413497.cLaboratory of Microbiology, Habib Bourguiba University Hospital, Sfax, Tunisia
| |
Collapse
|
6
|
Aghapour M, Tulen CBM, Abdi Sarabi M, Weinert S, Müsken M, Relja B, van Schooten FJ, Jeron A, Braun-Dullaeus R, Remels AH, Bruder D. Cigarette Smoke Extract Disturbs Mitochondria-Regulated Airway Epithelial Cell Responses to Pneumococci. Cells 2022; 11:1771. [PMID: 35681466 PMCID: PMC9179351 DOI: 10.3390/cells11111771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial functionality is crucial for the execution of physiologic functions of metabolically active cells in the respiratory tract including airway epithelial cells (AECs). Cigarette smoke is known to impair mitochondrial function in AECs. However, the potential contribution of mitochondrial dysfunction in AECs to airway infection and airway epithelial barrier dysfunction is unknown. In this study, we used an in vitro model based on AECs exposed to cigarette smoke extract (CSE) followed by an infection with Streptococcus pneumoniae (Sp). The levels of oxidative stress as an indicator of mitochondrial stress were quantified upon CSE and Sp treatment. In addition, expression of proteins associated with mitophagy, mitochondrial content, and biogenesis as well as mitochondrial fission and fusion was quantified. Transcriptional AEC profiling was performed to identify the potential changes in innate immune pathways and correlate them with indices of mitochondrial function. We observed that CSE exposure substantially altered mitochondrial function in AECs by suppressing mitochondrial complex protein levels, reducing mitochondrial membrane potential and increasing mitochondrial stress and mitophagy. Moreover, CSE-induced mitochondrial dysfunction correlated with reduced enrichment of genes involved in apical junctions and innate immune responses to Sp, particularly type I interferon responses. Together, our results demonstrated that CSE-induced mitochondrial dysfunction may contribute to impaired innate immune responses to Sp.
Collapse
Affiliation(s)
- Mahyar Aghapour
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.); (A.J.)
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Christy B. M. Tulen
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (C.B.M.T.); (F.-J.v.S.); (A.H.R.)
| | - Mohsen Abdi Sarabi
- Department of Internal Medicine/Cardiology and Angiology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.S.); (S.W.)
| | - Sönke Weinert
- Department of Internal Medicine/Cardiology and Angiology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.S.); (S.W.)
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, 39120 Magdeburg, Germany;
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (C.B.M.T.); (F.-J.v.S.); (A.H.R.)
| | - Andreas Jeron
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.); (A.J.)
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Rüdiger Braun-Dullaeus
- Department of Internal Medicine/Cardiology and Angiology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.S.); (S.W.)
| | - Alexander H. Remels
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (C.B.M.T.); (F.-J.v.S.); (A.H.R.)
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.A.); (A.J.)
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
7
|
Molecular Epidemiology of Multidrug-Resistant Pneumococci among Ghanaian Children under Five Years Post PCV13 Using MLST. Microorganisms 2022; 10:microorganisms10020469. [PMID: 35208923 PMCID: PMC8879552 DOI: 10.3390/microorganisms10020469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Antibiotic resistance in pneumococci contributes to the high pneumococcal deaths in children. We assessed the molecular characteristics of multidrug-resistant (MDR) pneumococci isolated from healthy vaccinated children under five years of age in Cape Coast, Ghana. A total of 43 MDR isolates were selected from 151 pneumococcal strains obtained from nasopharyngeal carriage. All isolates were previously serotyped by multiplex PCR and Quellung reaction. Susceptibility testing was performed using either the E-test or disk diffusion method. Virulence and antibiotic resistance genes were identified by PCR. Molecular epidemiology was analyzed using multilocus sequence typing (MLST). Vaccine-serotypes 23F and 19F were predominant. The lytA and pavB virulence genes were present in all isolates, whiles 14–86% of the isolates carried pilus-islets 1 and 2, pcpA, and psrP genes. Penicillin, tetracycline, and cotrimoxazole resistance were evident in >90% of the isolates. The ermB, mefA, and tetM genes were detected in (n = 7, 16.3%), (n = 4, 9.3%) and (n = 43, 100%) of the isolates, respectively. However, >60% showed alteration in the pbp2b gene. MLST revealed five novel and six known sequence types (STs). ST156 (Spain9V-3) and ST802 were identified as international antibiotic-resistant clones. The emergence of international-MDR clones in Ghana requires continuous monitoring of the pneumococcus through a robust surveillance system.
Collapse
|
8
|
Characterization of Blood-isolated, Penicillin-Nonsusceptible Streptococcus pneumoniae From Children Between 2014 and 2018 in Bojnurd, Iran. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Streptococcus pneumoniae is one of the common bacterial pathogens in pediatrics. In this study, we performed antimicrobial susceptibility testing, serotyping, and molecular typing of blood-isolated strains of pneumococci in Bojnurd. Objectives: In the current study, blood-isolated, penicillin-nonsusceptible S. pneumoniae strains were subjected to antimicrobial susceptibility testing and typing of capsular polysaccharides using the quelling reaction and PCR method, as well as genotyping using the Multi Locus Sequence Typing (MLST) method. Methods: In this study, 51 S. pneumoniae strains were isolated from blood samples of children less than five-years-old in 2014 - 2018. Antibiogram was performed using the Kirby-Bauer method. All of the isolates were serotyped by the Quelling reaction and PCR. The MLST method was applied to determine the molecular types. Results: Our study revealed that the most common serotypes of blood-isolated pneumococci were 19A, 6A/B, 1, 23F, 19F, 14, 15B/C, and 15A, and the common serotypes in Penicillin-nonsusceptible pneumococci (PNSP) isolates were 19F, 19A, 23F, 14, and finally 15A, 6A/B, 1, and 15B/C. The MLST analysis of PNSP isolates revealed that three highly resistant isolates with MIC ≥ 16 belonged to Sweden15A-25-19A (ST63), Taiwan19F-14-1 (ST236), and Taiwan19F-14 (ST236) clones. Conclusions: Regarding the common serotypes in this study, it seems that PCV-13 is a suitable choice for vaccination in this area. We also observed a high prevalence of PNSP and multi-drug resistant (MDR) strains between 2014 and 2018. It seems that the Taiwan19F-14 clone and its related STs played an essential role in the diffusion of antibiotic-resistant S. pneumoniae isolates in Bojnurd.
Collapse
|
9
|
Manenzhe RI, Dube FS, Wright M, Lennard K, Mounaud S, Lo SW, Zar HJ, Nierman WC, Nicol MP, Moodley C. Characterization of Pneumococcal Colonization Dynamics and Antimicrobial Resistance Using Shotgun Metagenomic Sequencing in Intensively Sampled South African Infants. Front Public Health 2020; 8:543898. [PMID: 33072693 PMCID: PMC7536305 DOI: 10.3389/fpubh.2020.543898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/17/2020] [Indexed: 11/13/2022] Open
Abstract
Background: There remains a significant proportion of deaths due to pneumococcal pneumonia in infants from low- and middle-income countries despite the marginal global declines recorded in the past decade. Monitoring changes in pneumococcal carriage is key to understanding vaccination-induced shifts in the ecology of carriage, patterns of antimicrobial resistance, and impact on health. We longitudinally investigated pneumococcal carriage dynamics in PCV-13 vaccinated infants by collecting nasopharyngeal (NP) samples at 2-weekly intervals from birth through the first year of life from 137 infants. As a proof of concept, 196 NP samples were retrieved from a subset of 23 infants to explore strain-level pneumococcal colonization patterns and associated antimicrobial-resistance determinants. These were selected on the basis of changes in serotype and antibiogram over time. NP samples underwent short-term enrichment for streptococci prior to total nucleic acid extraction and whole metagenome shotgun sequencing (WMGS). Reads were assembled and aligned to pneumococcal reference genomes for the extraction of pneumococcal and non-pneumococcal bacterial reads. Pneumococcal contigs were aligned to the Antibiotic Resistance Gene-ANNOTation database of acquired AMR genes. In silico pneumococcal capsular and multilocus sequence typing were performed. Results: Of the 196 samples sequenced, 174 had corresponding positive cultures for pneumococci, of which, 152 were assigned an in silico serotype. Metagenomic sequencing detected a single pneumococcal serotype in 85% (129/152), and co-colonization in 15% (23/152) of the samples. Twenty-two different pneumococcal serotypes were identified, with 15B/15C and 16F being the most common non-PCV13 serotypes, while 23F and 19A were the most common PCV13 serotypes. Twenty-six different sequence types (STs), including four novel STs were identified in silico. Mutations in the folA and folP genes, associated with cotrimoxazole resistance, were detected in 89% (87/98) of cotrimoxazole-non-susceptible pneumococci, as well as in the pbp1a and pbp2x genes, in penicillin non-susceptible ST705215B/15C isolates. Conclusions: Metagenomic sequencing of NP samples is a valuable culture-independent technique for a detailed evaluation of the pneumococcal component and resistome of the NP microbiome. This method allowed for the detection of novel STs, as well as co-colonization, with a predominance of non-PCV13 serotypes in this cohort. Forty-eight resistance genes, as well as mutations associated with resistance were detected, but the correlation with phenotypic non-susceptibility was lower than expected.
Collapse
Affiliation(s)
- Rendani I Manenzhe
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Felix S Dube
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | | | - Katie Lennard
- Division of Computational Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Stephanie W Lo
- Parasites and Microbes Program, The Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and South African - Medical Research Council Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | | | - Mark P Nicol
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Division of Infection and Immunity, University of Western Australia, Perth, WA, Australia
| | - Clinton Moodley
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
10
|
Ghosh P, Shah M, Ravichandran S, Park SS, Iqbal H, Choi S, Kim KK, Rhee DK. Pneumococcal VncR Strain-Specifically Regulates Capsule Polysaccharide Synthesis. Front Microbiol 2019; 10:2279. [PMID: 31632380 PMCID: PMC6781885 DOI: 10.3389/fmicb.2019.02279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/18/2019] [Indexed: 11/19/2022] Open
Abstract
Capsular polysaccharides (CPS), a major virulence factor in Streptococcus pneumoniae, become thicker during blood invasion while not during asymptomatic nasopharyngeal colonization. However, the underlying mechanism controlling this differential pneumococcal CPS regulation remain unclear. Here, we show how VncR, the response regulator of the vancomycin resistance locus (vncRS operon), regulates CPS expression in vncR mutants in three serotype (type 2, 3, and 6B) backgrounds upon exposure to serum lactoferrin (LF). Comparative analysis of CPS levels in the wild type (WT) of three strains and their isogenic vncR mutants after LF exposure revealed a strain-specific alteration in CPS production. Consistently, VncR-mediated strain-specific CPS production is correlated with pneumococcal virulence, in vivo. Electrophoretic mobility-shift assay and co-immunoprecipitation revealed an interaction between VncR and the cps promoter (cpsp) in the presence of serum. In addition, in silico analysis uncovered this protein-DNA interaction, suggesting that VncR binds with the cpsp, and recognizes the strain-specific significance of the tandem repeats in cpsp. Taken together, the interaction of VncR and cpsp after serum exposure plays an essential role in regulating differential strain-specific CPS production, which subsequently determines strain-specific systemic virulence. This study highlights how host protein LF contributes to pneumococcal VncR-mediated CPS production. As CPS plays a significant role in immune evasion, these findings suggest that drugs designed to interrupt the VncR-mediated CPS production could help to combat pneumococcal infections.
Collapse
Affiliation(s)
| | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Subramaniyam Ravichandran
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, South Korea
| | - Sang-Sang Park
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Hamid Iqbal
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, South Korea
| | - Dong Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
11
|
Kawaguchiya M, Urushibara N, Aung MS, Habadera S, Ito M, Kudo K, Kobayashi N. Association Between Pneumococcal Surface Protein A Family and Genetic/Antimicrobial Resistance Traits of Non-Invasive Pneumococcal Isolates from Adults in Northern Japan. Microb Drug Resist 2019; 25:744-751. [PMID: 30676875 DOI: 10.1089/mdr.2018.0267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pneumococcal isolates from adult patients in northern Japan in 2016 were subjected to molecular investigation related to pneumococcal surface protein A (PspA) and drug resistance determinants. Of the 51 isolates, serotype 3/ST180 was the most prevalent (17.6%), followed by 35B (ST2755/ST558) (11.8%) and 15A (ST63/ST7874/ST13068/ST13785) (9.8%). Coverage of serotypes by 13-valent conjugate vaccine and 23-valent polysaccharide vaccine was 27.5% and 49%, respectively. All the isolates expressed PspA family 1 or 2 (51% and 49%, respectively). Each serotype was associated with either of the PspA families (e.g., serotype 3, PspA family 1; serotypes 35B and 15A, PspA family 2). Multidrug resistance (MDR) was found in 84.3% of the isolates. Minimum of one altered penicillin-binding protein gene was detected in 82.4% of isolates, indicating 25.5% non-susceptibility to penicillin. Serotypes 15A and 35B were predominant and demonstrated MDR. An isolate of serotype 15A/ST13785 (single-locus variant of ST242) was resistant to fluoroquinolones associated with double mutation in the quinolone resistance-determining regions of gyrA and parC. The present study indicates the spread of MDR pneumococci represented by isolates of serotypes 3, 15A, and 35B, and prevalence of both PspA family 1 and 2 in isolates obtained from adult patients.
Collapse
Affiliation(s)
- Mitsuyo Kawaguchiya
- 1 Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriko Urushibara
- 1 Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Meiji Soe Aung
- 1 Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Masahiko Ito
- 2 Sapporo Clinical Laboratory, Inc., Sapporo, Japan
| | - Kenji Kudo
- 2 Sapporo Clinical Laboratory, Inc., Sapporo, Japan
| | - Nobumichi Kobayashi
- 1 Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
12
|
Zhou H, Guo J, Qin T, Ren H, Xu Y, Wang C, Xu X. Serotype and MLST-based inference of population structure of clinical Streptococcus pneumoniae from invasive and noninvasive pneumococcal disease. INFECTION GENETICS AND EVOLUTION 2017; 55:104-111. [PMID: 28867594 DOI: 10.1016/j.meegid.2017.08.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/25/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Streptococcus pneumoniae is an important human pathogen causing various diseases. In this study, S. pneumoniae from invasive (IPD) and noninvasive pneumococcal disease (NIPD) were studied by serotype and multilocus sequence typing (MLST) for population structure characteristics. A total of 169 clinical S. pneumoniae, containing 63 IPD and 106 NIPD strains, were analyzed. 19F, 19A, 6A, 6B, 1, 14 and 23F were the dominant serotypes in both IPD and NIPD strains. By MLST, 169 strains were divided into 85 sequence types (STs) with an index of discrimination (IOD) value of 0.9606. The seven predominant STs were ST271, ST320, ST876, ST3173, ST236, ST81 and ST342, which were mainly associated with serotypes 19F, 19A, 14, 6A, 19F, 1, and 1/23F, respectively. The 63 IPD strains were divided into 20 serotypes (IOD=0.9135) and 44 STs (IOD=0.9795); the 106 NIPD strains were divided into 16 serotypes (IOD=0.8334) and 49 STs (IOD=0.9430). In conclusion, the serotypes and ST distribution of IPD and NIPD strains analyzed in this study are similar to the profiles observed in other cities of China, suggesting that the clinical S. pneumoniae isolates were derived from clones generally circulating in China. The strains showed a variety of serotypes and STs, and the IPD strains showed higher serotype and genetic diversity than NIPD strains.
Collapse
Affiliation(s)
- Haijian Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Jiayin Guo
- Changning District Center for Disease Control and Prevention, Shanghai, PR China
| | - Tian Qin
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Hongyu Ren
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Yang Xu
- Changning District Center for Disease Control and Prevention, Shanghai, PR China
| | - Chuanqing Wang
- Children's Hospital of Fudan University, Shanghai, PR China.
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, PR China.
| |
Collapse
|
13
|
Hawkins PA, Akpaka PE, Nurse-Lucas M, Gladstone R, Bentley SD, Breiman RF, McGee L, Swanston WH. Antimicrobial resistance determinants and susceptibility profiles of pneumococcal isolates recovered in Trinidad and Tobago. J Glob Antimicrob Resist 2017; 11:148-151. [PMID: 28818574 PMCID: PMC5711790 DOI: 10.1016/j.jgar.2017.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/28/2017] [Accepted: 08/05/2017] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVES In Latin America and the Caribbean, pneumococcal infections are estimated to account for 12000-18000 deaths, 327000 pneumonia cases, 4000 meningitis cases and 1229 sepsis cases each year in children under five years old. Pneumococcal antimicrobial resistance has evolved into a worldwide health problem in the last few decades. This study aimed to determine the antimicrobial susceptibility profiles of pneumococcal isolates collected in Trinidad and Tobago and their associated genetic determinants. METHODS Whole-genome sequences were obtained from 98 pneumococcal isolates recovered at several regional hospitals, including 83 invasive and 15 non-invasive strains, recovered before (n=25) and after (n=73) introduction of pneumococcal conjugate vaccines (PCVs). A bioinformatics pipeline was used to identify core genomic and accessory elements conferring antimicrobial resistance phenotypes, including β-lactam non-susceptibility. RESULTS AND DISCUSSION Forty-one isolates (41.8%) were predicted as resistant to at least one antimicrobial class, including 13 (13.3%) resistant to at least three classes. The most common serotypes associated with antimicrobial resistance were 23F (n=10), 19F (n=8), 6B (n=6) and 14 (n=5). The most common serotypes associated with penicillin non-susceptibility were 19F (n=7) and 14 (n=5). Thirty-nine isolates (39.8%) were positive for PI-1 or PI-2 type pili: 30 (76.9%) were PI-1+, 4 (10.3%) were PI-2+ and 5 (12.8%) were positive for both PI-1 and PI-2. Of the 13 multidrug-resistant isolates, 10 belonged to globally distributed clones PMEN3 and PMEN14 and were isolated in the post-PCV period, suggesting clonal expansion.
Collapse
Affiliation(s)
- Paulina A Hawkins
- Emory University, Atlanta, GA, USA; US Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| | - Patrick E Akpaka
- The University of the West Indies, St. Augustine, Trinidad and Tobago
| | | | | | | | | | - Lesley McGee
- US Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | | |
Collapse
|
14
|
Serotype distribution and antimicrobial susceptibility pattern in children ≤ 5 years with invasive pneumococcal disease in India – A systematic review. Vaccine 2017; 35:4501-4509. [DOI: 10.1016/j.vaccine.2017.06.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/24/2017] [Accepted: 06/23/2017] [Indexed: 11/18/2022]
|
15
|
Wang L, Ma L, Liu Y, Gao P, Li Y, Li X, Liu Y. Multilocus sequence typing and virulence analysis of Haemophilus parasuis strains isolated in five provinces of China. INFECTION GENETICS AND EVOLUTION 2016; 44:228-233. [PMID: 27431332 DOI: 10.1016/j.meegid.2016.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
Abstract
Haemophilus parasuis is the etiological agent of Glässers disease, which causes high morbidity and mortality in swine herds. Although H. parasuis strains can be classified into 15 serovars with the Kielstein-Rapp-Gabrielson serotyping scheme, a large number of isolates cannot be classified and have been designated 'nontypeable' strains. In this study, multilocus sequence typing (MLST) of H. parasuis was used to analyze 48 H. parasuis field strains isolated in China and two strains from Australia. Twenty-six new alleles and 29 new sequence types (STs) were detected, enriching the H. parasuis MLST databases. A BURST analysis indicated that H. parasuis lacks stable population structure and is highly heterogeneous, and that there is no association between STs and geographic area. When an UPGMA dendrogram was constructed, two major clades, clade A and clade B, were defined. Animal experiments, in which guinea pigs were challenged intraperitoneally with the bacterial isolates, supported the hypothesis that the H. parasuis STs in clade A are generally avirulent or weakly virulent, whereas the STs in clade B tend to be virulent.
Collapse
Affiliation(s)
- Liyan Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Lina Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Yongan Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Pengcheng Gao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Xuerui Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China.
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China.
| |
Collapse
|