1
|
Kamolratanakul S, Ariyanon W, Udompornpitak K, Bhunyakarnjanarat T, Leelahavanichkul A, Dhitavat J, Wilairatana P, Chancharoenthana W. Comparison of the Single Cell Immune Landscape between Subjects with High Mycobacterium tuberculosis Bacillary Loads during Active Pulmonary Tuberculosis and Household Members with Latent Tuberculosis Infection. Cells 2024; 13:362. [PMID: 38391975 PMCID: PMC10887672 DOI: 10.3390/cells13040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
It is unclear how the immune system controls the transition from latent tuberculosis (TB) infection (LTBI) to active pulmonary infection (PTB). Here, we applied mass spectrometry cytometry time-of-flight (CyTOF) analysis of peripheral blood mononuclear cells to compare the immunological landscapes in patients with high tuberculous bacillary load PTB infections and LTBI. A total of 32 subjects (PTB [n = 12], LTBI [n = 17], healthy volunteers [n = 3]) were included. Participants with active PTBs were phlebotomized before administering antituberculosis treatment, whereas participants with LTBI progressed to PTB at the time of household screening. In the present study, CyTOF analysis identified significantly higher percentages of mucosal-associated invariant natural killer T (MAIT NKT) cells in subjects with LTBI than in those with active PTB and healthy controls. Moreover, 6 of 17 (35%) subjects with LTBI progressed to active PTB (LTBI progression) and had higher proportions of MAIT NKT cells and early NKT cells than those without progression (LTBI non-progression). Subjects with LTBI progression also showed a tendency toward low B cell levels relative to other subject groups. In conclusion, MAIT NKT cells were substantially more prevalent in subjects with LTBI, particularly those with progression to active PTB.
Collapse
Affiliation(s)
- Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.K.); (J.D.); (P.W.)
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Wassawon Ariyanon
- Department of Medicine, Banphaeo General Hospital (BGH), Samutsakhon 74120, Thailand;
| | - Kanyarat Udompornpitak
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (T.B.); (A.L.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thansita Bhunyakarnjanarat
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (T.B.); (A.L.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.U.); (T.B.); (A.L.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jittima Dhitavat
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.K.); (J.D.); (P.W.)
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.K.); (J.D.); (P.W.)
| | - Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.K.); (J.D.); (P.W.)
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
2
|
Montero DA, Vidal RM, Velasco J, Carreño LJ, Torres JP, Benachi O. MA, Tovar-Rosero YY, Oñate AA, O'Ryan M. Two centuries of vaccination: historical and conceptual approach and future perspectives. Front Public Health 2024; 11:1326154. [PMID: 38264254 PMCID: PMC10803505 DOI: 10.3389/fpubh.2023.1326154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
Over the past two centuries, vaccines have been critical for the prevention of infectious diseases and are considered milestones in the medical and public health history. The World Health Organization estimates that vaccination currently prevents approximately 3.5-5 million deaths annually, attributed to diseases such as diphtheria, tetanus, pertussis, influenza, and measles. Vaccination has been instrumental in eradicating important pathogens, including the smallpox virus and wild poliovirus types 2 and 3. This narrative review offers a detailed journey through the history and advancements in vaccinology, tailored for healthcare workers. It traces pivotal milestones, beginning with the variolation practices in the early 17th century, the development of the first smallpox vaccine, and the continuous evolution and innovation in vaccine development up to the present day. We also briefly review immunological principles underlying vaccination, as well as the main vaccine types, with a special mention of the recently introduced mRNA vaccine technology. Additionally, we discuss the broad benefits of vaccines, including their role in reducing morbidity and mortality, and in fostering socioeconomic development in communities. Finally, we address the issue of vaccine hesitancy and discuss effective strategies to promote vaccine acceptance. Research, collaboration, and the widespread acceptance and use of vaccines are imperative for the continued success of vaccination programs in controlling and ultimately eradicating infectious diseases.
Collapse
Affiliation(s)
- David A. Montero
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Leandro J. Carreño
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan P. Torres
- Departamento de Pediatría y Cirugía Pediátrica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Manuel A. Benachi O.
- Área de Biotecnología, Tecnoacademia Neiva, Servicio Nacional de Aprendizaje, Regional Huila, Neiva, Colombia
| | - Yenifer-Yadira Tovar-Rosero
- Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán, Colombia
| | - Angel A. Oñate
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Miguel O'Ryan
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Linhares LA, Dos Santos Peixoto A, Correia de Sousa LDA, Lucena Laet JP, da Silva Santos AC, Alves Pereira VR, Carneiro Neves MM, Ferreira LFGR, Hernandes MZ, de la Vega J, Pereira-Neves A, San Feliciano A, Olmo ED, Schindler HC, Montenegro LML. In vitro bioevaluation and docking study of dihydrosphingosine and ethambutol analogues against sensitive and multi-drug resistant Mycobacterium tuberculosis. Eur J Med Chem 2023; 258:115579. [PMID: 37399709 DOI: 10.1016/j.ejmech.2023.115579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
Tuberculosis remains a major public health problem and one of the top ten causes of death worldwide. The alarming increase in multidrug-resistant and extensively resistant variants (MDR, pre-XDR, and XDR) makes the disease more difficult to treat and control. New drugs that act against MDR/XDR strains are needed for programs to contain this major epidemic. The present study aimed to evaluate new compounds related to dihydro-sphingosine and ethambutol against sensitive and pre-XDR Mycobacterium strains, as well as to characterize the pharmacological activity through in vitro and in silico approaches in mmpL3 protein. Of the 48 compounds analyzed, 11 demonstrated good to moderate activity on sensitive and MDR Mycobacterium tuberculosis (Mtb), with a Minimum Inhibitory Concentration (MIC) ranging from 1.5 to 8 μM. They presented 2 to 14 times greater potency of activity when compared to ethambutol in pre-XDR strain, and demonstrated a selectivity index varying between 2.21 and 82.17. The substance 12b when combined with rifampicin, showed a synergistic effect (FICI = 0.5) on sensitive and MDR Mtb. It has also been shown to have a concentration-dependent intracellular bactericidal effect, and a time-dependent bactericidal effect in M. smegmatis and pre-XDR M. tuberculosis. The binding mode of the compounds in its cavity was identified through molecular docking and using a predicted structural model of mmpL3. Finally, we observed by transmission electron microscopy the induction of damage to the cell wall integrity of M. tuberculosis treated with the substance 12b. With these findings, we demonstrate the potential of a 2-aminoalkanol derivative to be a prototype substance and candidate for further optimization of molecular structure and anti-tubercular activity in preclinical studies.
Collapse
Affiliation(s)
- Leonardo Aquino Linhares
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, 50.740-465, Brazil.
| | - Aline Dos Santos Peixoto
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, 50.740-465, Brazil
| | | | - João Paulo Lucena Laet
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, 50.740-465, Brazil
| | | | | | | | - Luiz Felipe Gomes Rebello Ferreira
- Laboratory of Medicinal Theoretical Chemistry (LQTM), Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Marcelo Zaldini Hernandes
- Laboratory of Medicinal Theoretical Chemistry (LQTM), Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Jennifer de la Vega
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy-CIETUS, University of Salamanca, Salamanca, Spain
| | - Antônio Pereira-Neves
- Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, 50.740-465, Brazil
| | - Arturo San Feliciano
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy-CIETUS, University of Salamanca, Salamanca, Spain; Graduate Program in Pharmaceutical Sciences, University of Vale do Itajai, UNIVALI, Itajaí, SC, 88302-202, Brazil
| | - Esther Del Olmo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy-CIETUS, University of Salamanca, Salamanca, Spain
| | - Haiana Charifker Schindler
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, 50.740-465, Brazil
| | - Lílian Maria Lapa Montenegro
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, 50.740-465, Brazil.
| |
Collapse
|
4
|
Kim CH, Kim HJ, Park JE, Lee YH, Choi SH, Seo H, Yoo SS, Lee SY, Cha SI, Park JY, Lee J. CyTOF analysis for differential immune cellular profiling between latent tuberculosis infection and active tuberculosis. Tuberculosis (Edinb) 2023; 140:102344. [PMID: 37084568 DOI: 10.1016/j.tube.2023.102344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
Limited data exist about the comparative immune cell population profile determined by cytometry by time-of-flight (CyTOF) analysis between active tuberculosis (TB) and latent TB infection (LTBI). In this study, we performed CyTOF analysis using peripheral blood mononuclear cells (PBMCs) to compare the differential immune cellular profile between active TB and LTBI. A total of 51 subjects (active TB [n = 34] and LTBI [n = 17]) were included. CyTOF analysis of 16 subjects (active TB [n = 8] and LTBI [n = 8]) identified a significantly higher Th17-like cell population in active TB than in LTBI. This finding was validated in the remaining 35 subjects (active TB [n = 26] and LTBI [n = 9]) using flow cytometry analysis, which consistently reveals a higher percentage of Th17 cell population in active TB (p = 0.032). The Th1/Th17 ratio represented good ability to discriminate between active TB and LTBI (AUC = 0.812). Among patients with active TB, the Th17 cell percentage was found to be lower in more advanced forms of the disease. Additionally, Th17 cell percentage positively correlated with the levels of IL-6 and neutrophil-lymphocyte ratio, respectively. In conclusion, CyTOF analysis of PBMCs showed a significantly higher percentage of Th17 cells in active TB although fairly similar immune cell populations between active TB and LTBI were observed.
Collapse
Affiliation(s)
- Chang Ho Kim
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Ha-Jeong Kim
- Department of Physiology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Tumor Heterogeneity and Network (THEN) Research Center, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Ji Eun Park
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Yong Hoon Lee
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Sun Ha Choi
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Hyewon Seo
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Seung Ick Cha
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Jae Yong Park
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Jaehee Lee
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
5
|
Tanner L, Mashabela GT, Omollo CC, de Wet TJ, Parkinson CJ, Warner DF, Haynes RK, Wiesner L. Intracellular Accumulation of Novel and Clinically Used TB Drugs Potentiates Intracellular Synergy. Microbiol Spectr 2021; 9:e0043421. [PMID: 34585951 PMCID: PMC8557888 DOI: 10.1128/spectrum.00434-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic repertoire for tuberculosis (TB) remains limited despite the existence of many TB drugs that are highly active in in vitro models and possess clinical utility. Underlying the lack of efficacy in vivo is the inability of TB drugs to penetrate microenvironments inhabited by the causative agent, Mycobacterium tuberculosis, including host alveolar macrophages. Here, we determined the ability of the phenoxazine PhX1 previously shown to be active against M. tuberculosis in vitro to differentially penetrate murine compartments, including plasma, epithelial lining fluid, and isolated epithelial lining fluid cells. We also investigated the extent of permeation into uninfected and M. tuberculosis-infected human macrophage-like Tamm-Horsfall protein 1 (THP-1) cells directly and by comparing to results obtained in vitro in synergy assays. Our data indicate that PhX1 (4,750 ± 127.2 ng/ml) penetrates more effectively into THP-1 cells than do the clinically used anti-TB agents, rifampin (3,050 ± 62.9 ng/ml), moxifloxacin (3,374 ± 48.7 ng/ml), bedaquiline (4,410 ± 190.9 ng/ml), and linezolid (770 ± 14.1 ng/ml). Compound efficacy in infected cells correlated with intracellular accumulation, reinforcing the perceived importance of intracellular penetration as a key drug property. Moreover, we detected synergies deriving from redox-stimulatory combinations of PhX1 or clofazimine with the novel prenylated amino-artemisinin WHN296. Finally, we used compound synergies to elucidate the relationship between compound intracellular accumulation and efficacy, with PhX1/WHN296 synergy levels shown to predict drug efficacy. Collectively, our data support the utility of the applied assays in identifying in vitro active compounds with the potential for clinical development. IMPORTANCE This study addresses the development of novel therapeutic compounds for the eventual treatment of drug-resistant tuberculosis. Tuberculosis continues to progress, with cases of Mycobacterium tuberculosis (M. tuberculosis) resistance to first-line medications increasing. We assess new combinations of drugs with both oxidant and redox properties coupled with a third partner drug, with the focus here being on the potentiation of M. tuberculosis-active combinations of compounds in the intracellular macrophage environment. Thus, we determined the ability of the phenoxazine PhX1, previously shown to be active against M. tuberculosis in vitro, to differentially penetrate murine compartments, including plasma, epithelial lining fluid, and isolated epithelial lining fluid cells. In addition, the extent of permeation into human macrophage-like THP-1 cells and H37Rv-infected THP-1 cells was measured via mass spectrometry and compared to in vitro two-dimensional synergy and subsequent intracellular efficacy. Collectively, our data indicate that development of new drugs will be facilitated using the methods described herein.
Collapse
Affiliation(s)
- Lloyd Tanner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Gabriel T. Mashabela
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Charles C. Omollo
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Timothy J. de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Digby F. Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Richard K. Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Kassa GM, Merid MW, Muluneh AG. Khat Chewing and Clinical Conditions Determine the Epidemiology of Primary Drug Resistance Tuberculosis in Amhara Region of Ethiopia: A Multicenter Study. Infect Drug Resist 2021; 14:2449-2460. [PMID: 34234475 PMCID: PMC8255900 DOI: 10.2147/idr.s316268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Rifampicin and/or multidrug-resistant tuberculosis (RR/MDR-TB) remains an uncontrolled public health emergency that has been synergized by the recently increased person-to-person transmission in the community as primary RR/MDR-TB, which is defined as RR/MDR-TB in new TB patients with no prior exposure to anti-TB treatment for more than one month. This study aimed to measure the prevalence and associated factors of primary drug-resistance among drug-resistant tuberculosis patients, as evidenced by the Amhara region treatment initiating centers. METHODS An institutional-based multicenter cross-sectional study was conducted from September 2010 to December 2017, among 580 RR/MDR-TB patients on the second-line anti-TB drug in the Amhara regional state. Data were collected from patient charts and registration books using a standardized data abstraction sheet. The data were entered using Epi-data 4.2.0.0 and transferred to Stata 14 software for further data management and analysis. A bivariable and multivariable binary logistic model was run subsequently, and finally, a p-value of less than 0.05 with a 95% confidence interval (CI) was used to declare the significance of the explanatory variable. RESULTS The magnitude of primary drug resistance among drug-resistant tuberculosis patients was 15.69% (95% CI: 12.94, 18.89). Alcohol drinking (adjusted odds ratio [AOR] = 0.31, 95% CI: 0.12-0.82), khat chewing (AOR = 4.43; 95% CI: 1.67-11.76), ambulatory and bedridden functional status (AOR = 0.43; 95% CI: 0.24-0.76) and (AOR = 0.41; 95% CI: 0.19-0.91), respectively, positive sputum smear result (AOR = 0.48; 95% CI: 0.26-0.90), and HIV coinfection (AOR= 2.31; 95% CI: 1.31-4.06) remained statistically significant associated factors of primary RR/MDR-TB. CONCLUSION Primary drug resistance is a public health problem in the study setting. Different behavioral and clinical conditions were significant factors of primary drug-resistant development. Mitigation strategies targeted on the patient's clinical condition, substance-related behaviors, and universal DST coverage might be very important for early detection and treatment of RR/MDR-TB to prevent community-level transmission.
Collapse
Affiliation(s)
- Getahun Molla Kassa
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences and Specialized Comprehensive Hospitals, University of Gondar, Gondar, Ethiopia
| | - Mehari Woldemariam Merid
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences and Specialized Comprehensive Hospitals, University of Gondar, Gondar, Ethiopia
| | - Atalay Goshu Muluneh
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences and Specialized Comprehensive Hospitals, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
7
|
Gkotinakou IM, Kechagia E, Pazaitou-Panayiotou K, Mylonis I, Liakos P, Tsakalof A. Calcitriol Suppresses HIF-1 and HIF-2 Transcriptional Activity by Reducing HIF-1/2α Protein Levels via a VDR-Independent Mechanism. Cells 2020; 9:E2440. [PMID: 33182300 PMCID: PMC7695316 DOI: 10.3390/cells9112440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023] Open
Abstract
Hypoxia-inducible transcription factors 1 and 2 (HIFs) are major mediators of cancer development and progression and validated targets for cancer therapy. Although calcitriol, the biologically active metabolite of vitamin D, was attributed with anticancer properties, there is little information on the effect of calcitriol on HIFs and the mechanism underling this activity. Here, we demonstrate the negative effect of calcitriol on HIF-1/2α protein levels and HIF-1/2 transcriptional activity and elucidate the molecular mechanism of calcitriol action. We also reveal that the suppression of vitamin D receptor (VDR) expression by siRNA does not abrogate the negative regulation of HIF-1α and HIF-2α protein levels and HIF-1/2 transcriptional activity by calcitriol, thus testifying that the mechanism of these actions is VDR independent. At the same time, calcitriol significantly reduces the phosphorylation of Akt protein kinase and its downstream targets and suppresses HIF-1/2α protein synthesis by inhibiting HIF1A and EPAS1 (Endothelial PAS domain-containing protein 1) mRNA translation, without affecting their mRNA levels. On the basis of the acquired data, it can be proposed that calcitriol reduces HIF-1α and HIF-2α protein levels and inhibits HIF-1 and HIF-2 transcriptional activity by a VDR-independent, nongenomic mechanism that involves inhibition of PI3K/Akt signaling pathway and suppression of HIF1A and EPAS1 mRNA translation.
Collapse
Affiliation(s)
- Ioanna-Maria Gkotinakou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | - Eleni Kechagia
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | | | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | - Panagiotis Liakos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| | - Andreas Tsakalof
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis 41500, Larissa, Greece; (I.-M.G.); (E.K.); (P.L.)
| |
Collapse
|
8
|
Sachdeva KS. TB free India by 2025: hype or hope. Expert Rev Respir Med 2020; 15:863-865. [PMID: 32951482 DOI: 10.1080/17476348.2021.1826317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Population pharmacokinetics of isoniazid and dose recommendations in Mexican patients with tuberculosis. Int J Clin Pharm 2020; 42:1217-1226. [DOI: 10.1007/s11096-020-01086-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/17/2020] [Indexed: 11/25/2022]
|
10
|
Wang XH, Jin YW, Rao Z, Zhang GQ, Zang KH, Qin HY. Curcumin Enhances the Systemic Exposure of Isoniazid in Rats: Role of NAT2 in the Liver and Intestine. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2020.10.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Sitwala ND, Vyas VK, Gedia P, Patel K, Bouzeyen R, Kidwai S, Singh R, Ghate MD. 3D QSAR-based design and liquid phase combinatorial synthesis of 1,2-disubstituted benzimidazole-5-carboxylic acid and 3-substituted-5 H-benzimidazo[1,2- d][1,4]benzodiazepin-6(7 H)-one derivatives as anti-mycobacterial agents. MEDCHEMCOMM 2019; 10:817-827. [PMID: 31293724 DOI: 10.1039/c9md00006b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022]
Abstract
Tuberculosis (TB) is one of the world's deadliest infectious diseases, caused by Mycobacterium tuberculosis (Mtb). In the present study, a 3D QSAR study was performed for the design of novel substituted benzimidazole derivatives as anti-mycobacterial agents. The anti-tubercular activity of the designed compounds was predicted using the generated 3D QSAR models. The designed compounds which showed better activity were synthesized as 1,2-disubstituted benzimidazole-5-carboxylic acid derivatives (series 1) and 3-substituted-5H-benzimidazo[1,2-d][1,4]benzodiazepin-6(7H)-one derivatives (series 2) using the liquid phase combinatorial approach using a soluble polymer assisted support (PEG5000). The compounds were characterized by 1H-NMR, 13C-NMR, FTIR and mass spectrometry. HPLC analysis was carried out to evaluate the purity of the compounds. We observed that the synthesised compounds inhibited the growth of intracellular M. tuberculosis H37Rv in a bactericidal manner. The most active compound 16 displayed an MIC value of 0.0975 μM against the Mtb H37Rv strain in liquid cultures. The lead compound was also able to inhibit the growth of intracellular mycobacteria in THP-1 macrophages.
Collapse
Affiliation(s)
- Nikum D Sitwala
- Department of Pharmaceutical Chemistry, Institute of Pharmacy , Nirma University , Ahmedabad 382481 , Gujarat , India .
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy , Nirma University , Ahmedabad 382481 , Gujarat , India .
| | - Piyush Gedia
- Department of Pharmaceutical Chemistry, Institute of Pharmacy , Nirma University , Ahmedabad 382481 , Gujarat , India .
| | - Kinjal Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy , Nirma University , Ahmedabad 382481 , Gujarat , India .
| | - Rania Bouzeyen
- Institut Pasteur de Tunis , LTCII, LR11 IPT02 , Tunis , 1002 , Tunisia.,Université Tunis El Manar , Tunis , 1068 , Tunisia
| | - Saqib Kidwai
- Tuberculosis Research Laboratory , Vaccine and Infectious Disease Research Centre , Translational Health Science and Technology Institute , Faridabad-Gurugram Expressway , Haryana , India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory , Vaccine and Infectious Disease Research Centre , Translational Health Science and Technology Institute , Faridabad-Gurugram Expressway , Haryana , India
| | - Manjunath D Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy , Nirma University , Ahmedabad 382481 , Gujarat , India .
| |
Collapse
|
12
|
Lu Y, Kang J, Ning H, Wang L, Xu Y, Xue Y, Xu Z, Wu X, Bai Y. Immunological characteristics of Mycobacterium tuberculosis subunit vaccines immunized through different routes. Microb Pathog 2018; 125:84-92. [PMID: 30195646 DOI: 10.1016/j.micpath.2018.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/02/2018] [Accepted: 09/05/2018] [Indexed: 12/18/2022]
Abstract
Tuberculosis is chronic infectious disease caused by Mycobacterium tuberculosis (M.tb) that is prevalent worldwide. Several specific antigens, such as Antigen 85B (Ag85B) and 6 kDa early secretory antigenic target (ESAT-6) protein of M.tb, are listed as some of the candidate subunit vaccines against M.tb. ESAT-6, as a virulent factor and differential gene in M.tb, shows insufficient immunogenicity in animal model. In order to investigate the ways to improve the immunogenicity of ESAT-6, we immunized ESAT-6 by subcutaneous and intramuscular routes with different adjuvants. We found that ESAT-6 immunized alone did not induce significant humoral immunity in both immunization routes. However, subcutaneous immunization of ESAT-6 plus incomplete Freund's adjuvant can induce a significant humoral immune response, enhanced proliferation and elevated secretion of IFN-γ from splenocytes. Intramuscular immunization of ESAT-6 plus adjuvant aluminum salt or poly(I:C) did not enhance humoral and cellular immune responses. Therefore, it is concluded that immunization of ESAT-6 subcutaneously plus incomplete Freund's adjuvant induces stronger humoral and cellular immune responses, which can be considered of ESAT-6 as a subunit vaccine in further research against tuberculosis.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/immunology
- Bacterial Proteins/administration & dosage
- Bacterial Proteins/immunology
- Cell Proliferation
- Guinea Pigs
- Immunity, Cellular
- Immunity, Humoral
- Injections, Intramuscular
- Injections, Subcutaneous
- Interferon-gamma/metabolism
- Leukocytes, Mononuclear/immunology
- Mice
- Tuberculosis Vaccines/administration & dosage
- Tuberculosis Vaccines/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Yanzhi Lu
- Department of Microbiology, College of Basic Medical Sciences, The Fourth Military Medical University, Shaanxi Province, China
| | - Jian Kang
- Department of Microbiology, College of Basic Medical Sciences, The Fourth Military Medical University, Shaanxi Province, China
| | - Huanhuan Ning
- Department of Microbiology, College of Basic Medical Sciences, The Fourth Military Medical University, Shaanxi Province, China
| | - Lifei Wang
- Department of Microbiology, College of Basic Medical Sciences, The Fourth Military Medical University, Shaanxi Province, China
| | - Yanhui Xu
- Department of Microbiology, College of Basic Medical Sciences, The Fourth Military Medical University, Shaanxi Province, China
| | - Ying Xue
- Department of Microbiology, College of Basic Medical Sciences, The Fourth Military Medical University, Shaanxi Province, China
| | - Zhikai Xu
- Department of Microbiology, College of Basic Medical Sciences, The Fourth Military Medical University, Shaanxi Province, China
| | - Xingan Wu
- Department of Microbiology, College of Basic Medical Sciences, The Fourth Military Medical University, Shaanxi Province, China.
| | - Yinlan Bai
- Department of Microbiology, College of Basic Medical Sciences, The Fourth Military Medical University, Shaanxi Province, China.
| |
Collapse
|
13
|
Vadija R, Mustyala KK, Malkhed V, Dulapalli R, Veeravarapu H, Malikanti R, Vuruputuri U. Identification of small molecular inhibitors for efflux protein Rv2688c of Mycobacterium tuberculosis. Biotechnol Appl Biochem 2018; 65:608-621. [PMID: 29377374 DOI: 10.1002/bab.1647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/23/2018] [Indexed: 11/11/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is the pathogen, which causes tuberculosis. The development of multidrug-resistant and extensively drug-resistant strains in Mtb is due to an efflux mechanism of antibiotics in the bacteria. The efflux pump proteins in the bacteria are implicated in the active efflux of antibiotics. The efflux pump protein, "fluoroquinolones export ATP-binding protein Rv2688c" (FEAB), is considered as a potential therapeutic target to prevent tuberculosis. In the present work, in silico protocols are applied to identify inhibitors for the FEAB protein to arrest the efflux mechanism. Comparative modeling techniques are used to build the protein structure. The generated structure consists of 9 helices, 13 beta strands, and 3 β sheets. The active site is predicted using active site prediction server tools. The virtual screening protocols are carried out to generate small ligand inhibitor structures. The identified ligand molecules show selective binding with Ser97, Glu99, Lys149, Asp171, Glu172, and Ser175 amino acid residues of the protein. The ligand molecules are subjected to in silico prediction of pharmaco kinetic properties, and the predicted IC50 (HERG) of all the molecules are less than -5.0, which is indicative of the identified ligand molecules is being potentially good FEAB inhibitors.
Collapse
Affiliation(s)
- Rajender Vadija
- Molecular Modeling Research Laboratory, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Kiran Kumar Mustyala
- Molecular Modeling Research Laboratory, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Vasavi Malkhed
- Molecular Modeling Research Laboratory, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Ramasree Dulapalli
- Molecular Modeling Research Laboratory, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Hymavathi Veeravarapu
- Molecular Modeling Research Laboratory, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Ramesh Malikanti
- Molecular Modeling Research Laboratory, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Uma Vuruputuri
- Molecular Modeling Research Laboratory, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| |
Collapse
|
14
|
GI-19007, a Novel Saccharomyces cerevisiae-Based Therapeutic Vaccine against Tuberculosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00245-17. [PMID: 29046306 PMCID: PMC5717186 DOI: 10.1128/cvi.00245-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/05/2017] [Indexed: 01/05/2023]
Abstract
As yet, very few vaccine candidates with activity in animals against Mycobacterium tuberculosis infection have been tested as therapeutic postexposure vaccines. We recently described two pools of mycobacterial proteins with this activity, and here we describe further studies in which four of these proteins (Rv1738, Rv2032, Rv3130, and Rv3841) were generated as a fusion polypeptide and then delivered in a novel yeast-based platform (Tarmogen) which itself has immunostimulatory properties, including activation of Toll-like receptors. This platform can deliver antigens into both the class I and class II antigen presentation pathways and stimulate strong Th1 and Th17 responses. In mice this fusion vaccine, designated GI-19007, was immunogenic and elicited strong gamma interferon (IFN-γ) and interleukin-17 (IL-17) responses; despite this, they displayed minimal prophylactic activity in mice that were subsequently infected with a virulent clinical strain. In contrast, in a therapeutic model in the guinea pig, GI-19007 significantly reduced the lung bacterial load and reduced lung pathology, particularly in terms of secondary lesion development, while significantly improving survival in one-third of these animals. In further studies in which guinea pigs were vaccinated with BCG before challenge, therapeutic vaccination with GI-19007 initially improved survival versus that of animals given BCG alone, although this protective effect was gradually lost at around 400 days after challenge. Given its apparent ability to substantially limit bacterial dissemination within and from the lungs, GI-19007 potentially can be used to limit lung damage as well as facilitating chemotherapeutic regimens in infected individuals.
Collapse
|
15
|
Malikanti R, Vadija R, Veeravarapu H, Mustyala KK, Malkhed V, Vuruputuri U. Identification of small molecular ligands as potent inhibitors of fatty acid metabolism in Mycobacterium tuberculosis. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.08.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Petersen E, Maeurer M, Marais B, Migliori GB, Mwaba P, Ntoumi F, Vilaplana C, Kim K, Schito M, Zumla A. World TB Day 2017: Advances, Challenges and Opportunities in the "End-TB" Era. Int J Infect Dis 2017; 56:1-5. [PMID: 28232006 DOI: 10.1016/j.ijid.2017.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Eskild Petersen
- Institute of Clinical Medicine, University of Aarhus, Denmark; The Royal Hospital, Muscat, Oman.
| | - Markus Maeurer
- Therapeutic Immunology (TIM) Division, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, and Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | - Ben Marais
- The Children's Hospital at Westmead and Centre for Research Excellence in Tuberculosis (TB-CRE), Marie Bashir Institute for Infectious Diseases and Biosecurity (MBI), University of Sydney, Australia.
| | | | - Peter Mwaba
- UNZA-UCLMS Research and Training Project, University Teaching Hospital, Lusaka, Zambia.
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale, Faculté des Sciences de la Santé, Marien Ngouabi University, Brazzaville, Congo; Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany.
| | - Cris Vilaplana
- Unitat de Tuberculosi Experimental Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i PujolEdifici Laboratoris de Recerca Can Ruti Campus, Barcelona, Spain.
| | - Kami Kim
- Department of Medicine (Infectious Diseases), of Microbiology & Immunology and of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Marco Schito
- Critical Path to TB Drug Regimens, Critical Path Institute, Tucson, Arizona, USA.
| | - Alimuddin Zumla
- Center for Clinical Microbiology, Division of Infection and Immunity, University College London, and the National Institute of Health Research Biomedical Research Centre at UCLHospitals, London, United Kingdom.
| |
Collapse
|