1
|
Unterfrauner I, Bragatto-Hess N, Studhalter T, Farshad M, Uçkay I. General skin and nasal decolonization with octenisan® set before and after elective orthopedic surgery in selected patients at elevated risk for revision surgery and surgical site infections-a single-center, unblinded, superiority, randomized controlled trial (BALGDEC trial). Trials 2024; 25:461. [PMID: 38978089 PMCID: PMC11229206 DOI: 10.1186/s13063-024-08173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/05/2023] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The preoperative body surface and nasal decolonization may reduce the risk of surgical site infections (SSI) but yields conflicting results in the current orthopedic literature. METHODS We perform a single-center, randomized-controlled, superiority trial in favor of the preoperative decolonization using a commercial product (octenidine® set). We will randomize a total number of 1000 adult elective orthopedic patients with a high risk for SSI and/or wound complications (age ≥ 80 years, chronic immune-suppression, American Society of Anesthesiologists score 3-4 points) between a decolonization (octenisan® wash lotion 1 × per day and octenisan® md nasal gel 2-3 × per day; during 5 days) and no decolonization. Decolonized patients will additionally fill a questionnaire regarding the practical difficulties, the completeness, and the adverse events of decolonization. The primary outcomes are SSI and revision surgeries for postoperative wound problems until 6 weeks postoperatively (or 1 year for surgeries with implants or bone). Secondary outcomes are unplanned revision surgeries for non-infectious problems and all adverse events. With 95% event-free surgeries in the decolonization arm versus 90% in the control arm, we formally need 2 × 474 elective orthopedic surgeries included during 2 years. DISCUSSION In selected adult orthopedic patients with a high risk for SSI, the presurgical decolonization may reduce postoperative wound problems, including SSI. TRIAL REGISTRATION ClinicalTrial.gov NCT05647252. Registered on 9 December 2022. PROTOCOL VERSION 2 (5 December 2022).
Collapse
Affiliation(s)
- Ines Unterfrauner
- Orthopedic Surgery, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Nadja Bragatto-Hess
- Infection Control, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Thorsten Studhalter
- Infection Control, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Mazda Farshad
- Orthopedic Surgery, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
- Medical Direction, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich, 8008, Switzerland
| | - Ilker Uçkay
- Infection Control, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland.
- Unit for Clinical and Applied Research, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland.
| |
Collapse
|
2
|
Gouleu CS, Daouda MA, Oye Bingono SO, McCall MBB, Alabi AS, Adegnika AA, Schaumburg F, Grebe T. Temporal trends of skin and soft tissue infections caused by methicillin-resistant Staphylococcus aureus in Gabon. Antimicrob Resist Infect Control 2024; 13:68. [PMID: 38918863 PMCID: PMC11201302 DOI: 10.1186/s13756-024-01426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of mortality due to bacterial antimicrobial resistance. While S. aureus is common in skin and soft tissue infections (SSTI) in Africa, data on MRSA rates are scarce and reports vary widely across the continent (5%-80%). In this study, we describe the proportion of MRSA causing SSTI in Lambaréné, Gabon, over an 11-year period. METHODS We retrospectively analyzed data from 953 bacterial specimens collected from inpatients and outpatients with SSTI at the Albert Schweitzer Hospital, Lambaréné, Gabon, between 2009 and 2019. We determined temporal changes in the prevalence of MRSA and identified risk factors for SSTI with MRSA. RESULTS 68% of all specimens with bacterial growth yielded S. aureus (n = 499/731), of which 7% (36/497) with antimicrobial susceptibility testing were identified as MRSA. Age above 18 years, admission to the surgical ward, and deep-seated infections were significantly associated with MRSA as the causative agent. After an initial decline from 7% in 2009, there was a marked increase in the proportion of MRSA among all S. aureus from SSTI from 3 to 20% between 2012 and 2019. The resistance rate to erythromycin was significantly higher in MRSA than in methicillin-susceptible S. aureus (73% vs. 10%), and clindamycin resistance was detected exclusively in MRSA isolates (8%). CONCLUSION The increasing proportion of MRSA causing SSTI over the 11-year period contrasts with many European countries where MRSA is on decline. Continuous surveillance of MRSA lineages in the hospital and community along with antibiotic stewardship programs could address the increasing trend of MRSA.
Collapse
Affiliation(s)
| | | | | | - Matthew Benjamin Bransby McCall
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Frieder Schaumburg
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Tobias Grebe
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
3
|
Battaglia M, Garrett-Sinha LA. Staphylococcus xylosus and Staphylococcus aureus as commensals and pathogens on murine skin. Lab Anim Res 2023; 39:18. [PMID: 37533118 PMCID: PMC10394794 DOI: 10.1186/s42826-023-00169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Skin ulcers, skin dermatitis and skin infections are common phenomena in colonies of laboratory mice and are often found at increased prevalence in certain immunocompromised strains. While in many cases these skin conditions are mild, in other cases they can be severe and lead to animal morbidity. Furthermore, the presence of skin infections and ulcerations can complicate the interpretation of experimental protocols, including those examining immune cell activation. Bacterial species in the genus Staphylococcus are the most common pathogens recovered from skin lesions in mice. In particular, Staphylococcus aureus and Staphylococcus xylosus have both been implicated as pathogens on murine skin. Staphylococcus aureus is a well-known pathogen of human skin, but S. xylosus skin infections in humans have not been described, indicating that there is a species-specific difference in the ability of S. xylosus to serve as a skin pathogen. The aim of this review is to summarize studies that link S. aureus and S. xylosus to skin infections of mice and to describe factors involved in their adherence to tissue and their virulence. We discuss potential differences in mouse and human skin that might underlie the ability of S. xylosus to act as a pathogen on murine skin, but not human skin. Finally, we also describe mouse mutants that have shown increased susceptibility to skin infections with staphylococcal bacteria. These mutants point to pathways that are important in the control of commensal staphylococcal bacteria. The information here may be useful to researchers who are working with mouse strains that are prone to skin infections with staphylococcal bacteria.
Collapse
Affiliation(s)
- Michael Battaglia
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
4
|
Bertsch C, Maréchal H, Gribova V, Lévy B, Debry C, Lavalle P, Fath L. Biomimetic Bilayered Scaffolds for Tissue Engineering: From Current Design Strategies to Medical Applications. Adv Healthc Mater 2023; 12:e2203115. [PMID: 36807830 PMCID: PMC11469754 DOI: 10.1002/adhm.202203115] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Indexed: 02/20/2023]
Abstract
Tissue damage due to cancer, congenital anomalies, and injuries needs new efficient treatments that allow tissue regeneration. In this context, tissue engineering shows a great potential to restore the native architecture and function of damaged tissues, by combining cells with specific scaffolds. Scaffolds made of natural and/or synthetic polymers and sometimes ceramics play a key role in guiding cell growth and formation of the new tissues. Monolayered scaffolds, which consist of uniform material structure, are reported as not being sufficient to mimic complex biological environment of the tissues. Osteochondral, cutaneous, vascular, and many other tissues all have multilayered structures, therefore multilayered scaffolds seem more advantageous to regenerate these tissues. In this review, recent advances in bilayered scaffolds design applied to regeneration of vascular, bone, cartilage, skin, periodontal, urinary bladder, and tracheal tissues are focused on. After a short introduction on tissue anatomy, composition and fabrication techniques of bilayered scaffolds are explained. Then, experimental results obtained in vitro and in vivo are described, and their limitations are given. Finally, difficulties in scaling up production of bilayer scaffolds and reaching the stage of clinical studies are discussed when multiple scaffold components are used.
Collapse
Affiliation(s)
- Christelle Bertsch
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
| | - Hélène Maréchal
- Service d'ORL et de Chirurgie Cervico‐FacialeHôpitaux Universitaires de Strasbourg1 avenue MolièreStrasbourg67200France
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
| | - Benjamin Lévy
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
| | - Christian Debry
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
- Service d'ORL et de Chirurgie Cervico‐FacialeHôpitaux Universitaires de Strasbourg1 avenue MolièreStrasbourg67200France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
| | - Léa Fath
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
- Service d'ORL et de Chirurgie Cervico‐FacialeHôpitaux Universitaires de Strasbourg1 avenue MolièreStrasbourg67200France
| |
Collapse
|
5
|
Influence of Skin Commensals on Therapeutic Outcomes of Surgically Debrided Diabetic Foot Infections-A Large Retrospective Comparative Study. Antibiotics (Basel) 2023; 12:antibiotics12020316. [PMID: 36830227 PMCID: PMC9952192 DOI: 10.3390/antibiotics12020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
In diabetic foot infections (DFI), the clinical virulence of skin commensals are generally presumed to be low. In this single-center study, we divided the wound isolates into two groups: skin commensals (coagulase-negative staphylococci, micrococci, corynebacteria, cutibacteria) and pathogenic pathogens, and followed the patients for ≥ 6 months. In this retrospective study among 1018 DFI episodes (392 [39%] with osteomyelitis), we identified skin commensals as the sole culture isolates (without accompanying pathogenic pathogens) in 54 cases (5%). After treatment (antibiotic therapy [median of 20 days], hyperbaric oxygen in 98 cases [10%]), 251 episodes (25%) were clinical failures. Group comparisons between those growing only skin commensals and controls found no difference in clinical failure (17% vs. 24 %, p = 0.23) or microbiological recurrence (11% vs. 17 %, p = 0.23). The skin commensals were mostly treated with non-beta-lactam oral antibiotics. In multivariate logistic regression analysis, the isolation of only skin commensals was not associated with failure (odds ratio 0.4, 95% confidence interval 0.1-3.8). Clinicians might wish to consider these isolates as potential pathogens when selecting a targeted antibiotic regimen, which may also be based on oral non-beta-lactam antibiotic agents effective against the corresponding skin pathogens.
Collapse
|
6
|
Wang L, Fan J, Zheng L, Chen L. Efficacy and Safety of Iclaprim for the Treatment of Skin Structures and Soft Tissue Infections: A Methodological Framework. Front Pharmacol 2022; 13:932688. [PMID: 35928265 PMCID: PMC9344044 DOI: 10.3389/fphar.2022.932688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Skin and soft tissue infections (SSTIs) are among the most common infections worldwide. They manifest in a variety of forms, such as erysipelas, cellulitis, and necrotizing fasciitis. Antibiotics are the significant method for clinical treatment of SSTIs. This study reported a methodology framework to determine the efficacy and safety of iclaprim in treatment of SSTIs.Methods: We will search the PubMed, EMbase, CNKI, WanFang Data, VIP, and ClinicalTrials.gov from their inception to June 2022 for randomized controlled trials and cohort studies on iclaprim with SSTIs. Two authors will independently screen the eligible studies, assess the quality of the included papers, and extract the required information. Randomized controlled trials will be assessed using the Cochrane risk-of-bias tool. The Newcastle–Ottawa Scale will be used to evaluate observational studies. The quality of the evidence will be evaluated using the Grading of Recommendations Assessment Development and Evaluation system. RevMan 5.3 will be used for the data synthesis and quantitative analysis.Results and Discussions: This study will provide the clinicians with more high-quality evidence to choose iclaprim for patients with SSTIs.Ethics and Dissemination: This systematic review and meta-analysis will be based on published data, so ethical approval is not necessary. The results of this meta-analysis will be published in a peer-reviewed journal.
Collapse
Affiliation(s)
- Lian Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Jin Fan
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linli Zheng
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lingmin Chen
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, The Research Units of West China (2018RU012, Chinese Academy of Medical Sciences), West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Lingmin Chen,
| |
Collapse
|
7
|
Akinduti PA, Emoh-Robinson V, Obamoh-Triumphant HF, Obafemi YD, Banjo TT. Antibacterial activities of plant leaf extracts against multi-antibiotic resistant Staphylococcus aureus associated with skin and soft tissue infections. BMC Complement Med Ther 2022; 22:47. [PMID: 35189869 PMCID: PMC8862250 DOI: 10.1186/s12906-022-03527-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
Background The antibacterial activities of aqueous leaf extracts of Moringa oleifera, Vernonia amygdalina, Azadirachta indica and Acalypha wilkesiana against multidrug resistance (MDR) Staphylococcus aureus associated with skin and soft tissue infections were investigated. Methods Staphylococcus aureus (n = 183) from the skin and soft tissue infections with evidence of purulent pus, effusions from aspirates, wounds, and otorrhea were biotyped, and evaluated for biofilm production. The phenotypic antibiotic resistance and MDR strains susceptibility to plant leaves extract were determined using disc diffusion and micro-broth dilution assays respectively. The correlation of plant extract bioactive components with inhibitory activities was determined. Results High occurrence rate of S. aureus were recorded among infant and adult age groups and 13.2% mild biofilm producers from the wound (p < 0.05). Of 60.2% MDR strains with overall significant MARI of more than 0.85 (p < 0.05), high resistant rates to linozidine (92.7%; 95% CI:7.27–10.52), ofloxacin (94.2%; 95% CI:6.09–8.15), chloramphenicol (91.2%; 95% CI:6.11–8.32), gentamicin (97.3%; 95% CI:6.20–8.22), ciprofloxacin (92.7%; 95% CI: 5.28–7.99) and vancomycin (86.6%; 95% CI:6.81–9.59) were observed. Vernonia amygdalina and Azadirachta indica showed significant antimicrobial activity at 100 mg/ml and 75 mg/ml, with low susceptibility of less than 10% to 25 mg/ml, 50 mg/ml, and 75 mg/ml Moringa oleifera. Alkaloids, saponin and terpenoids were significant in Moringa oleifera, Acalypha wilkesiana, Azadirachta indica and Vernonia amygdalina leaves extracts (p < 0.05). High inhibitory concentrations at IC50; 3.23, 3.75 and 4.80 mg/ml (p = 0.02, CI: − 0.08 – 11.52) and IC90; 12.9, 7.5, and 9.6 mg/ml (p = 0.028, CI: 2.72–23.38) were shown by Acalypha wilkesiana, Vernonia amygdalina and Moringa oleifera respectively. Comparative outcome of the plant extracts showed Acalypha wilkesiana, Vernonia amygdalina and Moringa oleifera to exhibit significant inhibition activities (p < 0.05) compared to other extracts. Significant median inhibitory concentration (15.3 mg/ml) of Azadirachta indica were observed (p < 0.01) and strong associations of phytochemical compounds of Azadirachta indica (eta = 0.527,p = 0.017), Vernonia amygdalina (eta = 0.123,p = 0.032) and Acalypha wilkesiana (eta = 0.492,p = 0.012) with their respective inhibitory values. Conclusion Observed high occurrence rate of skin and soft tissue infections caused by biofilm-producing MDR S. aureus requires alternative novel herbal formulations with rich bioactive compounds from Moringa oleifera, Acalypha wilkesiana, Azadirachta indica and Vernonia amygdalina as skin therapeutic agents. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03527-y.
Collapse
Affiliation(s)
- P A Akinduti
- Microbiology Unit, Department of Biological Sciences, Covenant University, Ota, PMB 1023, Ogun State, Nigeria.
| | - V Emoh-Robinson
- Microbiology Unit, Department of Biological Sciences, Covenant University, Ota, PMB 1023, Ogun State, Nigeria
| | - H F Obamoh-Triumphant
- Microbiology Unit, Department of Biological Sciences, Covenant University, Ota, PMB 1023, Ogun State, Nigeria
| | - Y D Obafemi
- Microbiology Unit, Department of Biological Sciences, Covenant University, Ota, PMB 1023, Ogun State, Nigeria
| | - T T Banjo
- Department of Microbiology, Crawford University, Igbesa, Ogun State, Nigeria
| |
Collapse
|
8
|
Discovery of a novel class of small-molecule antibacterial agents against Staphylococcus aureus. Future Med Chem 2021; 14:299-305. [PMID: 34951320 DOI: 10.4155/fmc-2021-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: With constantly increasing resistance against the known antibiotics, the search for novel antibacterial compounds is a challenge. The number of synthetic antibacterial agents is limited. Materials & methods: We discovered novel small-molecule antibacterial agents that are accessible via a simple two-step procedure. The evaluation against Staphylococcus aureus showed antibacterial effects depending on the substituent positioning at the residues of the molecular scaffold. Additionally, we investigated the potential of the compounds to increase the antibacterial activity of tetracycline. Results: The most effective antibacterial compounds possessed a 3-methoxy function at an aromatic residue. In combination with tetracycline, we found a strong effect for a few compounds in boosting the antibacterial activity, so the first promising lead compounds with dual activities could be identified.
Collapse
|
9
|
Tayeferad M, Boddohi S, Bakhshi B. Dual-responsive nisin loaded chondroitin sulfate nanogel for treatment of bacterial infection in soft tissues. Int J Biol Macromol 2021; 193:166-172. [PMID: 34688678 DOI: 10.1016/j.ijbiomac.2021.10.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/10/2021] [Accepted: 10/16/2021] [Indexed: 01/13/2023]
Abstract
Chondroitin sulfate-Nisin nanogels (CS-N NGs) were prepared by electrostatic interaction for nisin delivery as an antibacterial agent in the treatment of bacterial infections caused by some clinical strains of methicillin-resistant and methicillin-sensitive Staphylococcus aureus (S. aureus). The physical properties of CS-N NGs were evaluated using Fourier-transform infrared spectroscopy, dynamic light scattering, and field emission scanning electron microscopy. The average diameter of obtained CS-N NGs was about 65 nm and the stability of nanogels was assessed by zeta potential measurement. Enzyme and pH-responsibility of CS-N NGs due to the presence of susceptible bonds in chondroitin sulfate resulted in effective and controlled release of nisin in the simulated infectious medium. Also, the ability of prepared CS-N NGs for eradicating clinical methicillin resistance S. aureus strain was confirmed by Broth Microdilution Method (BMD) and the cytotoxicity analysis was carried out on Human Dermal Fibroblast (HDF) cells by MTT assay method. Based on the results, this versatile drug carrier could efficiently deliver the cationic antimicrobial peptides as a natural antibiotic for growth inhibition of methicillin-resistant S. aureus strains and further destroying the bacteria in the treatment of subcutaneous infections caused by methicillin-resistant S. aureus strains.
Collapse
Affiliation(s)
- Mohsen Tayeferad
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Soheil Boddohi
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Khalili H, Najar-Peerayeh S, Mahrooghi M, Mansouri P, Bakhshi B. Methicillin-resistant Staphylococcus aureus colonization of infectious and non-infectious skin and soft tissue lesions in patients in Tehran. BMC Microbiol 2021; 21:282. [PMID: 34657594 PMCID: PMC8521987 DOI: 10.1186/s12866-021-02340-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Background The most common clinical manifestations of Staphylococcus aureus strains in the community are skin and soft-tissue infections. S. aureus could colonize the body sites and complicate the pathogenesis of skin diseases. S. aureus colonization is a risk factor for severe conditions such as bone and joint infections, pneumonia, bacteremia, and endocarditis. This study aimed to investigate the prevalence of S. aureus strains in skin and soft tissue infections and other skin disorders in patients referring to dermatology clinics and to evaluate the antibiotic resistance pattern and molecular characteristics of S. aureus isolates. Methods Skin swabs were collected from the lesional sites in 234 outpatients referring to dermatology clinics in three hospitals in Tehran. Antibiotic susceptibility, biofilm formation, and hemolysis tests were performed for isolates. PCR was done for SCCmec typing, agr grouping, and virulence genes detecting. Results The prevalence of S. aureus strains among patients with skin and soft-tissue infections and other skin lesions was 44.77% (30/67) and 44.91% (75/167), respectively. Also, 59 (56.19%) isolates were MRSA, 35.57% were HA-MRSA, and 30.5% were CA-MRSA. The psmα gene was more prevalent (62.8%) among isolates, followed by hlaα (56.1%), tsst-1 (15.2%) eta (13.3%), etb (6.6%), and pvl (2.8%). The agr specificity groups I, II, III, and IV were identified in 49.5, 21.9, 11.4, and 14.2% of S. aureus isolates, respectively. Most (56%) S. aureus isolates produced a moderate biofilm, and 23.8% of them produced strong biofilms. α-hemolysin (46.6%), β-hemolysin (25.7%), γ-hemolysin (19%), and both α and β-hemolysin (5.7%) were also produced by isolates. Conclusion The present study results indicated high colonization of skin lesions by HA-MRSA and CA-MRSA clones; MRSA strains were more resistant to antibiotics, contained various toxin genes, and were able to form biofilms. Therefore, they could play a vital role in the pathogenesis of various skin diseases; also, they could spread and cause infections in other body sites. Eradication and decolonization strategies could prevent recurrent infections and the spread of resistant strains and improve skin conditions.
Collapse
Affiliation(s)
- Haniyeh Khalili
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahin Najar-Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mona Mahrooghi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parvin Mansouri
- Department of research, Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
11
|
Kehribar L, Coşkun HS, Surucu S, Aydın M, Mahiroğulları M. The Antibacterial Effectiveness of Propolis on Medical Screws. Cureus 2021; 13:e16278. [PMID: 34373824 PMCID: PMC8346270 DOI: 10.7759/cureus.16278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 11/05/2022] Open
Abstract
Background Medical screws are widely used in orthopedic surgery for fracture fixation. The antibacterial effectiveness of propolis is well known. In this study, we aimed to demonstrate the antibacterial effectiveness of medical screws coated with propolis. Methodology Between March 2019 and April 2020, we formed five experimental groups and investigated the antibacterial activities of different amounts of propolis and polymer-coated screws. Staphylococcus aureus was used to determine the antibacterial activity. Carbopol, chosen as the model polymer, was used to improve the adhesion of propolis to the screws. Agar diffusion test of surface-coated screws was used to evaluate the antibacterial effect. Results The mean zone diameters were 24.3 ± 1.1, 23.0 ± 0.8, 21.8 ± 1.6, 19.3 ± 0.6, and 20.2 ± 0.8 mm for IS-7.5, IS-5.0, IS-2.5, IS-P, and IS-P-7.5, respectively. The IS-7.5 group had the most antibacterial activities. The antibacterial activities of the medical screws determined using the agar diffusion method were significantly increased by the propolis coating on the screws. Our results showed that the propolis-coated screws had antibacterial activity against S. aureus. Conclusions As a result, we believe that the combination of gel and propolis is an effective method in increasing the antibacterial resistance of medical screws and preventing the formation of a biofilm layer of microorganisms.
Collapse
Affiliation(s)
- Lokman Kehribar
- Orthopedics and Traumatology, Samsun Gazi State Hospital, Istanbul, TUR
| | - Hüseyin Sina Coşkun
- Orthopaedics and Traumatology, Samsun Ondokuz Mayıs University Faculty of Medicine, Samsun, TUR
| | - Serkan Surucu
- Orthopaedics and Traumatology, Horasan State Hospital, Erzurum, TUR
| | - Mahmud Aydın
- Orthopedics and Traumatology, Haseki Education Research Hospital, Istanbul, TUR
| | | |
Collapse
|
12
|
Batool N, Yoon S, Imdad S, Kong M, Kim H, Ryu S, Lee JH, Chaurasia AK, Kim KK. An Antibacterial Nanorobotic Approach for the Specific Targeting and Removal of Multiple Drug-Resistant Staphylococcus aureus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100257. [PMID: 33838013 DOI: 10.1002/smll.202100257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes diseases ranging from skin infections to lethal sepsis and has become a serious threat to human health due to multiple-drug resistance (MDR). Therefore, a resistance-free antibacterial therapy is necessary to overcome MDR MRSA infections. In this study, an antibacterial nanorobot (Ab-nanobot) is developed wherein a cell wall-binding domain (CBD)-endolysin, acting as a sensor, is covalently conjugated with an actuator consisting of an iron oxide/silica core-shell. The CBD-endolysin sensor shows an excellent specificity to detect, bind, and accumulate on the S. aureus USA300 cell surface even in a bacterial consortium, and in host cell infections. Ab-nanobot specifically captures and kills MRSA in response to medically approved radiofrequency (RF) electromagnetic stimulation (EMS) signal. When Ab-nanobot receives the RF-EMS signal on the cell surface, actuator induces cell death in MRSA with 99.999% removal within 20 min by cell-wall damage via generation of localized heat and reactive oxygen species. The in vivo efficacy of Ab-nanobot is proven using a mice subcutaneous skin infection model. Collectively, this study offers a nanomedical resistance-free strategy to overcome MDR MRSA infections by providing a highly specific nanorobot for S. aureus.
Collapse
Affiliation(s)
- Nayab Batool
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Graduate School of Basic Medical Sciences (GSBMS), Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Seokyoung Yoon
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Saba Imdad
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Graduate School of Basic Medical Sciences (GSBMS), Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Minsuk Kong
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811, South Korea
| | - Hun Kim
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Graduate School of Basic Medical Sciences (GSBMS), Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Akhilesh Kumar Chaurasia
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Graduate School of Basic Medical Sciences (GSBMS), Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Graduate School of Basic Medical Sciences (GSBMS), Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| |
Collapse
|
13
|
Functional Identification of Serine Hydroxymethyltransferase as a Key Gene Involved in Lysostaphin Resistance and Virulence Potential of Staphylococcus aureus Strains. Int J Mol Sci 2020; 21:ijms21239135. [PMID: 33266291 PMCID: PMC7731198 DOI: 10.3390/ijms21239135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
Gaining an insight into the mechanism underlying antimicrobial-resistance development in Staphylococcus aureus is crucial for identifying effective antimicrobials. We isolated S. aureus sequence type 72 from a patient in whom the S. aureus infection was highly resistant to various antibiotics and lysostaphin, but no known resistance mechanisms could explain the mechanism of lysostaphin resistance. Genome-sequencing followed by subtractive and functional genomics revealed that serine hydroxymethyltransferase (glyA or shmT gene) plays a key role in lysostaphin resistance. Serine hydroxymethyltransferase (SHMT) is indispensable for the one-carbon metabolism of serine/glycine interconversion and is linked to folate metabolism. Functional studies revealed the involvement of SHMT in lysostaphin resistance, as ΔshmT was susceptible to the lysostaphin, while complementation of the knockout expressing shmT restored resistance against lysostaphin. In addition, the ΔshmT showed reduced virulence under in vitro (mammalian cell lines infection) and in vivo (wax-worm infection) models. The SHMT inhibitor, serine hydroxymethyltransferase inhibitor 1 (SHIN1), protected the 50% of the wax-worm infected with wild type S. aureus. These results suggest SHMT is relevant to the extreme susceptibility to lysostaphin and the host immune system. Thus, the current study established that SHMT plays a key role in lysostaphin resistance development and in determining the virulence potential of multiple drug-resistant S. aureus.
Collapse
|
14
|
Aćimović M, Zorić M, Zheljazkov VD, Pezo L, Čabarkapa I, Stanković Jeremić J, Cvetković M. Chemical Characterization and Antibacterial Activity of Essential Oil of Medicinal Plants from Eastern Serbia. Molecules 2020; 25:molecules25225482. [PMID: 33238598 PMCID: PMC7700605 DOI: 10.3390/molecules25225482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to evaluate wild growing Satureja kitaibelii, Thymus serpyllum, Origanum vulgare, Achillea millefolium and Achillea clypeolata with respect to their essential oil (EO) content, composition and antimicrobial activity. The five species were collected at Mt. Rtanj and the village of Sesalac, Eastern Serbia. The main EO constituents of Lamiaceae plants were p-cymene (24.4%), geraniol (63.4%) and germacrene D (21.5%) in Satureja kitaibelii, Thymus serpyllum and Origanum vulgare ssp. vulgare, respectively. A. millefolium EO had multiple constituents with major ones being camphor (9.8%), caryophyllene oxide (6.5%), terpinen-4-ol (6.3%) and 1,8-cineole (5.6%), while the main EO constituents of A. clypeolata were 1,8-cineole (45.1%) and camphor (18.2%). Antimicrobial testing of the EO showed that Staphylococcus aureus (Gram-positive) was more sensitive to all of the tested EOs than Escherichia coli (Gram-negative). S. kitaibelii EO showed the highest antimicrobial activity against both tested bacterial strains. This is the first study to characterize the EO composition and antimicrobial activity of these five medicinal species from Eastern Serbia in comparison with comprehensive literature data. The results can be utilized by the perfumery, cosmetics, food and pharmaceutical industries, but also for healing purposes in self-medication.
Collapse
Affiliation(s)
- Milica Aćimović
- Institute of Field and Vegetable Crops Novi Sad, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
- Correspondence:
| | - Miroslav Zorić
- Institute of Field and Vegetable Crops Novi Sad, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| | - Valtcho D. Zheljazkov
- College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, Studentskitrg 12-16, 11000 Belgrade, Serbia;
| | - Ivana Čabarkapa
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Jovana Stanković Jeremić
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (J.S.J.); (M.C.)
| | - Mirjana Cvetković
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (J.S.J.); (M.C.)
| |
Collapse
|
15
|
Principles and practice of antibiotic stewardship in the management of diabetic foot infections. Curr Opin Infect Dis 2020; 32:95-101. [PMID: 30664029 DOI: 10.1097/qco.0000000000000530] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Systemic antibiotic therapy in persons with a diabetic foot infection (DFI) is frequent, increasing the risk of promoting resistance to common pathogens. Applying principles of antibiotic stewardship may help avoid this problem. RECENT FINDINGS We performed a systematic review of the literature, especially seeking recently published studies, for data on the role and value of antibiotic stewardship (especially reducing the spectrum and duration of antibiotic therapy) in community and hospital populations of persons with a DFI. SUMMARY We found very few publications specifically concerning antibiotic stewardship in persons with a DFI. The case-mix of these patients is substantial and infection plays only one part among several chronic problems. As with other types of infections, attempting to prevent infections and avoiding or reducing the spectrum and duration of antibiotic therapy are perhaps the best ways to reduce antibiotic prescribing in the DFI population. The field is complex and necessitates knowledge over the current scientific literature and clinical experience. On a larger scale, clinical pathways, guidelines, and recommendations are additionally supportive.
Collapse
|
16
|
Preiss H, Kriechling P, Montrasio G, Huber T, Janssen İ, Moldovan A, Lipsky BA, Uçkay İ. Oral Flucloxacillin for Treating Osteomyelitis: A Narrative Review of Clinical Practice. J Bone Jt Infect 2020; 5:16-24. [PMID: 32117685 PMCID: PMC7045523 DOI: 10.7150/jbji.40667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/12/2019] [Indexed: 01/05/2023] Open
Abstract
Flucloxacillin (FLU) administered by the oral route is widely used for treating various infections, but there are no published retrospective or prospective trials of its efficacy, or its advantages or disadvantages compared to parenteral treatment or other antibiotics for treating osteomyelitis. Based on published in vitro data and expert opinions, other non-β-lactam oral antibiotics that have better bone penetration are generally preferred over oral FLU. We reviewed the literature for studies of oral FLU as therapy of osteomyelitis (OM), stratified by acute versus chronic and pediatric versus adult cases. In striking contrast to the prevailing opinions and the few descriptive data available, we found that treatment of OM with oral FLU does not appear to be associated with more clinical failures compared to other oral antibiotic agents. Because of its narrow antibiotic spectrum, infrequent severe adverse effects, and low cost, oral FLU is widely used in clinical practice. We therefore call for investigators to conduct prospective trials investigating the effectiveness and potential advantages of oral FLU for treating OM.
Collapse
Affiliation(s)
- Helga Preiss
- Internal Medicine, Baden Hospital, Baden, Switzerland
| | | | | | - Tanja Huber
- Hospital Pharmacy, Balgrist University Hospital, Zurich, Switzerland
| | - İmke Janssen
- Internal Medicine, Zollikerberg Hospital, Zollikon, Switzerland
| | | | - Benjamin A. Lipsky
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - İlker Uçkay
- Infectiology, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
17
|
Lazarte C, Paladino L, Mollo L, Katra R, Isabel BM, Puia SA. Cervicofacial Infections Caused by Staphylococcus aureus. Ann Maxillofac Surg 2019; 9:459-464. [PMID: 31909036 PMCID: PMC6933971 DOI: 10.4103/ams.ams_226_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic pathogen that causes a wide range of diseases. Dissemination of perioral infections is a common problem in the field of oral and maxillofacial surgery. The aim of the study was to evaluate S. aureus carriage in the oral cavity and its dissemination to different cervicofacial regions. Clinical case 1 is a patient with a systemic history of type I diabetes which led to foot amputation one year previou sly, who presented alteration of ocular motility and the culture showed Grampositive cocci compatible with S. aureus. The patient was discharged after eight days of antibiotic therapy and drainage. Clinical case 2 was a young female without any comorbidities who had never been hospitalized before or even exposed to the hospital environment. The presence of lesions compatible with necrotizing fasciitis (NF) in the lower lip mucosal region, rapid evolution of the infection to deep planes, and evolution of the clinical picture alerted health-care providers to the need for prompt care. Clinical case 3 was an immunosuppressed patient with cellulitis which is a bacterial infection of the skin and soft tissues that occurs when the physical barrier of the skin and soft tissues, the immune system, and/or the circulatory system are affected. S. aureus is an opportunistic pathogen which causes a wide range of diseases. It inhabits the oral cavity, from where it can spread to distant cervicofacial regions. This is why it is important for health-care professionals to be aware of this niche in case of dissemination in order to provide prompt diagnosis and appropriate treatment.
Collapse
Affiliation(s)
- Carlos Lazarte
- Chair of Surgery and Traumatology Bucomaxilofacial I, Faculty of Dentistry, University of Buenos Aires, Andress: Marcelo Torcuato de Alvear 2142. Buenos Aires, Argentina
| | - Leonel Paladino
- Chair of Surgery and Traumatology Bucomaxilofacial I, Faculty of Dentistry, University of Buenos Aires, Andress: Marcelo Torcuato de Alvear 2142. Buenos Aires, Argentina
| | - Luciana Mollo
- Chair of Surgery and Traumatology Bucomaxilofacial I, Faculty of Dentistry, University of Buenos Aires, Andress: Marcelo Torcuato de Alvear 2142. Buenos Aires, Argentina
| | - Romina Katra
- Chair of Surgery and Traumatology Bucomaxilofacial I, Faculty of Dentistry, University of Buenos Aires, Andress: Marcelo Torcuato de Alvear 2142. Buenos Aires, Argentina
| | - Brusca María Isabel
- Chair of Surgery and Traumatology Bucomaxilofacial I, Faculty of Dentistry, University of Buenos Aires, Andress: Marcelo Torcuato de Alvear 2142. Buenos Aires, Argentina
| | - Sebastian Ariel Puia
- Chair of Surgery and Traumatology Bucomaxilofacial I, Faculty of Dentistry, University of Buenos Aires, Andress: Marcelo Torcuato de Alvear 2142. Buenos Aires, Argentina
| |
Collapse
|
18
|
Jahan M, Rahman M, Rahman M, Sikder T, Uson-Lopez RA, Selim ASM, Saito T, Kurasaki M. Microbiological safety of street-vended foods in Bangladesh. J Verbrauch Lebensm 2018. [DOI: 10.1007/s00003-018-1174-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|