1
|
Aschmann HE, Domenghino A, Jung R, Ballouz T, Menges D, Fehr J, Puhan MA. SARS-CoV-2 Quarantine Mandated by Contact Tracing: Burden and Infection Rate Among Close Contacts in Zurich, Switzerland, 2020-2021. Int J Public Health 2024; 69:1606221. [PMID: 39380638 PMCID: PMC11458386 DOI: 10.3389/ijph.2024.1606221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
Objectives Before vaccines and effective treatments were available, quarantine of close contacts was important to limit the spread of SARS-CoV-2. To evaluate potential benefits and harms of quarantine, we aimed to estimate infection rates and describe experiences and mental health among persons in mandated quarantine during the early SARS-CoV-2 pandemic. Methods We invited adults in mandated quarantine after an exposure to SARS-CoV-2 identified through contact tracing of the Canton of Zurich, Switzerland, between August 2020 and January 2021. Participants completed two questionnaires and received up to two SARS-CoV-2 polymerase chain reaction tests, during and at the end of quarantine. Results Among 395 participants, quarantine duration ranged from 2 to 20 days. By day 11 since the last contact, 11.1% [95% CI 8.4%-14.7%] were infected with SARS-CoV-2. The proportion of participants with symptoms of depression doubled from 9.3% before quarantine to 18.9% during quarantine, and 12.1% reported quarantine was very or extremely difficult. Conclusion Although quarantine was only moderately burdensome for most participants, some experienced significant difficulties and burden. Policymakers need to balance infection control with potential harms placed on individuals.
Collapse
Affiliation(s)
- Hélène Eloise Aschmann
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Anja Domenghino
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
- Department of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Ruedi Jung
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Tala Ballouz
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Dominik Menges
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Jan Fehr
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Milo Alan Puhan
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Castonguay FM, Borah BF, Jeon S, Rainisch G, Kelso P, Adhikari BB, Daltry DJ, Fischer LS, Greening B, Kahn EB, Kang GJ, Meltzer MI. The public health impact of COVID-19 variants of concern on the effectiveness of contact tracing in Vermont, United States. Sci Rep 2024; 14:17848. [PMID: 39090157 PMCID: PMC11294356 DOI: 10.1038/s41598-024-68634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
Case investigation and contact tracing (CICT) are public health measures that aim to break the chain of pathogen transmission. Changes in viral characteristics of COVID-19 variants have likely affected the effectiveness of CICT programs. We estimated and compared the cases averted in Vermont when the original COVID-19 strain circulated (Nov. 25, 2020-Jan. 19, 2021) with two periods when the Delta strain dominated (Aug. 1-Sept. 25, 2021, and Sept. 26-Nov. 20, 2021). When the original strain circulated, we estimated that CICT prevented 7180 cases (55% reduction in disease burden), compared to 1437 (15% reduction) and 9970 cases (40% reduction) when the Delta strain circulated. Despite the Delta variant being more infectious and having a shorter latency period, CICT remained an effective tool to slow spread of COVID-19; while these viral characteristics did diminish CICT effectiveness, non-viral characteristics had a much greater impact on CICT effectiveness.
Collapse
Affiliation(s)
- François M Castonguay
- National Center for Emerging and Zoonotic Infectious Diseases, Division of Preparedness and Emerging Infections, Health Economics and Modeling Unit, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA.
- Modeling Support Team, Contact Tracing and Innovation Section (CTIS), State Local Tribal and Territorial (STLT) Task Force, CDC COVID-19 Response; Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, GA, USA.
- Department of Health Management, Evaluation and Policy, University of Montreal School of Public Health, and Centre for Public Health Research - CReSP, 7101 Avenue du Parc, 3e étage, Montréal, QC, H3N 1X9, Canada.
| | - Brian F Borah
- Vermont Department of Health, Burlington, USA
- Epidemic Intelligence Service, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Seonghye Jeon
- National Center for Emerging and Zoonotic Infectious Diseases, Division of Preparedness and Emerging Infections, Health Economics and Modeling Unit, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA
- Modeling Support Team, Contact Tracing and Innovation Section (CTIS), State Local Tribal and Territorial (STLT) Task Force, CDC COVID-19 Response; Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, GA, USA
| | - Gabriel Rainisch
- National Center for Emerging and Zoonotic Infectious Diseases, Division of Preparedness and Emerging Infections, Health Economics and Modeling Unit, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA
- Modeling Support Team, Contact Tracing and Innovation Section (CTIS), State Local Tribal and Territorial (STLT) Task Force, CDC COVID-19 Response; Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, GA, USA
| | - Patsy Kelso
- Vermont Department of Health, Burlington, USA
| | - Bishwa B Adhikari
- National Center for Emerging and Zoonotic Infectious Diseases, Division of Preparedness and Emerging Infections, Health Economics and Modeling Unit, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA
- Modeling Support Team, Contact Tracing and Innovation Section (CTIS), State Local Tribal and Territorial (STLT) Task Force, CDC COVID-19 Response; Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, GA, USA
| | | | - Leah S Fischer
- National Center for Emerging and Zoonotic Infectious Diseases, Division of Preparedness and Emerging Infections, Health Economics and Modeling Unit, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA
- Modeling Support Team, Contact Tracing and Innovation Section (CTIS), State Local Tribal and Territorial (STLT) Task Force, CDC COVID-19 Response; Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, GA, USA
| | - Bradford Greening
- National Center for Emerging and Zoonotic Infectious Diseases, Division of Preparedness and Emerging Infections, Health Economics and Modeling Unit, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA
- Modeling Support Team, Contact Tracing and Innovation Section (CTIS), State Local Tribal and Territorial (STLT) Task Force, CDC COVID-19 Response; Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, GA, USA
| | - Emily B Kahn
- National Center for Emerging and Zoonotic Infectious Diseases, Division of Preparedness and Emerging Infections, Health Economics and Modeling Unit, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA
- Modeling Support Team, Contact Tracing and Innovation Section (CTIS), State Local Tribal and Territorial (STLT) Task Force, CDC COVID-19 Response; Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, GA, USA
| | - Gloria J Kang
- National Center for Emerging and Zoonotic Infectious Diseases, Division of Preparedness and Emerging Infections, Health Economics and Modeling Unit, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA
- Modeling Support Team, Contact Tracing and Innovation Section (CTIS), State Local Tribal and Territorial (STLT) Task Force, CDC COVID-19 Response; Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, GA, USA
| | - Martin I Meltzer
- National Center for Emerging and Zoonotic Infectious Diseases, Division of Preparedness and Emerging Infections, Health Economics and Modeling Unit, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA
- Modeling Support Team, Contact Tracing and Innovation Section (CTIS), State Local Tribal and Territorial (STLT) Task Force, CDC COVID-19 Response; Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, GA, USA
| |
Collapse
|
3
|
Zhang D, Ge Y, Wang J, Liu H, Zhang WB, Wu X, B. M. Heuvelink G, Wu C, Yang J, Ruktanonchai NW, Qader SH, Ruktanonchai CW, Cleary E, Yao Y, Liu J, Nnanatu CC, Wesolowski A, Cummings DA, Tatem AJ, Lai S. Optimizing the detection of emerging infections using mobility-based spatial sampling. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION : ITC JOURNAL 2024; 131:103949. [PMID: 38993519 PMCID: PMC11234252 DOI: 10.1016/j.jag.2024.103949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024]
Abstract
Timely and precise detection of emerging infections is imperative for effective outbreak management and disease control. Human mobility significantly influences the spatial transmission dynamics of infectious diseases. Spatial sampling, integrating the spatial structure of the target, holds promise as an approach for testing allocation in detecting infections, and leveraging information on individuals' movement and contact behavior can enhance targeting precision. This study introduces a spatial sampling framework informed by spatiotemporal analysis of human mobility data, aiming to optimize the allocation of testing resources for detecting emerging infections. Mobility patterns, derived from clustering point-of-interest and travel data, are integrated into four spatial sampling approaches at the community level. We evaluate the proposed mobility-based spatial sampling by analyzing both actual and simulated outbreaks, considering scenarios of transmissibility, intervention timing, and population density in cities. Results indicate that leveraging inter-community movement data and initial case locations, the proposed Case Flow Intensity (CFI) and Case Transmission Intensity (CTI)-informed spatial sampling enhances community-level testing efficiency by reducing the number of individuals screened while maintaining a high accuracy rate in infection identification. Furthermore, the prompt application of CFI and CTI within cities is crucial for effective detection, especially in highly contagious infections within densely populated areas. With the widespread use of human mobility data for infectious disease responses, the proposed theoretical framework extends spatiotemporal data analysis of mobility patterns into spatial sampling, providing a cost-effective solution to optimize testing resource deployment for containing emerging infectious diseases.
Collapse
Affiliation(s)
- Die Zhang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences & Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yong Ge
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences & Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Poyang Lake Wetland and Watershed Research Ministry of Education, Jiangxi Normal University, Nanchang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianghao Wang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences & Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Liu
- Ocean Data Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Wen-Bin Zhang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences & Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
| | - Xilin Wu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences & Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gerard B. M. Heuvelink
- ISRIC - World Soil Information, Wageningen, the Netherlands
- Soil Geography and Landscape Group, Wageningen University, Wageningen, the Netherlands
| | - Chaoyang Wu
- University of Chinese Academy of Sciences, Beijing, China
- The Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Juan Yang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Nick W. Ruktanonchai
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
- Population Health Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sarchil H. Qader
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
- Natural Resources Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani 334, Kurdistan Region, Iraq
| | - Corrine W. Ruktanonchai
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
- Population Health Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Eimear Cleary
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
| | - Yongcheng Yao
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
- School of Mathematics and Statistics, Zhengzhou Normal University, Zhengzhou, China
| | - Jian Liu
- Ocean Data Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Chibuzor C. Nnanatu
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Derek A.T. Cummings
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Andrew J. Tatem
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
| | - Shengjie Lai
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
4
|
Meyerowitz EA, Li Y. Review: The Landscape of Antiviral Therapy for COVID-19 in the Era of Widespread Population Immunity and Omicron-Lineage Viruses. Clin Infect Dis 2024; 78:908-917. [PMID: 37949817 PMCID: PMC11487108 DOI: 10.1093/cid/ciad685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023] Open
Abstract
The goals of coronavirus disease 2019 (COVID-19) antiviral therapy early in the pandemic were to prevent severe disease, hospitalization, and death. As these outcomes have become infrequent in the age of widespread population immunity, the objectives have shifted. For the general population, COVID-19-directed antiviral therapy should decrease symptom severity and duration and minimize infectiousness, and for immunocompromised individuals, antiviral therapy should reduce severe outcomes and persistent infection. The increased recognition of virologic rebound following ritonavir-boosted nirmatrelvir (NMV/r) and the lack of randomized controlled trial data showing benefit of antiviral therapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection for standard-risk, vaccinated individuals remain major knowledge gaps. Here, we review data for selected antiviral agents and immunomodulators currently available or in late-stage clinical trials for use in outpatients. We do not review antibody products, convalescent plasma, systemic corticosteroids, IL-6 inhibitors, Janus kinase inhibitors, or agents that lack Food and Drug Administration approval or emergency use authorization or are not appropriate for outpatients.
Collapse
Affiliation(s)
- Eric A Meyerowitz
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Yijia Li
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Zhang D, Ge Y, Wang J, Liu H, Zhang WB, Wu X, Heuvelink GBM, Wu C, Yang J, Ruktanonchai NW, Qader SH, Ruktanonchai CW, Cleary E, Yao Y, Liu J, Nnanatu CC, Wesolowski A, Cummings DA, Tatem AJ, Lai S. Optimizing the detection of emerging infections using mobility-based spatial sampling. RESEARCH SQUARE 2023:rs.3.rs-3597070. [PMID: 38014322 PMCID: PMC10680910 DOI: 10.21203/rs.3.rs-3597070/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Timely and precise detection of emerging infections is crucial for effective outbreak management and disease control. Human mobility significantly influences infection risks and transmission dynamics, and spatial sampling is a valuable tool for pinpointing potential infections in specific areas. This study explored spatial sampling methods, informed by various mobility patterns, to optimize the allocation of testing resources for detecting emerging infections. Methods Mobility patterns, derived from clustering point-of-interest data and travel data, were integrated into four spatial sampling approaches to detect emerging infections at the community level. To evaluate the effectiveness of the proposed mobility-based spatial sampling, we conducted analyses using actual and simulated outbreaks under different scenarios of transmissibility, intervention timing, and population density in cities. Results By leveraging inter-community movement data and initial case locations, the proposed case flow intensity (CFI) and case transmission intensity (CTI)-informed sampling approaches could considerably reduce the number of tests required for both actual and simulated outbreaks. Nonetheless, the prompt use of CFI and CTI within communities is imperative for effective detection, particularly for highly contagious infections in densely populated areas. Conclusions The mobility-based spatial sampling approach can substantially improve the efficiency of community-level testing for detecting emerging infections. It achieves this by reducing the number of individuals screened while maintaining a high accuracy rate of infection identification. It represents a cost-effective solution to optimize the deployment of testing resources, when necessary, to contain emerging infectious diseases in diverse settings.
Collapse
Affiliation(s)
- Die Zhang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences & Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yong Ge
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences & Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Poyang Lake Wetland and Watershed Research Ministry of Education, Jiangxi Normal University, Nanchang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianghao Wang
- Key Laboratory of Poyang Lake Wetland and Watershed Research Ministry of Education, Jiangxi Normal University, Nanchang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Liu
- Ocean Data Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Wen-Bin Zhang
- Key Laboratory of Poyang Lake Wetland and Watershed Research Ministry of Education, Jiangxi Normal University, Nanchang, China
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
| | - Xilin Wu
- Key Laboratory of Poyang Lake Wetland and Watershed Research Ministry of Education, Jiangxi Normal University, Nanchang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gerard B. M. Heuvelink
- ISRIC - World Soil Information, Wageningen, the Netherlands
- Soil Geography and Landscape Group, Wageningen University, Wageningen, the Netherlands
| | - Chaoyang Wu
- University of Chinese Academy of Sciences, Beijing, China
- The Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Juan Yang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Nick W. Ruktanonchai
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
- Population Health Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sarchil H. Qader
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
- Natural Resources Department, College of Agricultural Engineering Sciences, University of Sulaimani; Sulaimani 334, Kurdistan Region, Iraq
| | - Corrine W. Ruktanonchai
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
- Population Health Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Eimear Cleary
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
| | - Yongcheng Yao
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
- School of Mathematics and Statistics, Zhengzhou Normal University, Zhengzhou, China
| | - Jian Liu
- Ocean Data Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Chibuzor C. Nnanatu
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Derek A.T. Cummings
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Andrew J. Tatem
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
| | - Shengjie Lai
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
6
|
Xu X, Wu Y, Kummer AG, Zhao Y, Hu Z, Wang Y, Liu H, Ajelli M, Yu H. Assessing changes in incubation period, serial interval, and generation time of SARS-CoV-2 variants of concern: a systematic review and meta-analysis. BMC Med 2023; 21:374. [PMID: 37775772 PMCID: PMC10541713 DOI: 10.1186/s12916-023-03070-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND After the first COVID-19 wave caused by the ancestral lineage, the pandemic has been fueled from the continuous emergence of new SARS-CoV-2 variants. Understanding key time-to-event periods for each emerging variant of concern is critical as it can provide insights into the future trajectory of the virus and help inform outbreak preparedness and response planning. Here, we aim to examine how the incubation period, serial interval, and generation time have changed from the ancestral SARS-CoV-2 lineage to different variants of concern. METHODS We conducted a systematic review and meta-analysis that synthesized the estimates of incubation period, serial interval, and generation time (both realized and intrinsic) for the ancestral lineage, Alpha, Beta, and Omicron variants of SARS-CoV-2. RESULTS Our study included 280 records obtained from 147 household studies, contact tracing studies, or studies where epidemiological links were known. With each emerging variant, we found a progressive shortening of each of the analyzed key time-to-event periods, although we did not find statistically significant differences between the Omicron subvariants. We found that Omicron BA.1 had the shortest pooled estimates for the incubation period (3.49 days, 95% CI: 3.13-4.86 days), Omicron BA.5 for the serial interval (2.37 days, 95% CI: 1.71-3.04 days), and Omicron BA.1 for the realized generation time (2.99 days, 95% CI: 2.48-3.49 days). Only one estimate for the intrinsic generation time was available for Omicron subvariants: 6.84 days (95% CrI: 5.72-8.60 days) for Omicron BA.1. The ancestral lineage had the highest pooled estimates for each investigated key time-to-event period. We also observed shorter pooled estimates for the serial interval compared to the incubation period across the virus lineages. When pooling the estimates across different virus lineages, we found considerable heterogeneities (I2 > 80%; I2 refers to the percentage of total variation across studies that is due to heterogeneity rather than chance), possibly resulting from heterogeneities between the different study populations (e.g., deployed interventions, social behavior, demographic characteristics). CONCLUSIONS Our study supports the importance of conducting contact tracing and epidemiological investigations to monitor changes in SARS-CoV-2 transmission patterns. Our findings highlight a progressive shortening of the incubation period, serial interval, and generation time, which can lead to epidemics that spread faster, with larger peak incidence, and harder to control. We also consistently found a shorter serial interval than incubation period, suggesting that a key feature of SARS-CoV-2 is the potential for pre-symptomatic transmission. These observations are instrumental to plan for future COVID-19 waves.
Collapse
Affiliation(s)
- Xiangyanyu Xu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yanpeng Wu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Allisandra G Kummer
- Laboratory of Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Yuchen Zhao
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Zexin Hu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yan Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Hengcong Liu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Marco Ajelli
- Laboratory of Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA.
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Wang C, Huang X, Lau EHY, Cowling BJ, Tsang TK. Association Between Population-Level Factors and Household Secondary Attack Rate of SARS-CoV-2: A Systematic Review and Meta-analysis. Open Forum Infect Dis 2023; 10:ofac676. [PMID: 36655186 PMCID: PMC9835764 DOI: 10.1093/ofid/ofac676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Background Accurate estimation of household secondary attack rate (SAR) is crucial to understand the transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The impact of population-level factors, such as transmission intensity in the community, on SAR estimates is rarely explored. Methods In this study, we included articles with original data to compute the household SAR. To determine the impact of transmission intensity in the community on household SAR estimates, we explored the association between SAR estimates and the incidence rate of cases by country during the study period. Results We identified 163 studies to extract data on SARs from 326 031 cases and 2 009 859 household contacts. The correlation between the incidence rate of cases during the study period and SAR estimates was 0.37 (95% CI, 0.24-0.49). We found that doubling the incidence rate of cases during the study period was associated with a 1.2% (95% CI, 0.5%-1.8%) higher household SAR. Conclusions Our findings suggest that the incidence rate of cases during the study period is associated with higher SAR. Ignoring this factor may overestimate SARs, especially for regions with high incidences, which further impacts control policies and epidemiological characterization of emerging variants.
Collapse
Affiliation(s)
- Can Wang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaotong Huang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Eric H Y Lau
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Tim K Tsang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| |
Collapse
|
8
|
Madewell ZJ, Yang Y, Longini IM, Halloran ME, Dean NE. Household Secondary Attack Rates of SARS-CoV-2 by Variant and Vaccination Status: An Updated Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5:e229317. [PMID: 35482308 PMCID: PMC9051991 DOI: 10.1001/jamanetworkopen.2022.9317] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 12/25/2022] Open
Abstract
Importance An overall household secondary attack rate (SAR) of 18.9% (95% CI, 16.2%-22.0%) through June 17, 2021 was previously reported for SARS-CoV-2. Emerging variants of concern and increased vaccination have affected transmission rates. Objective To evaluate how reported household SARs changed over time and whether SARs varied by viral variant and index case and contact vaccination status. Data Sources PubMed and medRxiv from June 18, 2021, through March 8, 2022, and reference lists of eligible articles. Preprints were included. Study Selection Articles with original data reporting the number of infected and total number of household contacts. Search terms included SARS-CoV-2, COVID-19, variant, vaccination, secondary attack rate, secondary infection rate, household, index case, family contacts, close contacts, and family transmission. Data Extraction and Synthesis The Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guideline was followed. Meta-analyses used generalized linear mixed models to obtain SAR estimates and 95% CIs. Main Outcomes and Measures SAR stratified by covariates according to variant, index case and contact vaccination status, and index case identification period. SARs were used to estimate vaccine effectiveness on the basis of the transmission probability for susceptibility to infection (VES,p), infectiousness given infection (VEI,p), and total vaccine effectiveness (VET,p). Results Household SARs were higher for 33 studies with midpoints in 2021 to 2022 (37.3%; 95% CI, 32.7% to 42.1%) compared with 63 studies with midpoints through April 2020 (15.5%; 95% CI, 13.2% to 18.2%). Household SARs were 42.7% (95% CI, 35.4% to 50.4%) for Omicron (7 studies), 36.4% (95% CI, 33.4% to 39.5%) for Alpha (11 studies), 29.7% (95% CI, 23.0% to 37.3%) for Delta (16 studies), and 22.5% (95% CI, 18.6% to 26.8%) for Beta (3 studies). For full vaccination, VES,p was 78.6% (95% CI, 76.0% to 80.9%) for Alpha, 56.4% (95% CI, 54.6% to 58.1%) for Delta, and 18.1% (95% CI, -18.3% to 43.3%) for Omicron; VEI,p was 75.3% (95% CI, 69.9% to 79.8%) for Alpha, 21.9% (95% CI, 11.0% to 31.5%) for Delta, and 18.2% (95% CI, 0.6% to 32.6%) for Omicron; and VET,p was 94.7% (95% CI, 93.3% to 95.8%) for Alpha, 64.4% (95% CI, 58.0% to 69.8%) for Delta, and 35.8% (95% CI, 13.0% to 52.6%) for Omicron. Conclusions and Relevance These results suggest that emerging SARS-CoV-2 variants of concern have increased transmissibility. Full vaccination was associated with reductions in susceptibility and infectiousness, but more so for Alpha than Delta and Omicron. The changes in estimated vaccine effectiveness underscore the challenges of developing effective vaccines concomitant with viral evolution.
Collapse
Affiliation(s)
| | - Yang Yang
- Department of Biostatistics, University of Florida, Gainesville
| | - Ira M. Longini
- Department of Biostatistics, University of Florida, Gainesville
| | - M. Elizabeth Halloran
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle
| | - Natalie E. Dean
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia
| |
Collapse
|