1
|
Boardman ER, Palmer T, Alcock F. Interbacterial competition mediated by the type VIIb secretion system. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001420. [PMID: 38116759 PMCID: PMC10765036 DOI: 10.1099/mic.0.001420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Successful occupancy of a given niche requires the colonising bacteria to interact extensively with the biotic and abiotic environment, including other resident microbes. Bacteria have evolved a range of protein secretion machines for this purpose with eleven such systems identified to date. The type VIIb secretion system (T7SSb) is utilised by Bacillota to secrete a range of protein substrates, including antibacterial toxins targeting closely related strains, and the system as a whole has been implicated in a range of activities such as iron acquisition, intercellular signalling, host colonisation and virulence. This review covers the components and secretion mechanism of the T7SSb, the substrates of these systems and their roles in Gram-positive bacteria, with a focus on interbacterial competition.
Collapse
Affiliation(s)
- Eleanor R. Boardman
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Felicity Alcock
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
2
|
Within-Host Adaptation of Staphylococcus aureus in a Bovine Mastitis Infection Is Associated with Increased Cytotoxicity. Int J Mol Sci 2021; 22:ijms22168840. [PMID: 34445550 PMCID: PMC8396210 DOI: 10.3390/ijms22168840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
Within-host adaptation is a typical feature of chronic, persistent Staphylococcus aureus infections. Research projects addressing adaptive changes due to bacterial in-host evolution increase our understanding of the pathogen’s strategies to survive and persist for a long time in various hosts such as human and bovine. In this study, we investigated the adaptive processes of S. aureus during chronic, persistent bovine mastitis using a previously isolated isogenic strain pair from a dairy cow with chronic, subclinical mastitis, in which the last variant (host-adapted, Sigma factor SigB-deficient) quickly replaced the initial, dominant variant. The strain pair was cultivated under specific in vitro infection-relevant growth-limiting conditions (iron-depleted RPMI under oxygen limitation). We used a combinatory approach of surfaceomics, molecular spectroscopic fingerprinting and in vitro phenotypic assays. Cellular cytotoxicity assays using red blood cells and bovine mammary epithelial cells (MAC-T) revealed changes towards a more cytotoxic phenotype in the host-adapted isolate with an increased alpha-hemolysin (α-toxin) secretion, suggesting an improved capacity to penetrate and disseminate the udder tissue. Our results foster the hypothesis that within-host evolved SigB-deficiency favours extracellular persistence in S. aureus infections. Here, we provide new insights into one possible adaptive strategy employed by S. aureus during chronic, bovine mastitis, and we emphasise the need to analyse genotype–phenotype associations under different infection-relevant growth conditions.
Collapse
|
3
|
Abstract
The type VII protein secretion system (T7SS) of Staphylococcus aureus is encoded at the ess locus. T7 substrate recognition and protein transport are mediated by EssC, a membrane-bound multidomain ATPase. Four EssC sequence variants have been identified across S. aureus strains, each accompanied by a specific suite of substrate proteins. The ess genes are upregulated during persistent infection, and the secretion system contributes to virulence in disease models. It also plays a key role in intraspecies competition, secreting nuclease and membrane-depolarizing toxins that inhibit the growth of strains lacking neutralizing immunity proteins. A genomic survey indicates that the T7SS is widely conserved across staphylococci and is encoded in clusters that contain diverse arrays of toxin and immunity genes. The presence of genomic islands encoding multiple immunity proteins in species such as Staphylococcus warneri that lack the T7SS points to a major role for the secretion system in bacterial antagonism. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lisa Bowman
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom; ,
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom; ,
| |
Collapse
|
4
|
Within-host evolution of bovine Staphylococcus aureus selects for a SigB-deficient pathotype characterized by reduced virulence but enhanced proteolytic activity and biofilm formation. Sci Rep 2019; 9:13479. [PMID: 31530887 PMCID: PMC6748969 DOI: 10.1038/s41598-019-49981-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a major cause of bovine mastitis, commonly leading to long-lasting, persistent and recurrent infections. Thereby, S. aureus constantly refines and permanently adapts to the bovine udder environment. In this work, we followed S. aureus within-host adaptation over the course of three months in a naturally infected dairy cattle with chronic, subclinical mastitis. Whole genome sequence analysis revealed a complete replacement of the initial predominant variant by another isogenic variant. We report for the first time within-host evolution towards a sigma factor SigB-deficient pathotype in S. aureus bovine mastitis, associated with a single nucleotide polymorphism in rsbU (G368A → G122D), a contributor to SigB-functionality. The emerged SigB-deficient pathotype exhibits a substantial shift to new phenotypic traits comprising strong proteolytic activity and poly-N-acetylglucosamine (PNAG)-based biofilm production. This possibly unlocks new nutritional resources and promotes immune evasion, presumably facilitating extracellular persistence within the host. Moreover, we observed an adaptation towards attenuated virulence using a mouse infection model. This study extends the role of sigma factor SigB in S. aureus pathogenesis, so far described to be required for intracellular persistence during chronic infections. Our findings suggest that S. aureus SigB-deficiency is an alternative mechanism for persistence and underpin the clinical relevance of staphylococcal SigB-deficient variants which are consistently isolated during human chronic infections.
Collapse
|
5
|
Jenul C, Horswill AR. Regulation of Staphylococcus aureus Virulence. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0031-2018. [PMID: 30953424 PMCID: PMC6452892 DOI: 10.1128/microbiolspec.gpp3-0031-2018] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive opportunistic pathogen that has evolved a complex regulatory network to control virulence. One of the main functions of this interconnected network is to sense various environmental cues and respond by altering the production of virulence factors necessary for survival in the host, including cell surface adhesins and extracellular enzymes and toxins. Of these S. aureus regulatory systems, one of the best studied is the accessory gene regulator (agr), which is a quorum-sensing system that senses the local concentration of a cyclic peptide signaling molecule. This system allows S. aureus to sense its own population density and translate this information into a specific gene expression pattern. Besides agr, this pathogen uses other two-component systems to sense specific cues and coordinates responses with cytoplasmic regulators of the SarA protein family and alternative sigma factors. These divergent regulatory systems integrate the various environmental and host-derived signals into a network that ensures optimal pathogen response to the changing conditions. This article gives an overview of the most important and best-studied S. aureus regulatory systems and summarizes the functions of these regulators during host interactions. The regulatory systems discussed include the agr quorum-sensing system; the SaeRS, SrrAB, and ArlRS two-component systems, the cytoplasmic SarA-family regulators (SarA, Rot, and MgrA); and the alternative sigma factors (SigB and SigH).
Collapse
Affiliation(s)
- Christian Jenul
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
6
|
Resilience in the Face of Uncertainty: Sigma Factor B Fine-Tunes Gene Expression To Support Homeostasis in Gram-Positive Bacteria. Appl Environ Microbiol 2016; 82:4456-4469. [PMID: 27208112 DOI: 10.1128/aem.00714-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gram-positive bacteria are ubiquitous and diverse microorganisms that can survive and sometimes even thrive in continuously changing environments. The key to such resilience is the ability of members of a population to respond and adjust to dynamic conditions in the environment. In bacteria, such responses and adjustments are mediated, at least in part, through appropriate changes in the bacterial transcriptome in response to the conditions encountered. Resilience is important for bacterial survival in diverse, complex, and rapidly changing environments and requires coordinated networks that integrate individual, mechanistic responses to environmental cues to enable overall metabolic homeostasis. In many Gram-positive bacteria, a key transcriptional regulator of the response to changing environmental conditions is the alternative sigma factor σ(B) σ(B) has been characterized in a subset of Gram-positive bacteria, including the genera Bacillus, Listeria, and Staphylococcus Recent insight from next-generation-sequencing results indicates that σ(B)-dependent regulation of gene expression contributes to resilience, i.e., the coordination of complex networks responsive to environmental changes. This review explores contributions of σ(B) to resilience in Bacillus, Listeria, and Staphylococcus and illustrates recently described regulatory functions of σ(B).
Collapse
|
7
|
Steenackers HP, Parijs I, Dubey A, Foster KR, Vanderleyden J. Experimental evolution in biofilm populations. FEMS Microbiol Rev 2016; 40:373-97. [PMID: 26895713 PMCID: PMC4852284 DOI: 10.1093/femsre/fuw002] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2016] [Indexed: 12/19/2022] Open
Abstract
Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. This review paper provides an overview of (i) the different experimental models used to study biofilm evolution, (ii) the vast amount of diversification observed during biofilm evolution (including potential causes and consequences) and (iii) recent insights in how growth in biofilms can lead to the evolution of cooperative phenotypes.
Collapse
Affiliation(s)
- Hans P Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven 3001, Belgium
| | - Ilse Parijs
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven 3001, Belgium
| | | | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford OX1 3QU, UK
| | - Jozef Vanderleyden
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven 3001, Belgium
| |
Collapse
|
8
|
Andrey DO, Jousselin A, Villanueva M, Renzoni A, Monod A, Barras C, Rodriguez N, Kelley WL. Impact of the Regulators SigB, Rot, SarA and sarS on the Toxic Shock Tst Promoter and TSST-1 Expression in Staphylococcus aureus. PLoS One 2015; 10:e0135579. [PMID: 26275216 PMCID: PMC4537247 DOI: 10.1371/journal.pone.0135579] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/24/2015] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is an important pathogen manifesting virulence through diverse disease forms, ranging from acute skin infections to life-threatening bacteremia or systemic toxic shock syndromes. In the latter case, the prototypical superantigen is TSST-1 (Toxic Shock Syndrome Toxin 1), encoded by tst(H), and carried on a mobile genetic element that is not present in all S. aureus strains. Transcriptional regulation of tst is only partially understood. In this study, we dissected the role of sarA, sarS (sarH1), RNAIII, rot, and the alternative stress sigma factor sigB (σB). By examining tst promoter regulation predominantly in the context of its native sequence within the SaPI1 pathogenicity island of strain RN4282, we discovered that σB emerged as a particularly important tst regulator. We did not detect a consensus σB site within the tst promoter, and thus the effect of σB is likely indirect. We found that σB strongly repressed the expression of the toxin via at least two distinct regulatory pathways dependent upon sarA and agr. Furthermore rot, a member of SarA family, was shown to repress tst expression when overexpressed, although its deletion had no consistent measurable effect. We could not find any detectable effect of sarS, either by deletion or overexpression, suggesting that this regulator plays a minimal role in TSST-1 expression except when combined with disruption of sarA. Collectively, our results extend our understanding of complex multifactorial regulation of tst, revealing several layers of negative regulation. In addition to environmental stimuli thought to impact TSST-1 production, these findings support a model whereby sporadic mutation in a few key negative regulators can profoundly affect and enhance TSST-1 expression.
Collapse
Affiliation(s)
- Diego O. Andrey
- Service of Infectious Diseases, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, CH-1211 Geneva 14, Switzerland
| | - Ambre Jousselin
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, CH-1211 Geneva, Switzerland
| | - Maite Villanueva
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, CH-1211 Geneva, Switzerland
| | - Adriana Renzoni
- Service of Infectious Diseases, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, CH-1211 Geneva 14, Switzerland
| | - Antoinette Monod
- Service of Infectious Diseases, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, CH-1211 Geneva 14, Switzerland
| | - Christine Barras
- Service of Infectious Diseases, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, CH-1211 Geneva 14, Switzerland
| | - Natalia Rodriguez
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, CH-1211 Geneva, Switzerland
| | - William L. Kelley
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, CH-1211 Geneva, Switzerland
- * E-mail:
| |
Collapse
|
9
|
Lee HI, Lee SK, Kwon YM, Song YS. Antibacterial Effect of Haedokgeumhwa-san against Methicillin-Resistant Staphylococcus aureus. ACTA ACUST UNITED AC 2015. [DOI: 10.18325/jkmr.2015.25.2.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Teethaisong Y, Autarkool N, Sirichaiwetchakoon K, Krubphachaya P, Kupittayanant S, Eumkeb G. Synergistic activity and mechanism of action of Stephania suberosa Forman extract and ampicillin combination against ampicillin-resistant Staphylococcus aureus. J Biomed Sci 2014; 21:90. [PMID: 25208614 PMCID: PMC4428530 DOI: 10.1186/s12929-014-0090-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/27/2014] [Indexed: 12/22/2022] Open
Abstract
Background Ampicillin-resistant S. aureus (ARSA) now poses a serious problem for hospitalized patients, and their care providers. Plant-derived antibacterial that can reverse the resistance to well-tried agents which have lost their original effectiveness are the research objectives of far reaching importance. To this aim, the present study investigated antibacterial and synergistic activities of Stephania suberosa extracts (SSE) against ARSA when used singly and in combination with ampicillin. Results The majority chemical compounds of SSE were alkaloid (526.27 ± 47.27 mg/1 g of dried extract). The Minimum inhibitory concentration (MICs) for ampicillin and SSE against all ARSA strains were >512 μg/ml and 4 mg/ml, respectively. Checkerboard assay revealed synergistic activity in the combination of ampicillin (0.15 μg/ml) and SSE (2 mg/ml) at fractional inhibitory concentration index (FICI) <0.5. The killing curve assay had confirmed that the viability of ARSA was dramatically reduced from 5x105 cfu/ml to 103 cfu/ml within 6 h after exposure to SSE (2 mg/ml) plus ampicillin (0.15 μg/ml) combination. Electron microscopic study clearly revealed that these ARSA cells treated with this combination caused marked morphological damage, peptidoglycan and cytoplasmic membrane damage, and average cell areas significant smaller than control. Obviously, Immunofluorescence staining and confocal microscopic images confirmed that the peptidoglycan of these cells were undoubtedly disrupted by this combination. Furthermore, the CM permeability of ARSA was also increased by this combination. Enzyme assay demonstrated that SSE had an inhibitory activity against β-lactamase in concentrations manner. Conclusions So, these findings provide evidence that SSE has the high potential to reverse bacterial resistance to originate traditional drug susceptibility of it and may relate to three modes of actions of SSE: (1) inhibits peptidoglycan synthesis, resulting in morphological damage, (2) inhibits β-lactamases activity, and (3) increases CM permeability. It is widely recognized that many types of drugs are derived from alkaloids. So, this SSE offers the prominent potential to develop a novel adjunct phytopharmaceutical to ampicillin for the treatment of ARSA. Further active ingredients study, toxicity of it, and the synergistic effect on blood and tissue should be performed and confirmed in an animal test or in humans.
Collapse
Affiliation(s)
- Yothin Teethaisong
- School of Pharmacology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 3000, Thailand.
| | - Nongluk Autarkool
- School of Pharmacology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 3000, Thailand.
| | - Kittipot Sirichaiwetchakoon
- School of Pharmacology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 3000, Thailand.
| | - Pongrit Krubphachaya
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 3000, Thailand.
| | - Sajeera Kupittayanant
- School of Physiology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 3000, Thailand.
| | - Griangsak Eumkeb
- School of Pharmacology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 3000, Thailand.
| |
Collapse
|
11
|
Koch G, Yepes A, Förstner KU, Wermser C, Stengel ST, Modamio J, Ohlsen K, Foster KR, Lopez D. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell 2014; 158:1060-1071. [PMID: 25171407 PMCID: PMC4163622 DOI: 10.1016/j.cell.2014.06.046] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/28/2014] [Accepted: 06/23/2014] [Indexed: 01/02/2023]
Abstract
Antibiotic resistance is a key medical concern, with antibiotic use likely being an important cause. However, here we describe an alternative route to clinically relevant antibiotic resistance that occurs solely due to competitive interactions among bacterial cells. We consistently observe that isolates of Methicillin-resistant Staphylococcus aureus diversify spontaneously into two distinct, sequentially arising strains. The first evolved strain outgrows the parent strain via secretion of surfactants and a toxic bacteriocin. The second is resistant to the bacteriocin. Importantly, this second strain is also resistant to intermediate levels of vancomycin. This so-called VISA (vancomycin-intermediate S. aureus) phenotype is seen in many hard-to-treat clinical isolates. This strain diversification also occurs during in vivo infection in a mouse model, which is consistent with the fact that both coevolved phenotypes resemble strains commonly found in clinic. Our study shows how competition between coevolving bacterial strains can generate antibiotic resistance and recapitulate key clinical phenotypes.
Collapse
Affiliation(s)
- Gudrun Koch
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
| | - Ana Yepes
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
| | - Konrad U Förstner
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Charlotte Wermser
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
| | - Stephanie T Stengel
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
| | - Jennifer Modamio
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford OX1 3QU, UK; Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford OX1 3QU, UK
| | - Daniel Lopez
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany.
| |
Collapse
|
12
|
Pförtner H, Burian MS, Michalik S, Depke M, Hildebrandt P, Dhople VM, Pané-Farré J, Hecker M, Schmidt F, Völker U. Activation of the alternative sigma factor SigB of Staphylococcus aureus following internalization by epithelial cells – An in vivo proteomics perspective. Int J Med Microbiol 2014; 304:177-87. [DOI: 10.1016/j.ijmm.2013.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
13
|
Mun SH, Joung DK, Kim YS, Kang OH, Kim SB, Seo YS, Kim YC, Lee DS, Shin DW, Kweon KT, Kwon DY. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:714-8. [PMID: 23537748 DOI: 10.1016/j.phymed.2013.02.006] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/20/2012] [Accepted: 02/19/2013] [Indexed: 05/23/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) are spread among infected patients, with infection rates increasing at an alarming rate. Furthermore, increased resistance to antibiotics has resulted in serious challenges in the treatment of infectious diseases worldwide. Under the selection pressure of exposure to antibiotics, microorganisms evolve to survive against the new conditions imposed by therapy. Therefore, there exists a need to develop alternative natural or combination drug therapies. Curcumin (CCM), a natural polyphenolic flavonoid isolated from the rhizome of a plant, Curcuma longa Linné., has been found to possess many beneficial biological activities. The aim of this study was to investigate the synergistic effect of curcumin and antibiotics as well as to determine the antibacterial activity of CCM against specific MRSA strains. The antibacterial activity of CCM was assessed by the broth microdilution method (by calculating the minimal inhibitory concentration [MIC]), checkerboard dilution test, and time-kill assay. Antimicrobial activity of CCM was observed against all tested strains. The MICs of CCM against 10 strains of S. aureus ranged from 125 to 250 μg/ml. In the checkerboard test, CCM markedly reduced the MICs of the antibiotics oxacillin (OXI), ampicillin (AMP), ciprofloxacin (CIP), and norfloxacin (NOR) used against MRSA. The time-kill curves showed that a combined CCM and OXI treatment reduced the bacterial counts below the lowest detectable limit after 24h. This study suggested that CCM reduced the MICs of several antibiotics tested, notably of OXI, AMP, CIP, and NOR, and that CCM in combination with antibiotics could lead to the development of new combination of antibiotics against MRSA infection.
Collapse
Affiliation(s)
- Su-Hyun Mun
- College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Jeonbuk 570-749, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Quereda JJ, Pucciarelli MG, Botello-Morte L, Calvo E, Carvalho F, Bouchier C, Vieira A, Mariscotti JF, Chakraborty T, Cossart P, Hain T, Cabanes D, García-Del Portillo F. Occurrence of mutations impairing sigma factor B (SigB) function upon inactivation of Listeria monocytogenes genes encoding surface proteins. MICROBIOLOGY-SGM 2013; 159:1328-1339. [PMID: 23657685 DOI: 10.1099/mic.0.067744-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteria of the genus Listeria contain the largest family of LPXTG surface proteins covalently anchored to the peptidoglycan. The extent to which these proteins may function or be regulated cooperatively is at present unknown. Because of their unique cellular location, we reasoned that distinct LPXTG proteins could act as elements contributing to cell wall homeostasis or influencing the stability of other surface proteins bound to peptidoglycan. To test this hypothesis, we used proteomics to analyse mutants of the intracellular pathogen Listeria monocytogenes lacking distinct LPXTG proteins implicated in pathogen-host interactions, such as InlA, InlF, InlG, InlH, InlJ, LapB and Vip. Changes in the cell wall proteome were found in inlG and vip mutants, which exhibited reduced levels of the LPXTG proteins InlH, Lmo0610, Lmo0880 and Lmo2085, all regulated by the stress-related sigma factor SigB. The ultimate basis of this alteration was uncovered by genome sequencing, which revealed that these inlG and vip mutants carried loss-of-function mutations in the rsbS, rsbU and rsbV genes encoding regulatory proteins that control SigB activity. Attempts to recapitulate this negative selection of SigB in a large series of new inlG or vip mutants constructed for this purpose were, however, unsuccessful. These results indicate that inadvertent secondary mutations affecting SigB functionality can randomly arise in L. monocytogenes when using common genetic procedures or during subculturing. Testing of SigB activity could be therefore valuable when manipulating genetically L. monocytogenes prior to any subsequent phenotypic analysis. This test may be even more justified when generating deletions affecting cell envelope components.
Collapse
Affiliation(s)
- Juan J Quereda
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - M Graciela Pucciarelli
- Departamento de Biología Molecular, Universidad Autónoma de Madrid. Centro de Biología Molecular 'Severo Ochoa' (CBMSO-CSIC), 28049 Madrid, Spain.,Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Laura Botello-Morte
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Enrique Calvo
- Unidad de Proteómica, Centro Nacional Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Filipe Carvalho
- Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Christiane Bouchier
- Institut Pasteur, Plate-forme PF1 Génomique, Département Génomes et Génétique, Paris, France
| | - Ana Vieira
- Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Javier F Mariscotti
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, D-35392, Germany
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut National de la Santé et de la Recherche Médicale (INSERM) U604, Institut Pasteur, and the Institut Scientifique de Recherche Agronomique (INRA) USC2020, Institut Pasteur, Paris F-75015, France
| | - Torsten Hain
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, D-35392, Germany
| | - Didier Cabanes
- Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
15
|
Savage VJ, Chopra I, O’Neill AJ. Population diversification in Staphylococcus aureus biofilms may promote dissemination and persistence. PLoS One 2013; 8:e62513. [PMID: 23646129 PMCID: PMC3640034 DOI: 10.1371/journal.pone.0062513] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/21/2013] [Indexed: 12/26/2022] Open
Abstract
The biofilm mode of growth can lead to diversification of the bacterial population by promoting the emergence of variants. Here we report the identification and characterization of two major subpopulations of morphological variants arising in biofilms of S. aureus. One of these lacked pigmentation (termed white variants; WVs), whilst the other formed colonies on agar that were larger and paler than the parental strain (termed large pale variants; LPVs). WVs were unable to form biofilms, and exhibited increased proteolysis and haemolysis; all phenotypes attributable to loss-of-function mutations identified in the gene encoding the alternative sigma factor, sigB. For LPVs, no differences in biofilm forming capacity or proteolysis were observed compared with the parental strain. Genetic analysis of LPVs revealed that they had undergone mutation in the accessory gene regulator system (agrA), and deficiency in agr was confirmed by demonstrating loss of both colony spreading and haemolytic activity. The observation that S. aureus biofilms elaborate large subpopulations of sigB and agr mutants, both genotypes that have independently been shown to be of importance in staphylococcal disease, has implications for our understanding of staphylococcal infections involving a biofilm component.
Collapse
Affiliation(s)
- Victoria J. Savage
- Antimicrobial Research Centre, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Ian Chopra
- Antimicrobial Research Centre, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Alex J. O’Neill
- Antimicrobial Research Centre, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Perturbation of Staphylococcus aureus gene expression by the enoyl-acyl carrier protein reductase inhibitor AFN-1252. Antimicrob Agents Chemother 2013; 57:2182-90. [PMID: 23459481 DOI: 10.1128/aac.02307-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study examines the alteration in Staphylococcus aureus gene expression following treatment with the type 2 fatty acid synthesis inhibitor AFN-1252. An Affymetrix array study showed that AFN-1252 rapidly increased the expression of fatty acid synthetic genes and repressed the expression of virulence genes controlled by the SaeRS 2-component regulator in exponentially growing cells. AFN-1252 did not alter virulence mRNA levels in a saeR deletion strain or in strain Newman expressing a constitutively active SaeS kinase. AFN-1252 caused a more pronounced increase in fabH mRNA levels in cells entering stationary phase, whereas the depression of virulence factor transcription was attenuated. The effect of AFN-1252 on gene expression in vivo was determined using a mouse subcutaneous granuloma infection model. AFN-1252 was therapeutically effective, and the exposure (area under the concentration-time curve from 0 to 48 h [AUC(0-48)]) of AFN-1252 in the pouch fluid was comparable to the plasma levels in orally dosed animals. The inhibition of fatty acid biosynthesis by AFN-1252 in the infected pouches was signified by the substantial and sustained increase in fabH mRNA levels in pouch-associated bacteria, whereas depression of virulence factor mRNA levels in the AFN-1252-treated pouch bacteria was not as evident as it was in exponentially growing cells in vitro. The trends in fabH and virulence factor gene expression in the animal were similar to those in slower-growing bacteria in vitro. These data indicate that the effects of AFN-1252 on virulence factor gene expression depend on the physiological state of the bacteria.
Collapse
|
17
|
McAdam PR, Holmes A, Templeton KE, Fitzgerald JR. Adaptive evolution of Staphylococcus aureus during chronic endobronchial infection of a cystic fibrosis patient. PLoS One 2011; 6:e24301. [PMID: 21912685 PMCID: PMC3166311 DOI: 10.1371/journal.pone.0024301] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/04/2011] [Indexed: 01/01/2023] Open
Abstract
The molecular adaptation of Staphylococcus aureus to its host during chronic infection is not well understood. Comparative genome sequencing of 3 S. aureus isolates obtained sequentially over 26 months from the airways of a cystic fibrosis patient, revealed variation in phage content, and genetic polymorphisms in genes which influence antibiotic resistance, and global regulation of virulence. The majority of polymorphisms were isolate-specific suggesting the existence of an heterogeneous infecting population that evolved from a single infecting strain of S. aureus. The genetic variation identified correlated with differences in growth rate, hemolytic activity, and antibiotic sensitivity, implying a profound effect on the ecology of S. aureus. In particular, a high frequency of mutations in loci associated with the alternate transcription factor SigB, were observed. The identification of genes under diversifying selection during long-term infection may inform the design of novel therapeutics for the control of refractory chronic infections.
Collapse
Affiliation(s)
- Paul R. McAdam
- The Roslin Institute and Centre for Infectious Diseases, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Anne Holmes
- The Roslin Institute and Centre for Infectious Diseases, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
- Microbiology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Kate E. Templeton
- Microbiology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - J. Ross Fitzgerald
- The Roslin Institute and Centre for Infectious Diseases, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Trang VT, Takeuchi H, Kudo H, Katsuno S, Shimamura T, Kashiwagi T, Son VH, Sugiura T, Ukeda H. In vitro antimicrobial activity of aminoreductone against the pathogenic bacteria methicillin-resistant Staphylococcus aureus (MRSA). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8953-8960. [PMID: 21739996 DOI: 10.1021/jf201928f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study, antimicrobial activity of aminoreductone (AR), a product formed during the initial stage of the Maillard reaction, against methicillin-resistant Staphylococcus aureus (MRSA) was evaluated. The significant growth inhibition of all 51 MRSA isolates irrespective of drug susceptibility by AR was observed. The minimum inhibitory concentration (MIC) of AR ranged from 13 to 26 mM. The bactericidal activity of AR was evaluated by a killing assay with multiples of MIC, and it was recognized to depend on its dose. The combined effects of AR and antibiotics frequently used for the treatment of infections caused by Gram-positive and Gram-negative bacteria, such as amikacin (AN), ciprofloxacin, imipenem and levofloxacin, were examined. As a result, AR did not interfere with these antibiotic activities against 12 MRSA isolates selected and showed the advanced effect of growth inhibition in combination with antibiotics. Moreover, the inhibitory effects of AR were similar to those of AN, an antibiotic with known adverse effects, some serious. These findings show that AR is a naturally formed antimicrobial agent present in thermally processed foods with potential health benefits in medical practice.
Collapse
Affiliation(s)
- Vu Thu Trang
- School of Biology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liang X, Hall JW, Yang J, Yan M, Doll K, Bey R, Ji Y. Identification of single nucleotide polymorphisms associated with hyperproduction of alpha-toxin in Staphylococcus aureus. PLoS One 2011; 6:e18428. [PMID: 21494631 PMCID: PMC3072997 DOI: 10.1371/journal.pone.0018428] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/06/2011] [Indexed: 12/02/2022] Open
Abstract
The virulence factor α-toxin (hla) is needed by Staphylococcus aureus in order to cause infections in both animals and humans. Although the complicated regulation of hla expression has been well studied in human S. aureus isolates, the mechanisms of of hla regulation in bovine S. aureus isolates remain undefined. In this study, we found that many bovine S. aureus isolates, including the RF122 strain, generate dramatic amounts of α-toxin in vitro compared with human clinical S. aureus isolates, including MRSA WCUH29 and MRSA USA300. To elucidate potential regulatory mechanisms, we analyzed the hla promoter regions and identified predominant single nucleotide polymorphisms (SNPs) at positions −376, −483, and −484 from the start codon in α-toxin hyper-producing isolates. Using site-directed mutagenesis and hla promoter-gfp-luxABCDE dual reporter approaches, we demonstrated that the SNPs contribute to the differential control of hla expression among bovine and human S. aureus isolates. Using a DNA affinity assay, gel-shift assays and a null mutant, we identified and revealed that an hla positive regulator, SarZ, contributes to the involvement of the SNPs in mediating hla expression. In addition, we found that the bovine S. aureus isolate RF122 exhibits higher transcription levels of hla positive regulators, including agrA, saeR, arlR and sarZ, but a lower expression level of hla repressor rot compared to the human S. aureus isolate WCUH29. Our results indicate α-toxin hyperproduction in bovine S. aureus is a multifactorial process, influenced at both the genomic and transcriptional levels. Moreover, the identification of predominant SNPs in the hla promoter region may provide a novel method for genotyping the S. aureus isolates.
Collapse
Affiliation(s)
- Xudong Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Jeffrey W. Hall
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Junshu Yang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Meiying Yan
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Katherine Doll
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Russell Bey
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Yinduo Ji
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
20
|
Interkingdom signaling between pathogenic bacteria and Caenorhabditis elegans. Trends Microbiol 2010; 18:448-54. [PMID: 20667738 DOI: 10.1016/j.tim.2010.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/28/2010] [Accepted: 07/06/2010] [Indexed: 11/24/2022]
Abstract
Investigators have recently turned to the soil nematode Caenorhabditis elegans as a small animal infection model to study infectious disease. To extrapolate findings concerning bacterial pathogenesis from non-mammals to mammals, virulence factors should be conserved in function, independent of the infection model. Emerging from these studies is the observation that bacterial virulence regulatory networks function in a conserved manner across multiple hosts, including nematodes, mice and plants. Several regulatory networks have been implicated in nematode innate immune function and are being exploited in the C. elegans infection model to develop novel chemical therapies against bacterial pathogens.
Collapse
|
21
|
Phagolysosomal integrity is generally maintained after Staphylococcus aureus invasion of nonprofessional phagocytes but is modulated by strain 6850. Infect Immun 2010; 78:3392-403. [PMID: 20530231 DOI: 10.1128/iai.00012-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a major cause of a variety of both local and systemic infections. It can invade human host cells, a process that may account for disseminated and recurrent infections. S. aureus postinvasion events in nonprofessional phagocytes are only partially understood. While morphological data suggest a phagosomal escape, there is a lack of corroborating functional data. Using a combination of pH determination and morphological techniques, we have tested the integrity of Staphylococcus-containing phagosomes in 293 (HEK-293), HeLa, and EA.hy926 cells over time. Rapid acidification of S. aureus-containing phagosomes occurred and was sustained for up to 24 h. All S. aureus strains tested displayed equally sustained intraphagosomal pH levels without exhibiting any correlation with pH level and hemolytic activity. The membrane morphology of the phagosomal compartment was heterogeneous, even under conditions where acidic pH was fully maintained, an observation incompatible with phagolysosomal membrane destruction. As an exception, S. aureus strain 6850 showed a reduced phagosomal acidification signal 6 h after invasion. Additionally, only strain 6850 failed to localize to LAMP-1-positive vesicles in HeLa cells, although this was observed only rarely. Several other strongly beta-hemolytic strains did not modulate phagolysosomal pH, suggesting that S. aureus alpha-toxin and beta-toxin are not sufficient for this process. Taken together, our data suggest that S. aureus-containing phagolysosomes generally remain functionally intact in nonprofessional phagocytes, thereby contrasting with transmission electron micrographic results.
Collapse
|
22
|
Golden pigment production and virulence gene expression are affected by metabolisms in Staphylococcus aureus. J Bacteriol 2010; 192:3068-77. [PMID: 20400547 DOI: 10.1128/jb.00928-09] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of staphylococcal infections is multifactorial. Golden pigment is an eponymous feature of the human pathogen Staphylococcus aureus that shields the microbe from oxidation-based clearance, an innate host immune response to infection. Here, we screened a collection of S. aureus transposon mutants for pigment production variants. A total of 15 previously unidentified genes were discovered. Notably, disrupting metabolic pathways such as the tricarboxylic acid cycle, purine biosynthesis, and oxidative phosphorylation yields mutants with enhanced pigmentation. The dramatic effect on pigment production seems to correlate with altered expression of virulence determinants. Microarray analysis further indicates that purine biosynthesis impacts the expression of approximately 400 genes involved in a broad spectrum of functions including virulence. The purine biosynthesis mutant and oxidative phosphorylation mutant strains exhibit significantly attenuated virulence in a murine abscess model of infection. Inhibition of purine biosynthesis with a known small-molecule inhibitor results in altered virulence gene expression and virulence attenuation during infection. Taken together, these results suggest an intimate link between metabolic processes and virulence gene expression in S. aureus. This study also establishes the importance of purine biosynthesis and oxidative phosphorylation for in vivo survival.
Collapse
|
23
|
Staphylococcus aureus sigma B-dependent emergence of small-colony variants and biofilm production following exposure to Pseudomonas aeruginosa 4-hydroxy-2-heptylquinoline-N-oxide. BMC Microbiol 2010; 10:33. [PMID: 20113519 PMCID: PMC2824698 DOI: 10.1186/1471-2180-10-33] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 01/30/2010] [Indexed: 12/29/2022] Open
Abstract
Background Staphylococcus aureus and Pseudomonas aeruginosa are often found together in the airways of cystic fibrosis (CF) patients. It was previously shown that the P. aeruginosa exoproduct 4-hydroxy-2-heptylquinoline-N-oxide (HQNO) suppresses the growth of S. aureus and provokes the emergence of small-colony variants (SCVs). The presence of S. aureus SCVs as well as biofilms have both been associated with chronic infections in CF. Results We demonstrated that HQNO stimulates S. aureus to form a biofilm in association with the formation of SCVs. The emergence of SCVs and biofilm production under HQNO exposure was shown to be dependent on the activity of the stress- and colonization-related alternative sigma factor B (SigB). Analysis of gene expression revealed that exposure of a prototypical S. aureus strain to HQNO activates SigB, which was leading to an increase in the expression of the fibronectin-binding protein A and the biofilm-associated sarA genes. Conversely, the quorum sensing accessory gene regulator (agr) system and the α-hemolysin gene were repressed by HQNO. Experiments using culture supernatants from P. aeruginosa PAO1 and a double chamber co-culture model confirmed that P. aeruginosa stimulates biofilm formation and activates SigB in a S. aureus strain isolated from a CF patient. Furthermore, the supernatant from P. aeruginosa mutants unable to produce HQNO induced the production of biofilms by S. aureus to a lesser extent than the wild-type strain only in a S. aureus SigB-functional background. Conclusions These results suggest that S. aureus responds to HQNO from P. aeruginosa by forming SCVs and biofilms through SigB activation, a phenomenon that may contribute to the establishment of chronic infections in CF patients.
Collapse
|
24
|
Parcina M, Wendt C, Goetz F, Zawatzky R, Zähringer U, Heeg K, Bekeredjian-Ding I. Staphylococcus aureus-induced plasmacytoid dendritic cell activation is based on an IgG-mediated memory response. THE JOURNAL OF IMMUNOLOGY 2008; 181:3823-33. [PMID: 18768836 DOI: 10.4049/jimmunol.181.6.3823] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type I IFNs represent a major antimicrobial defense mechanism due to their property of enhancing immune responses by priming both innate and adaptive immune cells. Plasmacytoid dendritic cells (pDC) are the major source of type I IFN in the human body and represent innate immune cells involved in first-line defense against invading pathogens. Although pDC activation has been extensively studied upon stimulation with synthetic TLR ligands, viruses, and intracellular bacteria, there is only scarce information on extracellular bacteria. In this study we show that the triggering of human pDC-derived IFN-alpha secretion by Staphylococcus aureus is independent of TLR2 and specific for coagulase-positive staphylococci. Specificity of the pDC response to S. aureus is independent of the bacterial virulence factors protein A and alpha-toxin but is mediated by Ag-specific IgG and CD32. S. aureus-induced pDC activation can be blocked by inhibitory DNA oligonucleotides and chloroquine, suggesting that engagement of TLR7/9 by bacterial nucleic acids after CD32-mediated uptake of these compounds may play a central role in this process. Altogether, we propose that in marked contrast to nonselective TLR2-dependent activation of most innate immune cells, pDC activation by S. aureus represents an Ag-specific memory response since it requires the presence of class-switched immunoglobulins.
Collapse
Affiliation(s)
- Marijo Parcina
- Department of Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Lorenz U, Hüttinger C, Schäfer T, Ziebuhr W, Thiede A, Hacker J, Engelmann S, Hecker M, Ohlsen K. The alternative sigma factor sigma B of Staphylococcus aureus modulates virulence in experimental central venous catheter-related infections. Microbes Infect 2008; 10:217-23. [DOI: 10.1016/j.micinf.2007.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 11/20/2007] [Accepted: 11/21/2007] [Indexed: 11/26/2022]
|
26
|
Valle J, Vergara-Irigaray M, Merino N, Penadés JR, Lasa I. sigmaB regulates IS256-mediated Staphylococcus aureus biofilm phenotypic variation. J Bacteriol 2007; 189:2886-96. [PMID: 17277051 PMCID: PMC1855799 DOI: 10.1128/jb.01767-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation in Staphylococcus aureus is subject to phase variation, and biofilm-negative derivatives emerge sporadically from a biofilm-positive bacterial population. To date, the only known mechanism for generating biofilm phenotypic variation in staphylococci is the reversible insertion/excision of IS256 in biofilm-essential genes. In this study, we present evidence suggesting that the absence of the sigma(B) transcription factor dramatically increases the rate of switching to the biofilm-negative phenotype in the clinical isolate S. aureus 15981, under both steady-state and flow conditions. The phenotypic switching correlates with a dramatic increase in the number of IS256 copies in the chromosomes of biofilm-negative variants, as well as with an augmented IS256 insertion frequency into the icaC and the sarA genes. IS256-mediated biofilm switching is reversible, and biofilm-positive variants could emerge from biofilm-negative sigma(B) mutants. Analysis of the chromosomal insertion frequency using a recombinant IS256 element tagged with an erythromycin marker showed an almost three-times-higher transposition frequency in a Deltasigma(B) strain. However, regulation of IS256 activity by sigma(B) appears to be indirect, since transposase transcription is not affected in the absence of sigma(B) and IS256 activity is inhibited to wild-type levels in a Deltasigma(B) strain under NaCl stress. Overall, our results identify a new role for sigma(B) as a negative regulator of insertion sequence transposition and support the idea that deregulation of IS256 activity abrogates biofilm formation capacity in S. aureus.
Collapse
Affiliation(s)
- Jaione Valle
- Instituto de Agrobiotecnología, Universidad Pública de Navarra, Pamplona-31006, Spain
| | | | | | | | | |
Collapse
|
27
|
Oscarsson J, Kanth A, Tegmark-Wisell K, Arvidson S. SarA is a repressor of hla (alpha-hemolysin) transcription in Staphylococcus aureus: its apparent role as an activator of hla in the prototype strain NCTC 8325 depends on reduced expression of sarS. J Bacteriol 2006; 188:8526-33. [PMID: 17012389 PMCID: PMC1698246 DOI: 10.1128/jb.00866-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 09/18/2006] [Indexed: 12/16/2022] Open
Abstract
In most Staphylococcus aureus strains, inactivation of sarA increases hla transcription, indicating that sarA is a repressor. However, in S. aureus NCTC 8325 and its derivatives, used for most studies of hla regulation, inactivation of sarA resulted in decreased hla transcription. The disparate phenotype of strain NCTC 8325 seems to be associated with its rsbU mutation, which leads to sigma(B) deficiency. This has now been verified by the demonstration that sarA repressed hla transcription in an rsbU+ derivative of strain 8325-4 (SH1000). That sarA could act as a repressor of hla in an 8325-4 background was confirmed by the observation that inactivation of sarA in an agr sarS rot triple mutant dramatically increased hla transcription to wild-type levels. However, the apparent role of sarA as an activator of hla in 8325-4 was not a result of the rsbU mutation alone, as inactivation of sarA in another rsbU mutant, strain V8, led to increased hla transcription. Northern blot analysis revealed much higher levels of sarS mRNA in strain V8 than in 8325-4, which was likely due to the mutation in the sarS activator, tcaR, in 8325-4, which was not found in strain V8. On the other hand, the relative increase in sarS transcription upon the inactivation of sarA was 15-fold higher in 8325-4 than in strain V8. Because of this, inactivation of sarA in 8325-4 means a net increase in repressor activity, whereas in strain V8, inactivation of sarA means a net decrease in repressor activity and, therefore, enhanced hla transcription.
Collapse
Affiliation(s)
- Jan Oscarsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | | | |
Collapse
|
28
|
Pamp SJ, Frees D, Engelmann S, Hecker M, Ingmer H. Spx is a global effector impacting stress tolerance and biofilm formation in Staphylococcus aureus. J Bacteriol 2006; 188:4861-70. [PMID: 16788195 PMCID: PMC1483011 DOI: 10.1128/jb.00194-06] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, Spx was recently characterized as a novel type of global regulator whose activity is regulated by the redox status of the cells. In the present study, we demonstrate that inactivation of Spx in the important pathogen Staphylococcus aureus renders the cells hypersensitive to a wide range of stress conditions including high and low temperature, high osmolarity, and hydrogen peroxide. Moreover, growth was restricted under nonstress conditions. Two-dimensional gel electrophoresis revealed that the proteome of the spx mutant differs substantially from the proteome of wild-type cells, supporting the finding that Spx is also a global regulator in S. aureus. More specifically, we demonstrated that Spx is required for transcription of trxB, encoding thioredoxin reductase, under all growth conditions examined. As trxB is essential in S. aureus, we speculate that the severely reduced trxB transcription could account for some of the growth defects of the spx mutant. Inactivation of spx also enhanced biofilm formation. S. aureus biofilm formation is associated with the production of the polysaccharide intercellular adhesin encoded by the ica operon. Interestingly, our data indicate that the augmented capacity of the spx mutant to form biofilms is due to Spx modulating the expression of icaR, encoding a repressor of the structural ica genes (icaABCD). In summary, we conclude that Spx fulfills an important role for growth, general stress protection, and biofilm formation in S. aureus.
Collapse
Affiliation(s)
- Sünje Johanna Pamp
- Department of Veterinary Pathobiology, Royal Veterinary and Agricultural University (KVL), Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
29
|
Coordinated and differential control of aureolysin (aur) and serine protease (sspA) transcription in Staphylococcus aureus by sarA, rot and agr (RNAIII). Int J Med Microbiol 2006; 296:365-80. [PMID: 16782403 DOI: 10.1016/j.ijmm.2006.02.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 02/22/2006] [Accepted: 02/23/2006] [Indexed: 10/24/2022] Open
Abstract
Previous studies have shown that production of extracellular proteases in Staphylococcus aureus is stimulated by agr (RNAIII) and mgrA, and repressed by sarA. Protease expression is also repressed by rot, however this effect is generally observed only in agr mutants. Several other regulators (sarR, sarV, sarS, sae) that may impact protease expression have been described. As the interactions between all regulators that control protease gene expression are not fully understood, the present study was undertaken to elucidate the regulatory network governing aureolysin (aur) and staphylococcal serine protease (sspA) transcription. The regulation of both genes was studied as activation of the serine protease (SspA) zymogen requires aureolysin. For this purpose we have analyzed the effect of different combinations of regulatory mutations. The present study clearly shows that the positive effect of agr (RNAIII) on aur and sspA transcription requires rot, which is in accordance with the hypothesis that RNAIII acts by neutralizing Rot activity through binding [McNamara, P.J., Milligan-Monroe, K.C., Khalili, S., Proctor, R.A., 2000. Identification, cloning, and initial characterization of rot, a locus encoding a regulator of virulence factor expression in Staphylococcus aureus. J. Bacteriol. 182, 3197-3203]. Concomitantly, overexpression of rot in agr(+) strains or inactivation of rot in strains with low levels of RNAIII clearly affected aur and sspA transcription, indicating that the inhibiting effect of RNAIII on Rot could be titrated. Furthermore, our present data support that the only role of RNAIII in aur and sspA regulation is to counteract the repressive activity of Rot. Apart from an apparent direct positive effect of mgrA on sspA and aur transcription, these genes were mainly controlled through repression by sarA and rot, which seemed to occur via binding of SarA and Rot to the aur and sspA promoters, respectively. Maximum transcription of aur and sspA was obtained when both repressors were absent, either in a sarA mutant where Rot is neutralized by RNAIII during post-exponential phase, or in an agr sarA rot triple mutant. Interestingly, aur was much more sensitive to repression by sarA than by rot, whereas sspA was equally suppressed by sarA and rot. On the other hand, sspA was more sensitive to repression by rot than aur. Thus, SarA and Rot seemed to act independently in an additive way. Inactivation of sarR and sarS had no apparent effect on aur and sspA transcription, although overexpression of these regulators suppressed aur and sspA transcription, respectively, likely in a direct way as indicated by DNA binding experiments. In conclusion, our results indicate that aur and sspA transcription are coordinately regulated but can also be individually modulated by agr, sarA, rot, sarS, sarR, and mgrA. A provisional model for the regulation of aur and sspA transcription is presented.
Collapse
|