1
|
Yagin FH, Aygun U, Algarni A, Colak C, Al-Hashem F, Ardigò LP. Platelet Metabolites as Candidate Biomarkers in Sepsis Diagnosis and Management Using the Proposed Explainable Artificial Intelligence Approach. J Clin Med 2024; 13:5002. [PMID: 39274215 PMCID: PMC11395774 DOI: 10.3390/jcm13175002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Sepsis is characterized by an atypical immune response to infection and is a dangerous health problem leading to significant mortality. Current diagnostic methods exhibit insufficient sensitivity and specificity and require the discovery of precise biomarkers for the early diagnosis and treatment of sepsis. Platelets, known for their hemostatic abilities, also play an important role in immunological responses. This study aims to develop a model integrating machine learning and explainable artificial intelligence (XAI) to identify novel platelet metabolomics markers of sepsis. Methods: A total of 39 participants, 25 diagnosed with sepsis and 14 control subjects, were included in the study. The profiles of platelet metabolites were analyzed using quantitative 1H-nuclear magnetic resonance (NMR) technology. Data were processed using the synthetic minority oversampling method (SMOTE)-Tomek to address the issue of class imbalance. In addition, missing data were filled using a technique based on random forests. Three machine learning models, namely extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and kernel tree boosting (KTBoost), were used for sepsis prediction. The models were validated using cross-validation. Clinical annotations of the optimal sepsis prediction model were analyzed using SHapley Additive exPlanations (SHAP), an XAI technique. Results: The results showed that the KTBoost model (0.900 accuracy and 0.943 AUC) achieved better performance than the other models in sepsis diagnosis. SHAP results revealed that metabolites such as carnitine, glutamate, and myo-inositol are important biomarkers in sepsis prediction and intuitively explained the prediction decisions of the model. Conclusion: Platelet metabolites identified by the KTBoost model and XAI have significant potential for the early diagnosis and monitoring of sepsis and improving patient outcomes.
Collapse
Affiliation(s)
- Fatma Hilal Yagin
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Türkiye
| | - Umran Aygun
- Department of Anesthesiology and Reanimation, Malatya Yesilyurt Hasan Calık State Hospital, Malatya 44929, Türkiye
| | - Abdulmohsen Algarni
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Türkiye
| | - Fahaid Al-Hashem
- Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Luca Paolo Ardigò
- Department of Teacher Education, NLA University College, 0166 Oslo, Norway
| |
Collapse
|
2
|
Svetličić E, Dončević L, Ozdanovac L, Janeš A, Tustonić T, Štajduhar A, Brkić AL, Čeprnja M, Cindrić M. Direct Identification of Urinary Tract Pathogens by MALDI-TOF/TOF Analysis and De Novo Peptide Sequencing. Molecules 2022; 27:molecules27175461. [PMID: 36080229 PMCID: PMC9457756 DOI: 10.3390/molecules27175461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
For mass spectrometry-based diagnostics of microorganisms, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used to identify urinary tract pathogens. However, it requires a lengthy culture step for accurate pathogen identification, and is limited by a relatively small number of available species in peptide spectral libraries (≤3329). Here, we propose a method for pathogen identification that overcomes the above limitations, and utilizes the MALDI-TOF/TOF MS instrument. Tandem mass spectra of the analyzed peptides were obtained by chemically activated fragmentation, which allowed mass spectrometry analysis in negative and positive ion modes. Peptide sequences were elucidated de novo, and aligned with the non-redundant National Center for Biotechnology Information Reference Sequence Database (NCBInr). For data analysis, we developed a custom program package that predicted peptide sequences from the negative and positive MS/MS spectra. The main advantage of this method over a conventional MALDI-TOF MS peptide analysis is identification in less than 24 h without a cultivation step. Compared to the limited identification with peptide spectra libraries, the NCBI database derived from genome sequencing currently contains 20,917 bacterial species, and is constantly expanding. This paper presents an accurate method that is used to identify pathogens grown on agar plates, and those isolated directly from urine samples, with high accuracy.
Collapse
Affiliation(s)
- Ema Svetličić
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Lucija Dončević
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Luka Ozdanovac
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Andrea Janeš
- Clinical Department of Laboratory Diagnostics, University Hospital Dubrava, Avenija Gojka Šuška 6, 10000 Zagreb, Croatia
| | | | - Andrija Štajduhar
- Division for Medical Statistics, Andrija Štampar Teaching Institute of Public Health, Mirogojska cesta 16, 10000 Zagreb, Croatia
| | | | - Marina Čeprnja
- Special Hospital Agram, Agram EEIG, Trnjanska cesta 108, 10000 Zagreb, Croatia
| | - Mario Cindrić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-16384422
| |
Collapse
|
3
|
Gounassegarane D, Biswas R, Sastry AS, Tp E, Penumadu P, Raja K. Bacteremia due to obligate anaerobes following large bowel surgery in a tertiary care hospital in South India. Indian J Med Microbiol 2022; 40:309-310. [PMID: 35033391 DOI: 10.1016/j.ijmmb.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 11/05/2022]
Abstract
In view of the rising incidence of Anaerobic bacteremia(AB), the use of anaerobic blood culture bottles have been recommended in addition to the aerobic blood culture bottles. The need to perform antimicrobial susceptibility testing(AST) for anaerobes has become mandatory owing to increasing metronidazole resistance. The frequency of AB following large bowel surgery and the metronidazole susceptibility for members of the Bacteroides fragilis group were determined. The incidence of AB was found to be 16%. Seventeen obligate anaerobes were isolated in total, of which B. fragilis was the most common. Two of twelve isolates of B. fragilis were resistant to metronidazole.
Collapse
Affiliation(s)
- Dhanalakshmi Gounassegarane
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India.
| | - Rakhi Biswas
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India.
| | - Apurba Sankar Sastry
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India.
| | - Elamurugan Tp
- Department of General Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India.
| | - Prasanth Penumadu
- Department of Surgical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India.
| | - Kalayarasan Raja
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India.
| |
Collapse
|
4
|
Review on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the rapid screening of microbial species: A promising bioanalytical tool. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Suadoni F, Gioia S, Tiri B, Mencacci A, Vento S, Lancia M. A unique autopsy case of spontaneous necrotizing soft tissue infection of the chest-wall in a healthy adult without major risk factors. FORENSIC SCIENCE INTERNATIONAL: REPORTS 2020. [DOI: 10.1016/j.fsir.2020.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
6
|
Abd El-Aziz NK, Gharib AA, Mohamed EAA, Hussein AH. Real-time PCR versus MALDI-TOF MS and culture-based techniques for diagnosis of bloodstream and pyogenic infections in humans and animals. J Appl Microbiol 2020; 130:1630-1644. [PMID: 33073430 DOI: 10.1111/jam.14862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
AIMS This study was applied to evaluate the usefulness of a high-throughput sample preparation protocol prior to the application of quantitative real-time PCR (qPCR) for the early diagnosis of bloodstream and pyogenic infections in humans and animals compared to matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and classical culture. METHODS AND RESULTS Saponin-mediated selective host cell lysis combined with DNase-1 was applied for processing of whole blood and pus clinical samples collected from suspected cases of septicaemia and pyogenic infections in humans and animals. The pre-PCR processing strategy enabled the recovery of microbial cells with no changes in their colony forming units immediately after the addition of saponin. DNase-1 was efficient for removing the DNAs from the host cells as well as dead cells with damaged cell membranes. The metagenomic qPCR and MALDI-TOF MS could identify the bacterial community of sepsis at species level with a concordance of 97·37% unlike the conventional culture. According to qPCR results, Staphylococcus aureus (24·24%) was predominated in animal pyogenic infections, whereas Klebsiella pneumonia (31·81%) was commonly detected in neonatal sepsis. CONCLUSIONS Saponin combined with DNase-1 allowed the efficient recovery of microbial DNA from blood and pus samples in sepsis using qPCR assay. SIGNIFICANCE AND IMPACT OF THE STUDY Metagenomic qPCR could identify a broad range of bacteria directly from blood and pus with more sensitivity, higher discriminatory power and shorter turnaround time than those using MALDI-TOF MS and conventional culture. This might allow a timely administration of a prompt treatment.
Collapse
Affiliation(s)
- N K Abd El-Aziz
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - A A Gharib
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - E A A Mohamed
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - A H Hussein
- Avian and Rabbit Medicine Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Rodríguez-Sánchez B, Cercenado E, Coste AT, Greub G. Review of the impact of MALDI-TOF MS in public health and hospital hygiene, 2018. ACTA ACUST UNITED AC 2020; 24. [PMID: 30696525 PMCID: PMC6351997 DOI: 10.2807/1560-7917.es.2019.24.4.1800193] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction MALDI-TOF MS represents a new technological era for microbiology laboratories. Improved sample processing and expanded databases have facilitated rapid and direct identification of microorganisms from some clinical samples. Automated analysis of protein spectra from different microbial populations is emerging as a potential tool for epidemiological studies and is expected to impact public health. Aim To demonstrate how implementation of MALDI-TOF MS has changed the way microorganisms are identified, how its applications keep increasing and its impact on public health and hospital hygiene. Methods A review of the available literature in PubMED, published between 2009 and 2018, was carried out. Results Of 9,709 articles retrieved, 108 were included in the review. They show that rapid identification of a growing number of microorganisms using MALDI-TOF MS has allowed for optimisation of patient management through prompt initiation of directed antimicrobial treatment. The diagnosis of Gram-negative bacteraemia directly from blood culture pellets has positively impacted antibiotic streamlining, length of hospital stay and costs per patient. The flexibility of MALDI-TOF MS has encouraged new forms of use, such as detecting antibiotic resistance mechanisms (e.g. carbapenemases), which provides valuable information in a reduced turnaround time. MALDI-TOF MS has also been successfully applied to bacterial typing. Conclusions MALDI-TOF MS is a powerful method for protein analysis. The increase in speed of pathogen detection enables improvement of antimicrobial therapy, infection prevention and control measures leading to positive impact on public health. For antibiotic susceptibility testing and bacterial typing, it represents a rapid alternative to time-consuming conventional techniques.
Collapse
Affiliation(s)
- Belén Rodríguez-Sánchez
- These authors contributed equally to this work.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Emilia Cercenado
- Department of Medicine, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alix T Coste
- Institute of Microbiology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Infectious Diseases Service, University Hospital of Lausanne, Lausanne, Switzerland.,Institute of Microbiology, University Hospital of Lausanne, Lausanne, Switzerland.,These authors contributed equally to this work
| |
Collapse
|
8
|
Mizusawa M. Updates on Rapid Diagnostic Tests in Infectious Diseases. MISSOURI MEDICINE 2020; 117:328-337. [PMID: 32848269 PMCID: PMC7431065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the last two decades there have been dramatic advances in development of rapid diagnostic tests. Turnaround time of the assays have significantly been shortened which led to reductions in time to appropriate antimicrobial therapy and improvement of patient clinical outcomes. Molecular-based assays generally have better sensitivity than conventional methods, but the cost is higher. The results need to be interpreted cautiously as detection of colonized organisms, pathogen detection in asymptomatic patients, and false negative/positive can occur. Indications and cost-effectiveness need to be considered for appropriate utilization of rapid diagnostic tests.
Collapse
Affiliation(s)
- Masako Mizusawa
- Section of Infectious Diseases, Department of Internal Medicine, University of Missouri - Kansas City, Kansas City, Missouri
| |
Collapse
|
9
|
Time to Positivity as a Prognostic Tool in the Performance of Short-Term Subculture for MALDI-TOF MS-Based Identification of Microorganisms from Positive Blood Cultures in Pediatric Patients. Curr Microbiol 2020; 77:953-958. [DOI: 10.1007/s00284-020-01900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
|
10
|
Rapid identification of microorganisms from positive blood cultures in pediatric patients by MALDI-TOF MS: Sepsityper kit versus short-term subculture. J Microbiol Methods 2020; 172:105894. [PMID: 32184161 DOI: 10.1016/j.mimet.2020.105894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIM The rapid diagnosis of bloodstream infection (BSI) often leads to better clinical outcomes. The present study was conducted to compare two rapid protocols (Sepsityper kit and short-term subculture) for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based identification of microorganisms from positive blood cultures in pediatric patients. METHODS This study was conducted between May 1, 2018, and April 30, 2019, at a tertiary children's hospital in eastern China. Only monomicrobial blood cultures included in this study were used to conduct the Sepsityper kit protocol and short-term subculture protocol at the same time. RESULTS In total, 115 monomicrobial blood cultures were included in this study. For the Sepsityper kit protocol, 85.2% and 64.3% of microorganisms were correctly identified to the genus (score ≥ 1.700) and species levels (score ≥ 2.000), respectively. For the short-term subculture protocol, 89.6% and 70.4% of microorganisms were correctly identified to the genus and species levels, respectively. At the genus level (P = .321) or the species level (P = .325), there was no significant difference between the Sepsityper kit protocol and the short-term subculture protocol. Moreover, the short-term subculture protocol exhibited similar performance between Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB) (the genus level: 93.7% (GPB) versus 87.9% (GNB), P = .518; the species level: 68.4% (GPB) versus 81.8% (GNB), P = .147). In addition, the Sepsityper kit protocol exhibited similar performance between GPB and GNB at the genus level (86.1% (GPB) versus 84.8% (GNB), P = 1.000). However, the Sepsityper kit protocol exhibited better performance in GNB at the species level (58.2% (GPB) versus 81.8% (GNB), P = .017). The rates of yeast-like fungi were correctly identified to the genus level (0.0%) or the species level (0.0%) for short-term subculture protocol were significantly lower than those of other microorganisms (the genus level: 92.0%, P = .001; the species level: 72.3%, P = .024). However, a similar result of identification was not found using the Sepsityper kit protocol (the genus level: P = .384; the species level: P = .599). In addition, the two rapid protocols both exhibited better performance at the genus level when the time to positivity (TTP) of blood cultures <19 h (the Sepsityper kit protocol: 91.8% (TTP < 19 h) versus 77.8% (TTP ≥ 19 h), P = .034; the short-term subculture protocol: 95.1% (TTP < 19 h) versus 83.3% (TTP ≥ 19 h), P = .040). In addition, the two rapid protocols both exhibited better performance at the species level when the TTP of blood cultures was <19 h (the Sepsityper kit protocol: 78.7% (TTP < 19 h) versus 48.1% (TTP ≥ 19 h), P = .000; the short-term subculture protocol: 83.6% (TTP < 19 h) versus 55.6% (TTP ≥ 19 h), P = .001). CONCLUSION The Sepsityper kit protocol and short-term subculture protocol are both reliable and rapid methods for the identification of most microorganisms from positive blood cultures in pediatric patients. The performance of these two rapid protocols is associated with the TTP of blood cultures.
Collapse
|
11
|
Pasticci MB, Bozza S, De Socio GV, Frias-Mazuecos A, Mencacci A. Improving the etiological diagnosis of osteoarticular infections with the commercial multiplex real-time polymerase chain reaction SeptiFast®. Diagn Microbiol Infect Dis 2020; 97:115002. [PMID: 32098689 DOI: 10.1016/j.diagmicrobio.2020.115002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/20/2019] [Accepted: 01/26/2020] [Indexed: 11/16/2022]
Abstract
Detection of etiological agents is pivotal for adequate therapy of osteoarticular bacterial infections. Culture often lacks sensitivity, especially in patients under antibiotic therapy. The present study investigates the potential clinical utility of the commercial multiplex real-time polymerase chain reaction SeptiFast® (SF) in the etiological diagnosis of osteoarticular infections. Results obtained from conventional culture and SF were compared in 86 osteoarticular specimens collected from patients with suspected infection. The number of specimens positive by SF (38/86, 44.18%) was significantly greater (P = 0.001) than that of specimens positive by culture (20/86, 23.25%). The sensitivity of SF was 48.71%, significantly higher than culture sensitivity (25.64%). Specificity was 100% for both tests. The overall diagnostic accuracy for SF was 53.48%, and that of culture was 32.55%. Even with the limitation of the low number of specimens, this study supports the usefulness of SF in the diagnosis of osteoarticular infections.
Collapse
Affiliation(s)
- Maria Bruna Pasticci
- Clinic of Infectious Diseases, Department of Medicine, University of Perugia, P.le Gambuli 1, 06132, Perugia, Italy
| | - Silvia Bozza
- Medical Microbiology, Department of Medicine, University of Perugia, P.le Gambuli 1, 06132, Perugia, Italy
| | | | - Abel Frias-Mazuecos
- Medical Microbiology, Department of Medicine, University of Perugia, P.le Gambuli 1, 06132, Perugia, Italy
| | - Antonella Mencacci
- Medical Microbiology, Department of Medicine, University of Perugia, P.le Gambuli 1, 06132, Perugia, Italy.
| |
Collapse
|
12
|
Angeletti S, Ciccozzi M. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry in clinical microbiology: An updating review. INFECTION GENETICS AND EVOLUTION 2019; 76:104063. [DOI: 10.1016/j.meegid.2019.104063] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/29/2019] [Accepted: 10/05/2019] [Indexed: 12/17/2022]
|
13
|
Li X, Yuan X, Wang C. The clinical value of IL-3, IL-4, IL-12p70, IL17A, IFN-γ, MIP-1β, NLR, P-selectin, and TNF-α in differentiating bloodstream infections caused by gram-negative, gram-positive bacteria and fungi in hospitalized patients: An Observational Study. Medicine (Baltimore) 2019; 98:e17315. [PMID: 31568018 PMCID: PMC6756613 DOI: 10.1097/md.0000000000017315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Early differential diagnosis of bloodstream infections (BSIs) caused by different sources and species of bacteria in hospitalized patients is crucial for the timely targeted interventions including appropriate use of antibiotics. The aim of this study was to identify 9 biomarkers for the early differentiation of gram-negative-bloodstream infection (GN-BSI), gram-positive (GP)-BSI, and fungal-BSI.A prospective study was conducted for a total of 390 inpatients who underwent blood culture in the Chinese PLA General Hospital from September 2015 to March 2018. Patients with positive culture of a single pathogen were divided into GN-BSI, GP-BSI, and Fungal-BSI groups, and a culture-negative disease control group was also established. The serum levels of macrophage inflammatory protein 1β (MIP-1β), tumor necrosis factor α (TNF-α), interleukin (IL)-3, interferon (IFN)-γ, IL-17A, IL-4, IL-12p70, and P-selectin were detected and the NLR was calculated from routine blood test. Receiver-operating characteristic analysis was used to determine the efficacy of various indicators in the differential diagnosis of BSIs. Prediction and validation experiments on clinical patient samples (263 cases) were also performed.The level of IL-3 in the GP-BSI group was significantly higher than those in the other 3 groups. The level of IFN-γ in the fungal-BSI group was significantly higher than those in the other 3 groups. NLR, MIP-1β, TNF-α, IL-17A, and IL3 exhibited some efficacy when distinguishing between GN-BSI and GP-BSI and NLR had the largest area under curve (AUC) (0.728), followed by MIP-1β with an AUC of 0.679. IFN-γ and IL-3 exhibited some value in differential diagnosis between GN-BSI and Fungal-BSI. IL-3, MIP-1β, TNF-α, IFN-γ, NLR, IL-17A, and IL-4 exhibited some value in distinguishing fungal-BSI and GP-BSI, with IL-3 had the largest AUC (0.722), followed by MIP-1β with an AUC of 0.703.NLR and MIP-1β may be valuable in differentiating GN-BSI from GP-BSI in hospitalized patients. IFN-γ and IL-3 may be helpful in differential diagnosis GN-BSI and fungal-BSI. IL-3 and MIP-1β exhibited some diagnostic efficacy in distinguishing fungal-BSI and GP-BSI. Additionally, IL-3 with high serum level may be a marker for GP-BSI and IFN-γ with high serum level may be a valuable marker for the prediction of Fungal-BSI. The utility of these biomarkers to predict BSIs owing to different pathogens in hospitalized patients needs to be assessed in further studies.
Collapse
|
14
|
De Socio GV, Rubbioni P, Botta D, Cenci E, Belati A, Paggi R, Pasticci MB, Mencacci A. Measurement and prediction of antimicrobial resistance in bloodstream infections by ESKAPE pathogens and Escherichia coli. J Glob Antimicrob Resist 2019; 19:154-160. [PMID: 31112804 DOI: 10.1016/j.jgar.2019.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate a cumulative antimicrobial resistance index (ARI) as a possible key outcome measure of antimicrobial stewardship programmes (ASPs) and a tool to predict the antimicrobial resistance (AMR) trend. METHODS Antimicrobial susceptibility for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli (ESKAPEEc) pathogens recovered from blood cultures during a 5-year period (2014-2018) was analysed to obtain a cumulative ARI. For each antibiotic tested, a score of 0, 0.5 or 1 was assigned for susceptibility, intermediate resistance or resistance, respectively, and the ARI was calculated by dividing the sum of these scores by the number of antibiotics tested. Cumulative ARIs of ESKAPEEc micro-organisms were compared and a mathematical prediction model for AMR trend was obtained. RESULTS In total, 1858 ESKAPEEc isolates were included in the study. The cumulative ESKAPEEc mean ARI increased significantly from 0.200 ± 0.01 in 2014 to 0.276 ± 0.02 in 2018 (P < 0.001). In multivariable regression analysis, factors significantly associated with ARI ≥ 0.5 were E. faecium, K. pneumoniae, P. aeruginosa and A. baumannii infection (P < 0.001) and infection occurring after 2014 (P < 0.05). Based on the prediction model obtained, in the absence of any interventional measure, a tendency to pandrug resistance of the ESKAPEEc group could be expected in the next 8-15 years. CONCLUSION The ARI could be a useful tool to measure the impact of ASPs on AMR. The increasing incidence of AMR among ESKAPEEc organisms underscores the needing for ASPs.
Collapse
Affiliation(s)
- Giuseppe Vittorio De Socio
- Unit of Infectious Diseases, Department of Medicine, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy.
| | - Paola Rubbioni
- Department of Mathematics and Computer Science, University of Perugia, Perugia, Italy
| | - Daniele Botta
- Unit of Infectious Diseases, Department of Medicine, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Elio Cenci
- Medical Microbiology, Department of Medicine, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Alessandra Belati
- Medical Microbiology, Department of Medicine, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Riccardo Paggi
- Medical Microbiology, Department of Medicine, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Maria Bruna Pasticci
- Unit of Infectious Diseases, Department of Medicine, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Antonella Mencacci
- Medical Microbiology, Department of Medicine, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| |
Collapse
|
15
|
Accelerated bacterial detection in blood culture by enhanced acoustic flow cytometry (AFC) following peptide nucleic acid fluorescence in situ hybridization (PNA-FISH). PLoS One 2019; 14:e0201332. [PMID: 30735489 PMCID: PMC6368374 DOI: 10.1371/journal.pone.0201332] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/16/2019] [Indexed: 11/23/2022] Open
Abstract
Bacteraemia is a risk factor for subsequent clinical deterioration and death. Current reliance on culture-based methods for detection of bacteraemia delays identification and assessment of this risk until after the optimal period for positively impacting treatment decisions has passed. Therefore, a method for rapid detection and identification of bacterial infection in the peripheral bloodstream in acutely ill patients is crucial for improved patient survival through earlier targeted antibiotic treatment. The turnaround time for current clinical laboratory methods ranges from 12 to 48 hours, emphasizing the need for a faster diagnostic test. Here we describe a novel assay for accelerated generic detection of bacteria in blood culture (BC) using peptide nucleic acid fluorescence in situ hybridization enhanced acoustic flow cytometry (PNA-FISH-AFC). For assay development, we used simulated blood cultures (BCs) spiked with one of three bacterial species at a low starting concentration of 10 CFU/mL: Escherichia coli, Klebsiella pneumoniae or Pseudomonas aeruginosa. Under current clinical settings, it takes a minimum of 12 hours incubation to reach positivity on the BacTEC system, corresponding to a bacterial concentration of 107−109 CFU/mL optimal for further analyses. In contrast, our PNA-FISH-AFC assay detected 103–104 CFU/mL bacteria in BC following a much shorter culture incubation of 5 to 10 hours. Using either PCR-based FilmArray assay or MALDI-TOF for bacterial detection, it took 7–10 and 12–24 hours of incubation, respectively, to reach the positive result. These findings indicate a potential time advantage of PNA-FISH-AFC assay for rapid bacterial detection in BC with significantly improved turnaround time over currently used laboratory techniques.
Collapse
|
16
|
MALDI Profiling and Applications in Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:27-43. [DOI: 10.1007/978-3-030-15950-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Ruiz-Aragón J, Ballestero-Téllez M, Gutiérrez-Gutiérrez B, de Cueto M, Rodríguez-Baño J, Pascual Á. Direct bacterial identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry: A systematic review and meta-analysis. Enferm Infecc Microbiol Clin 2018; 36:484-492. [DOI: 10.1016/j.eimc.2017.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/24/2017] [Accepted: 08/25/2017] [Indexed: 11/16/2022]
|
18
|
Smartphone-based pathogen diagnosis in urinary sepsis patients. EBioMedicine 2018; 36:73-82. [PMID: 30245056 PMCID: PMC6197494 DOI: 10.1016/j.ebiom.2018.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 11/22/2022] Open
Abstract
Background There is an urgent need for rapid, sensitive, and affordable diagnostics for microbial infections at the point-of-care. Although a number of innovative systems have been reported that transform mobile phones into potential diagnostic tools, the translational challenge to clinical diagnostics remains a significant hurdle to overcome. Methods A smartphone-based real-time loop-mediated isothermal amplification (smaRT-LAMP) system was developed for pathogen ID in urinary sepsis patients. The free, custom-built mobile phone app allows the phone to serve as a stand-alone device for quantitative diagnostics, allowing the determination of genome copy-number of bacterial pathogens in real time. Findings A head-to-head comparative bacterial analysis of urine from sepsis patients revealed that the performance of smaRT-LAMP matched that of clinical diagnostics at the admitting hospital in a fraction of the time (~1 h vs. 18–28 h). Among patients with bacteremic complications of their urinary sepsis, pathogen ID from the urine matched that from the blood – potentially allowing pathogen diagnosis shortly after hospital admission. Additionally, smaRT-LAMP did not exhibit false positives in sepsis patients with clinically negative urine cultures. Interpretation The smaRT-LAMP system is effective against diverse Gram-negative and -positive pathogens and biological specimens, costs less than $100 US to fabricate (in addition to the smartphone), and is configurable for the simultaneous detection of multiple pathogens. SmaRT-LAMP thus offers the potential to deliver rapid diagnosis and treatment of urinary tract infections and urinary sepsis with a simple test that can be performed at low cost at the point-of-care. Fund National Institutes of Health, Chan-Zuckerberg Biohub, Bill and Melinda Gates Foundation.
Collapse
|
19
|
Laboratory automation reduces time to report of positive blood cultures and improves management of patients with bloodstream infection. Eur J Clin Microbiol Infect Dis 2018; 37:2313-2322. [PMID: 30218409 DOI: 10.1007/s10096-018-3377-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
The impact on time to results (TTR) and clinical decisions was evaluated for mono-microbial positive blood cultures (BC) processed using the BD Kiestra Work Cell Automation (WCA) system. Positive BC were processed by the WCA system by full-automatic subculture on solid media and digital imaging after 8 h of incubation (8-h method) followed by identification (ID) and antimicrobial susceptibility testing (AST). To evaluate the accuracy of the 8-h method, ID and AST from 8-h and overnight incubated colonies were compared for the same organisms. To evaluate its clinical impact, results from 102 BC processed by the 8-h method (cases) were compared with those from 100 BC processed by overnight incubation method (controls) in a comparable period. Identification after 8-h and overnight incubation gave concordant results in 101/102 (99.0%) isolates. Among a total of 1379 microorganism-antimicrobial combinations, categorical agreement was 99.4% (1371/1379); no very major error, 7 major errors, and one minor error were observed. TTR in cases (32.8 h ± 8.3 h) was significantly (p < 0.001) shorter than in controls (55.4 h ± 13.3 h). A significant reduction was observed for duration of empirical therapy (cases 54.8 h ± 23.3 h vs controls 86.9 h ± 34.1 h, p < 0.001) and 30-day crude mortality rate (cases 16.7% vs controls 29.0%, p < 0.037). Automation and 8-h digital reading of plates from positive BC, followed by ID and AST, greatly reduce TTR and shorten the duration of antimicrobial empiric therapy, possibly improving outcome in patients with mono-microbial bloodstream infections.
Collapse
|
20
|
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is now widely used to characterize bacterial samples for clinical diagnosis, food safety control, environmental monitoring, and so on. However, existing standard approaches are only applied to analyze single colonies purified by plate culture, which limits the approaches to cultivable bacteria and makes the whole approaches time-consuming. In this work, we propose a new framework to analyze MALDI-TOF spectra of bacterial mixtures and to directly characterize each component without purification procedures. The framework is a combination of a synthetic mixture model based on a non-negative linear combination of candidate reference spectra and a statistical assessment by in silico generated spectra via a jackknife resampling. Ninety-seven model bacterial mixture samples and 8 cocultured blind-coded bacterial mixture samples, containing up to 6 strains in varied ratios in each sample, together with a reference database containing the mass spectra of 1081 strains, were used to validate the framework. High sensitivity (>80%, with error rate <5%) was achieved for balanced binary and ternary mixtures. The sensitivity was >60% for balanced quaternary and pentabasic mixtures, and 48%-71% for asymmetric situation, with error rate <5%. The work can facilitate rapid and reliable characterization of bacterial mixtures without purification procedures, which is of practical value in clinical diagnosis, food safety control, environmental monitoring, and so on. The framework can be further applied to many other spectroscopy-based analytics to interpret spectra from mixed samples.
Collapse
Affiliation(s)
- Yi Yang
- Department of Chemistry, Shanghai Stomatological Hospital , Fudan University , Shanghai 200000 , China
| | - Yu Lin
- Research School of Computer Science, College of Engineering and Computer Science , The Australian National University , Canberra ACT 0200 , Australia
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital , Fudan University , Shanghai 200000 , China
| |
Collapse
|
21
|
van Belkum A, Welker M, Pincus D, Charrier JP, Girard V. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Clinical Microbiology: What Are the Current Issues? Ann Lab Med 2018; 37:475-483. [PMID: 28840984 PMCID: PMC5587819 DOI: 10.3343/alm.2017.37.6.475] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/20/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the identification of microbial species in clinical microbiology laboratories. MALDI-TOF-MS has swiftly become the new gold-standard method owing to its key advantages of simplicity and robustness. However, as with all new methods, adoption of the MALDI-TOF MS approach is still not widespread. Optimal sample preparation has not yet been achieved for several applications, and there are continuing discussions on the need for improved database quality and the inclusion of additional microbial species. New applications such as in the field of antimicrobial susceptibility testing have been proposed but not yet translated to the level of ease and reproducibility that one should expect in routine diagnostic systems. Finally, during routine identification testing, unexpected results are regularly obtained, and the best methods for transmitting these results into clinical care are still evolving. We here discuss the success of MALDI-TOF MS in clinical microbiology and highlight fields of application that are still amenable to improvement.
Collapse
Affiliation(s)
- Alex van Belkum
- Scientific Office, bioMérieux, La Balme Les Grottes, France.
| | - Martin Welker
- Scientific Office, bioMérieux, La Balme Les Grottes, France
| | - David Pincus
- Scientific Office, bioMérieux, La Balme Les Grottes, France
| | | | | |
Collapse
|
22
|
Perner A, Gordon AC, De Backer D, Dimopoulos G, Russell JA, Lipman J, Jensen JU, Myburgh J, Singer M, Bellomo R, Walsh T. Sepsis: frontiers in diagnosis, resuscitation and antibiotic therapy. Intensive Care Med 2016; 42:1958-1969. [PMID: 27695884 DOI: 10.1007/s00134-016-4577-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/25/2016] [Indexed: 01/28/2023]
Abstract
Sepsis is a major growing global burden and a major challenge to intensive care clinicians, researchers, guideline committee members and policy makers, because of its high and increasing incidence and great pathophysiological, molecular, genetic and clinical complexity. In spite of recent progress, short-term mortality remains high and there is growing evidence of long-term morbidity and increased long-term mortality in survivors of sepsis both in developed and developing countries. Further improvement in the care of patients with sepsis will impact upon global health. In this narrative review, invited experts describe the expected challenges and progress to be made in the near future. We focus on diagnosis, resuscitation (fluids, vasopressors, inotropes, blood transfusion and hemodynamic targets) and infection (antibiotics and infection biomarkers), as these areas are key, if initial management and subsequent outcomes are to be improved in patients with sepsis.
Collapse
Affiliation(s)
- Anders Perner
- Department of Intensive Care, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Anthony C Gordon
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - George Dimopoulos
- Department of Critical Care, University Hospital ATTIKON, Medical School, University of Athens, Athens, Greece
| | - James A Russell
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey Lipman
- Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Jens-Ulrik Jensen
- CHIP and PERSIMUNE, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Myburgh
- The George Institute for Global Health, University of Sydney, Sydney, NSW, Australia
| | - Mervyn Singer
- Division of Medicine, Bloomsbury Institute of Intensive Care Medicine, University College London, London, WC1E 6BT, UK
| | - Rinaldo Bellomo
- School of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Timothy Walsh
- Anaesthetics, Critical Care, and Pain Medicine, Edinburgh University, Edinburgh, Scotland, UK
| |
Collapse
|
23
|
Abstract
Although mass spectrometry has been used clinically for decades, the advent of immunoassay technology moved the clinical laboratory to more labor saving automated platforms requiring little if any sample preparation. It became clear, however, that immunoassays lacked sufficient sensitivity and specificity necessary for measurement of certain analytes or for measurement of analytes in specific patient populations. This limitation prompted clinical laboratories to revisit mass spectrometry which could additionally be used to develop assays for which there was no commercial source. In this chapter, the clinical applications of mass spectrometry in therapeutic drug monitoring, toxicology, and steroid hormone analysis will be reviewed. Technologic advances and new clinical applications will also be discussed.
Collapse
Affiliation(s)
- D French
- University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
24
|
Jeddi F, Yapo-Kouadio GC, Normand AC, Cassagne C, Marty P, Piarroux R. Performance assessment of two lysis methods for direct identification of yeasts from clinical blood cultures using MALDI-TOF mass spectrometry. Med Mycol 2016; 55:185-192. [PMID: 27281814 DOI: 10.1093/mmy/myw038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 02/25/2016] [Accepted: 04/25/2016] [Indexed: 11/14/2022] Open
Abstract
In cases of fungal infection of the bloodstream, rapid species identification is crucial to provide adapted therapy and thereby ameliorate patient outcome. Currently, the commercial Sepsityper kit and the sodium-dodecyl sulfate (SDS) method coupled with MALDI-TOF mass spectrometry are the most commonly reported lysis protocols for direct identification of fungi from positive blood culture vials. However, the performance of these two protocols has never been compared on clinical samples. Accordingly, we performed a two-step survey on two distinct panels of clinical positive blood culture vials to identify the most efficient protocol, establish an appropriate log score (LS) cut-off, and validate the best method. We first compared the performance of the Sepsityper and the SDS protocols on 71 clinical samples. For 69 monomicrobial samples, mass spectrometry LS values were significantly higher with the SDS protocol than with the Sepsityper method (P < .0001), especially when the best score of four deposited spots was considered. Next, we established the LS cut-off for accurate identification at 1.7, based on specimen DNA sequence data. Using this LS cut-off, 66 (95.6%) and 46 (66.6%) isolates were correctly identified at the species level with the SDS and the Sepsityper protocols, respectively. In the second arm of the survey, we validated the SDS protocol on an additional panel of 94 clinical samples. Ninety-two (98.9%) of 93 monomicrobial samples were correctly identified at the species level (median LS = 2.061). Overall, our data suggest that the SDS method yields more accurate species identification of yeasts, than the Sepsityper protocol.
Collapse
Affiliation(s)
- Fakhri Jeddi
- Laboratoire de Parasitologie-Mycologie, CHU Timone, UMR MD3 Aix-Marseille Université, Marseille, France
| | - Gisèle Cha Yapo-Kouadio
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire l'Archet, CS 23079 06202 Nice Cedex 3, France
| | - Anne-Cécile Normand
- Laboratoire de Parasitologie-Mycologie, CHU Timone, UMR MD3 Aix-Marseille Université, Marseille, France
| | - Carole Cassagne
- Laboratoire de Parasitologie-Mycologie, CHU Timone, UMR MD3 Aix-Marseille Université, Marseille, France
| | - Pierre Marty
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire l'Archet, CS 23079 06202 Nice Cedex 3, France.,INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Toxines Microbiennes dans la Relation Hôte-Pathogènes, Nice F-06204 Cedex 3, France.,Université de Nice Sophia Antipolis, Faculté de Médecine, Nice F-06107 Cedex 2, France
| | - Renaud Piarroux
- Laboratoire de Parasitologie-Mycologie, CHU Timone, UMR MD3 Aix-Marseille Université, Marseille, France
| |
Collapse
|
25
|
Scott JS, Sterling SA, To H, Seals SR, Jones AE. Diagnostic performance of matrix-assisted laser desorption ionisation time-of-flight mass spectrometry in blood bacterial infections: a systematic review and meta-analysis. Infect Dis (Lond) 2016; 48:530-6. [DOI: 10.3109/23744235.2016.1165350] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Almuhayawi M, Altun O, Abdulmajeed AD, Ullberg M, Özenci V. The Performance of the Four Anaerobic Blood Culture Bottles BacT/ALERT-FN, -FN Plus, BACTEC-Plus and -Lytic in Detection of Anaerobic Bacteria and Identification by Direct MALDI-TOF MS. PLoS One 2015; 10:e0142398. [PMID: 26554930 PMCID: PMC4640713 DOI: 10.1371/journal.pone.0142398] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/21/2015] [Indexed: 11/18/2022] Open
Abstract
Detection and identification of anaerobic bacteria in blood cultures (BC) is a well-recognized challenge in clinical microbiology. We studied 100 clinical anaerobic BC isolates to evaluate the performance of BacT/ALERT-FN, -FN Plus (BioMérieux), BACTEC-Plus and -Lytic (Becton Dickinson BioSciences) BC bottles in detection and time to detection (TTD) of anaerobic bacteria. BACTEC Lytic had higher detection rate (94/100, 94%) than BacT/ALERT FN Plus (80/100, 80%) (p<0.01) in the studied material. There was no significant difference in detection of anaerobic bacteria among the remaining bottle types. The 67 anaerobic bacteria that signalled positive in all four bottle types were analyzed to compare the time to detection (TTD) and isolates were directly identified by MALDI-TOF MS. There was a significant difference in TTD among the four bottle types (p<0.0001). The shortest median TTD was 18 h in BACTEC Lytic followed by BacT/ALERT FN (23.5 h), BACTEC Plus (27 h) and finally BacT/ALERT FN Plus (38 h) bottles. In contrast, MALDI-TOF MS performed similarly in all bottle types with accurate identification in 51/67 (76%) BacT/ALERT FN, 51/67 (76%) BacT/ALERT FN Plus, 53/67 (79%) BACTEC Plus and 50/67 (75%) BACTEC Lytic bottles. In conclusion, BACTEC Lytic bottles have significantly better detection rates and shorter TTD compared to the three other bottle types. The anaerobic BC bottles are equally suitable for direct MALDI-TOF MS for rapid and reliable identification of common anaerobic bacteria. Further clinical studies are warranted to investigate the performance of anaerobic BC bottles in detection of anaerobic bacteria and identification by direct MALDI-TOF MS.
Collapse
Affiliation(s)
- Mohammed Almuhayawi
- Division of Clinical Microbiology F 72, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE 141 86, Stockholm, Sweden
- Department of Microbiology, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Osman Altun
- Division of Clinical Microbiology F 72, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE 141 86, Stockholm, Sweden
| | - Adam Dilshad Abdulmajeed
- Division of Clinical Microbiology F 72, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE 141 86, Stockholm, Sweden
| | - Måns Ullberg
- Division of Clinical Microbiology F 72, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE 141 86, Stockholm, Sweden
| | - Volkan Özenci
- Division of Clinical Microbiology F 72, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE 141 86, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
27
|
Zhang L, Smart S, Sandrin TR. Biomarker- and similarity coefficient-based approaches to bacterial mixture characterization using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Sci Rep 2015; 5:15834. [PMID: 26537565 PMCID: PMC4633581 DOI: 10.1038/srep15834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/01/2015] [Indexed: 01/12/2023] Open
Abstract
MALDI-TOF MS profiling has been shown to be a rapid and reliable method to characterize pure cultures of bacteria. Currently, there is keen interest in using this technique to identify bacteria in mixtures. Promising results have been reported with two- or three-isolate model systems using biomarker-based approaches. In this work, we applied MALDI-TOF MS-based methods to a more complex model mixture containing six bacteria. We employed: 1) a biomarker-based approach that has previously been shown to be useful in identification of individual bacteria in pure cultures and simple mixtures and 2) a similarity coefficient-based approach that is routinely and nearly exclusively applied to identification of individual bacteria in pure cultures. Both strategies were developed and evaluated using blind-coded mixtures. With regard to the biomarker-based approach, results showed that most peaks in mixture spectra could be assigned to those found in spectra of each component bacterium; however, peaks shared by two isolates as well as peaks that could not be assigned to any individual component isolate were observed. For two-isolate blind-coded samples, bacteria were correctly identified using both similarity coefficient- and biomarker-based strategies, while for blind-coded samples containing more than two isolates, bacteria were more effectively identified using a biomarker-based strategy.
Collapse
Affiliation(s)
- Lin Zhang
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069
| | - Sonja Smart
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069
| | - Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069
| |
Collapse
|
28
|
van Belkum A, Chatellier S, Girard V, Pincus D, Deol P, Dunne WM. Progress in proteomics for clinical microbiology: MALDI-TOF MS for microbial species identification and more. Expert Rev Proteomics 2015; 12:595-605. [DOI: 10.1586/14789450.2015.1091731] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Kohlmann R, Hoffmann A, Geis G, Gatermann S. MALDI-TOF mass spectrometry following short incubation on a solid medium is a valuable tool for rapid pathogen identification from positive blood cultures. Int J Med Microbiol 2015; 305:469-79. [PMID: 25953498 DOI: 10.1016/j.ijmm.2015.04.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/09/2015] [Accepted: 04/20/2015] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Rapid identification of the causative microorganism is a key element in appropriate antimicrobial therapy of bloodstream infections. Whereas traditional analysis of positive blood cultures requires subculture over at least 16-24h prior to pathogen identification by, e.g. matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), sample preparation procedures enabling direct MALDI-TOF MS, i.e. without preceding subculture, are associated with additional effort and costs. Hence, we integrated an alternative MALDI-TOF MS approach in diagnostic routine using a short incubation on a solid medium. MATERIALS AND METHODS Positive blood cultures were routinely plated on chocolate agar plates and incubated for 4h (37 °C, 5% CO2). Subsequently, MALDI-TOF MS using a Microflex LT instrument (Bruker Daltonics) and direct smear method was performed once per sample. For successful identification of bacteria at species level, score cut-off values were used as proposed by the manufacturer (≥ 2.0) and in a modified form (≥ 1.5 for MALDI-TOF MS results referring to Gram-positive cocci and ≥ 1.7 for MALDI-TOF MS results referring to bacteria other than Gram-positive cocci). Further data analysis also included an assessment of the clinical impact of the MALDI-TOF MS result. RESULTS Applying the modified score cut-off values, our approach led to an overall correct species identification in 69.5% with misidentification in 3.4% (original cut-offs: 49.2% and 1.8%, respectively); for Gram-positive cocci, correct identification in 68.4% (100% for Staphylococcus aureus and enterococci, 80% for beta-hemolytic streptococci), for Gram-negative bacteria, correct identification in 97.6%. In polymicrobial blood cultures, in 72.7% one of the pathogens was correctly identified. Results were not reliable for Gram-positive rods and yeasts. The approach was easy to implement in diagnostic routine. In cases with available clinical data and successful pathogen identification, in 51.1% our approach allowed an optimized treatment recommendation. CONCLUSION MALDI-TOF MS following 4h pre-culture is a valuable tool for rapid pathogen identification from positive blood cultures, allowing easy integration in diagnostic routine and the opportunity of considerably earlier treatment adaptation.
Collapse
Affiliation(s)
- Rebekka Kohlmann
- Department of Medical Microbiology, Ruhr-University Bochum, Universitaetsstrasse 150, Bochum, Germany; Institute of Medical Laboratory Diagnostics (IML) Bochum GmbH, Castroper Strasse 45, Bochum, Germany.
| | - Alexander Hoffmann
- Institute of Medical Laboratory Diagnostics (IML) Bochum GmbH, Castroper Strasse 45, Bochum, Germany
| | - Gabriele Geis
- Institute of Medical Laboratory Diagnostics (IML) Bochum GmbH, Castroper Strasse 45, Bochum, Germany
| | - Sören Gatermann
- Department of Medical Microbiology, Ruhr-University Bochum, Universitaetsstrasse 150, Bochum, Germany; Institute of Medical Laboratory Diagnostics (IML) Bochum GmbH, Castroper Strasse 45, Bochum, Germany
| |
Collapse
|
30
|
Dixon P, Davies P, Hollingworth W, Stoddart M, MacGowan A. A systematic review of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry compared to routine microbiological methods for the time taken to identify microbial organisms from positive blood cultures. Eur J Clin Microbiol Infect Dis 2015; 34:863-76. [DOI: 10.1007/s10096-015-2322-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/09/2015] [Indexed: 12/12/2022]
|
31
|
Bourassa L, Butler-Wu SM. MALDI-TOF Mass Spectrometry for Microorganism Identification. METHODS IN MICROBIOLOGY 2015. [DOI: 10.1016/bs.mim.2015.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Abstract
Abstract
BACKGROUND
First introduced into clinical microbiology laboratories in Europe, MALDI-TOF MS is being rapidly embraced by laboratories around the globe. Although it has multiple applications, its widespread adoption in clinical microbiology relates to its use as an inexpensive, easy, fast, and accurate method for identification of grown bacteria and fungi based on automated analysis of the mass distribution of bacterial proteins.
CONTENT
This review provides a historical perspective on this new technology. Modern applications in the clinical microbiology laboratory are reviewed with a focus on the most recent publications in the field. Identification of aerobic and anaerobic bacteria, mycobacteria, and fungi are discussed, as are applications for testing urine and positive blood culture bottles. The strengths and limitations of MALDI-TOF MS applications in clinical microbiology are also addressed.
SUMMARY
MALDI-TOF MS is a tool for rapid, accurate, and cost-effective identification of cultured bacteria and fungi in clinical microbiology. The technology is automated, high throughput, and applicable to a broad range of common as well as esoteric bacteria and fungi. MALDI-TOF MS is an incontrovertibly beneficial technology for the clinical microbiology laboratory.
Collapse
Affiliation(s)
- Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, and
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
33
|
Burillo A, Bouza E. Use of rapid diagnostic techniques in ICU patients with infections. BMC Infect Dis 2014; 14:593. [PMID: 25430913 PMCID: PMC4247221 DOI: 10.1186/s12879-014-0593-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 10/28/2014] [Indexed: 12/12/2022] Open
Abstract
Background Infection is a common complication seen in ICU patients. Given the correlation between infection and mortality in these patients, a rapid etiological diagnosis and the determination of antimicrobial resistance markers are of paramount importance, especially in view of today's globally spread of multi drug resistance microorganisms. This paper reviews some of the rapid diagnostic techniques available for ICU patients with infections. Methods A narrative review of recent peer-reviewed literature (published between 1995 and 2014) was performed using as the search terms: Intensive care medicine, Microbiological techniques, Clinical laboratory techniques, Diagnosis, and Rapid diagnosis, with no language restrictions. Results The most developed microbiology fields for a rapid diagnosis of infection in critically ill patients are those related to the diagnosis of bloodstream infection, pneumonia -both ventilator associated and non-ventilator associated-, urinary tract infection, skin and soft tissue infections, viral infections and tuberculosis. Conclusions New developments in the field of microbiology have served to shorten turnaround times and optimize the treatment of many types of infection. Although there are still some unresolved limitations of the use of molecular techniques for a rapid diagnosis of infection in the ICU patient, this approach holds much promise for the future.
Collapse
Affiliation(s)
| | - Emilio Bouza
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, Madrid, 28007, Spain.
| |
Collapse
|
34
|
Verroken A, Defourny L, Lechgar L, Magnette A, Delmée M, Glupczynski Y. Reducing time to identification of positive blood cultures with MALDI-TOF MS analysis after a 5-h subculture. Eur J Clin Microbiol Infect Dis 2014; 34:405-13. [DOI: 10.1007/s10096-014-2242-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/31/2014] [Indexed: 10/24/2022]
|
35
|
Zhang Y, Liu Y, Ma Q, Song Y, Zhang Q, Wang X, Chen F. Identification of Lactobacillus from the saliva of adult patients with caries using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. PLoS One 2014; 9:e106185. [PMID: 25166027 PMCID: PMC4148440 DOI: 10.1371/journal.pone.0106185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) has been presented as a superior method for the detection of microorganisms in body fluid samples (e.g., blood, saliva, pus, etc.) However, the performance of MALDI-TOF MS in routine identification of caries-related Lactobacillus isolates from saliva of adult patients with caries has not been determined. In the present study, we introduced a new MALDI-TOF MS system for identification of lactobacilli. Saliva samples were collected from 120 subjects with caries. Bacteria were isolated and cultured, and each isolate was identified by both 16S rRNA sequencing and MALDI-TOF MS. The identification results obtained by MALDI-TOF MS were concordant at the genus level with those of conventional 16S rRNA-based sequencing for 88.6% of lactobacilli (62/70) and 95.5% of non-lactobacilli (21/22). Up to 96 results could be obtained in parallel on a single MALDI target, suggesting that this is a reliable high-throughput approach for routine identification of lactobacilli. However, additional reference strains are necessary to increase the sensitivity and specificity of species-level identification.
Collapse
Affiliation(s)
- Yifei Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Yingyi Liu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Qingwei Ma
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yeqing Song
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
36
|
Gorton RL, Ramnarain P, Barker K, Stone N, Rattenbury S, McHugh TD, Kibbler CC. Comparative analysis of Gram's stain, PNA-FISH and Sepsityper with MALDI-TOF MS for the identification of yeast direct from positive blood cultures. Mycoses 2014; 57:592-601. [DOI: 10.1111/myc.12205] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Rebecca L. Gorton
- UK Clinical Mycology Network (UKCMN) Regional Laboratory; Department of Microbiology; Royal Free Hospital; Hampstead UK
- Centre for Clinical Microbiology; Department of Infection and Immunity; Royal Free Hospital Campus; UCL; London UK
| | - P. Ramnarain
- UK Clinical Mycology Network (UKCMN) Regional Laboratory; Department of Microbiology; Royal Free Hospital; Hampstead UK
| | - K. Barker
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Canada
| | - N. Stone
- Department of Infection; St. Thomas' Hospital; London UK
| | - S. Rattenbury
- UK Clinical Mycology Network (UKCMN) Regional Laboratory; Department of Microbiology; Royal Free Hospital; Hampstead UK
| | - T. D. McHugh
- Centre for Clinical Microbiology; Department of Infection and Immunity; Royal Free Hospital Campus; UCL; London UK
| | - C. C. Kibbler
- UK Clinical Mycology Network (UKCMN) Regional Laboratory; Department of Microbiology; Royal Free Hospital; Hampstead UK
| |
Collapse
|
37
|
Schieffer K, Tan K, Stamper P, Somogyi A, Andrea S, Wakefield T, Romagnoli M, Chapin K, Wolk D, Carroll K. Multicenter evaluation of the Sepsityper™ extraction kit and MALDI-TOF MS for direct identification of positive blood culture isolates using the BD BACTEC™ FX and VersaTREK®
diagnostic blood culture systems. J Appl Microbiol 2014; 116:934-41. [DOI: 10.1111/jam.12434] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/17/2013] [Accepted: 12/31/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - K.E. Tan
- Johns Hopkins University; Baltimore MD USA
| | | | | | | | | | | | - K.C. Chapin
- Rhode Island Hospital; Providence RI USA
- Brown University; Providence RI USA
| | - D.M. Wolk
- University of Arizona; Tucson AZ USA
- Geisinger Health System; Danville PA USA
| | - K.C. Carroll
- The Johns Hopkins Hospital; Baltimore MD USA
- Johns Hopkins University; Baltimore MD USA
| |
Collapse
|
38
|
Nagy E. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a new possibility for the identification and typing of anaerobic bacteria. Future Microbiol 2014; 9:217-33. [DOI: 10.2217/fmb.13.150] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ABSTRACT: Anaerobic bacteria predominate in the normal flora of humans and are important, often life-threatening pathogens in mixed infections originating from the indigenous microbiota. The isolation and identification of anaerobes by phenotypic and DNA-based molecular methods at a species level is time-consuming and laborious. Following the successful adaptation of the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the routine laboratory identification of bacteria, the extensive development of a database has been initiated to use this method for the identification of anaerobic bacteria. Not only frequently isolated anaerobic species, but also newly recognized and taxonomically rearranged genera and species can be identified using direct smear samples or whole-cell protein extraction, and even phylogenetically closely related species can be identified correctly by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Typing of anaerobic bacteria on a subspecies level, determination of antibiotic resistance and direct identification of blood culture isolates will revolutionize anaerobe bacteriology in the near future.
Collapse
Affiliation(s)
- Elizabeth Nagy
- Institute of Clinical Microbiology, University of Szeged, 6701 Szeged, PO Box 427, Hungary
| |
Collapse
|
39
|
Calderaro A, Martinelli M, Motta F, Larini S, Arcangeletti MC, Medici MC, Chezzi C, De Conto F. Comparison of peptide nucleic acid fluorescence in situ hybridization assays with culture-based matrix-assisted laser desorption/ionization-time of flight mass spectrometry for the identification of bacteria and yeasts from blood cultures and cerebrospinal fluid cultures. Clin Microbiol Infect 2014; 20:O468-75. [PMID: 24304149 DOI: 10.1111/1469-0691.12490] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/29/2013] [Accepted: 11/29/2013] [Indexed: 11/29/2022]
Abstract
Peptide nucleic acid fluorescence in situ hybridization (PNA FISH) is a molecular diagnostic tool for the rapid detection of pathogens directly from liquid media. The aim of this study was to prospectively evaluate PNA FISH assays in comparison with culture-based matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) identification, as a reference method, for both blood and cerebrospinal fluid (CSF) cultures, during a 1-year investigation. On the basis of the Gram stain microscopy results, four different PNA FISH commercially available assays were used ('Staphylococcus aureus/CNS', 'Enterococcus faecalis/OE', 'GNR Traffic Light' and 'Yeasts Traffic Light' PNA FISH assays, AdvanDx). The four PNA FISH assays were applied to 956 positive blood cultures (921 for bacteria and 35 for yeasts) and 11 CSF cultures. Among the 921 blood samples positive for bacteria, PNA FISH gave concordant results with MALDI-TOF MS in 908/921 (98.64%) samples, showing an agreement of 99.4% in the case of monomicrobial infections. As regards yeasts, the PNA FISH assay showed a 100% agreement with the result obtained by MALDI-TOF MS. When PNA FISH assays were tested on the 11 CSF cultures, the results agreed with the reference method in all cases (100%). PNA FISH assays provided species identification at least one work-day before the MALDI-TOF MS culture-based identification. PNA FISH assays showed an excellent efficacy in the prompt identification of main pathogens, yielding a significant reduction in reporting time and leading to more appropriate patient management and therapy in cases of sepsis and severe infections.
Collapse
Affiliation(s)
- A Calderaro
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Dudley E. MALDI Profiling and Applications in Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:33-58. [DOI: 10.1007/978-3-319-06068-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Wang MC, Lin WH, Yan JJ, Fang HY, Kuo TH, Tseng CC, Wu JJ. Early identification of microorganisms in blood culture prior to the detection of a positive signal in the BACTEC FX system using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2013; 48:419-24. [PMID: 24388584 DOI: 10.1016/j.jmii.2013.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is a valuable method for rapid identification of blood stream infection (BSI) pathogens. Integration of MALDI-TOF MS and blood culture system can speed the identification of causative BSI microorganisms. MATERIALS AND METHODS We investigated the minimal microorganism concentrations of common BSI pathogens required for positive blood culture using BACTEC FX and for positive identification using MALDI-TOF MS. The time to detection with positive BACTEC FX and minimal incubation time with positive MALDI-TOF MS identification were determined for earlier identification of common BSI pathogens. RESULTS The minimal microorganism concentrations required for positive blood culture using BACTEC FX were >10(7)-10(8) colony forming units/mL for most of the BSI pathogens. The minimal microorganism concentrations required for identification using MALDI-TOF MS were > 10(7) colony forming units/mL. Using simulated BSI models, one can obtain enough bacterial concentration from blood culture bottles for successful identification of five common Gram-positive and Gram-negative bacteria using MALDI-TOF MS 1.7-2.3 hours earlier than the usual time to detection in blood culture systems. CONCLUSION This study provides an approach to earlier identification of BSI pathogens prior to the detection of a positive signal in the blood culture system using MALDI-TOF MS, compared to current methods. It can speed the time for identification of BSI pathogens and may have benefits of earlier therapy choice and on patient outcome.
Collapse
Affiliation(s)
- Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hung Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jing-Jou Yan
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Yi Fang
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Te-Hui Kuo
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chin-Chung Tseng
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
42
|
Evaluation of the nanosphere verigene gram-positive blood culture assay with the VersaTREK blood culture system and assessment of possible impact on selected patients. J Clin Microbiol 2013; 51:3988-92. [PMID: 24048531 DOI: 10.1128/jcm.01889-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Verigene Gram-positive blood culture (BC-GP) assay (Nanosphere, Northbrook, IL) is a molecular method for the rapid identification of Gram-positive organisms and resistance markers directly from blood culture bottles. A total of 148 VersaTREK REDOX 1 40-ml aerobic bottles demonstrating Gram-positive bacteria were tested. Results were compared with those from conventional biochemical and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) identifications. We obtained isolates of methicillin-resistant Staphylococcus aureus (MRSA) (24), methicillin-susceptible Staphylococcus aureus (MSSA) (14), methicillin-resistant Staphylococcus epidermidis (MRSE) (17), methicillin-susceptible Staphylococcus epidermidis (MSSE) (9), other coagulase-negative staphylococci (19), Streptococcus salivarius (5), Streptococcus parasanguinis (2), Streptococcus sanguinis (1), Streptococcus cristatus (1), the Streptococcus bovis group (5), Streptococcus agalactiae (9), the Streptococcus anginosus group (1), Streptococcus pneumoniae (6), vancomycin-resistant Enterococcus faecium (VRE FCM) (16), vancomycin-susceptible Enterococcus faecalis (3), Aerococcus viridans (2), Bacillus (6), Corynebacterium (8), Lactobacillus (2), Micrococcus (2), Neisseria mucosa (1), Escherichia coli (3), Candida tropicalis (1), Propionibacterium (1), and Rothia (1). Overall agreement with the culture results was 95%. A total of 137 of 138 (99%) monomicrobial cultures were concordant. We tested 9 polymicrobial samples and found 33% agreement. A chart review of 31 patients with MRSA, MSSA, or VRE demonstrated that the Nanosphere BC-GP assay might have led to more appropriate antibiotic selection for these patients an average of 42 h earlier. Additionally, contact isolation could have been initiated an average of 37 h earlier for patients with MRSA or VRE. The BC-GP assay may have a positive impact on patient care, health care costs, and antibiotic stewardship.
Collapse
|