1
|
Seo H, Hyun J, Kim H, Park S, Chung H, Bae S, Jung J, Kim MJ, Kim SH, Lee SO, Choi SH, Kim YS, Chong YP. Risk and Outcome of Infective Endocarditis in Streptococcal Bloodstream Infections according to Streptococcal Species. Microbiol Spectr 2023; 11:e0104923. [PMID: 37284757 PMCID: PMC10434186 DOI: 10.1128/spectrum.01049-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
This study aimed to identify which streptococcal species are closely associated with infective endocarditis (IE) and to evaluate risk factors for mortality in patients with streptococcal IE. We performed a retrospective cohort study of all patients with streptococcal bloodstream infection (BSI) from January 2010 to June 2020 in a tertiary hospital in South Korea. We compared clinical and microbiological characteristics of streptococcal BSIs according to the diagnosis of IE. We performed multivariate analysis to evaluate the risk of IE according to streptococcal species and risk factors for mortality in streptococcal IE. A total of 2,737 patients were identified during the study period, and 174 (6.4%) were diagnosed with IE. The highest IE prevalence was in patients with Streptococcus mutans BSI (33% [9/27]) followed by S. sanguinis (31% [20/64]), S. gordonii (23% [5/22]), S. gallolyticus (16% [12/77]), and S. oralis (12% [14/115]). In multivariate analysis, previous IE, high-grade BSI, native valve disease, prosthetic valve, congenital heart disease, and community-onset BSI were independent risk factors for IE. After adjusting for these factors, S. sanguinis (adjusted OR [aOR], 7.75), S. mutans (aOR, 5.50), and S. gallolyticus (aOR, 2.57) were significantly associated with higher risk of IE, whereas S. pneumoniae (aOR, 0.23) and S. constellatus (aOR, 0.37) were associated with lower risk of IE. Age, hospital-acquired BSI, ischemic heart disease, and chronic kidney disease were independent risk factors for mortality in streptococcal IE. Our study points to significant differences in the prevalence of IE in streptococcal BSI according to species. IMPORTANCE Our study of risk of infective endocarditis in patients with streptococcal bloodstream infection demonstrated that Streptococcus sanguinis, S. mutans, and S. gallolyticus were significantly associated with higher risk of infective endocarditis. However, when we evaluated the performance of echocardiography in patients with streptococcal bloodstream infection, patients with S. mutans and S. gordonii bloodstream infection had a tendency of low performance in echocardiography. There are significant differences in the prevalence of infective endocarditis in streptococcal bloodstream infection according to species. Therefore, performing echocardiography in streptococcal bloodstream infection with a high prevalence of, and significant association with, infective endocarditis is desirable.
Collapse
Affiliation(s)
- Hyeonji Seo
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Junho Hyun
- Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Haein Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sunghee Park
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyemin Chung
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seongman Bae
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jiwon Jung
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Min Jae Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang-Oh Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang-Ho Choi
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yang Soo Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yong Pil Chong
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Shrimali T, Malhotra S, Relhan N, Tak V, Choudhary SK, Gupta N, Singh AK. Streptococcus parasanguinis: An emerging pathogen causing neonatal endocarditis: A case report. Access Microbiol 2023; 5:acmi000576.v4. [PMID: 37424549 PMCID: PMC10323779 DOI: 10.1099/acmi.0.000576.v4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Background. The microbial infection of the endocardium, popularly known as Infective Endocarditis (IE), is typically classified on the basis of anatomy, valve nativity and its associated microbiology. As per the associated microbiology, Staphylococcus aureus is the most common microorganism responsible for the cause of IE. Even though, the Streptococcus group accounts for a smaller percentage of IE, however this doesn't give us the liberty of ignoring the high mortality and morbidity associated with this pathogen. Case presentation. We report an unusual case of neonatal sepsis, complicated with endocarditis, caused by penicillin resistant Streptococcus parasanguinis . The neonate however died of the same despite all efforts. The said baby was given birth by a mother with gestational diabetes mellitus. Conclusion High index of clinical suspicion and prompt diagnosis are the most important factors of patient management, especially in cases of life threatening neonatal infections. In such conditions a coordinated interdepartmental approach is very much needed.
Collapse
Affiliation(s)
- Twishi Shrimali
- Microbiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan
| | - Shikhir Malhotra
- Microbiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan
| | - Nidhi Relhan
- Microbiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan
| | - Vibhor Tak
- Microbiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan
| | | | - Neeraj Gupta
- Neonatology, All India Institute of Medical Sciences, Jodhpur, Rajathan
| | | |
Collapse
|
3
|
Chahal G, Quintana-Hayashi MP, Gaytán MO, Benktander J, Padra M, King SJ, Linden SK. Streptococcus oralis Employs Multiple Mechanisms of Salivary Mucin Binding That Differ Between Strains. Front Cell Infect Microbiol 2022; 12:889711. [PMID: 35782137 PMCID: PMC9247193 DOI: 10.3389/fcimb.2022.889711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus oralis is an oral commensal and opportunistic pathogen that can enter the bloodstream and cause bacteremia and infective endocarditis. Here, we investigated the mechanisms of S. oralis binding to oral mucins using clinical isolates, isogenic mutants and glycoconjugates. S. oralis bound to both MUC5B and MUC7, with a higher level of binding to MUC7. Mass spectrometry identified 128 glycans on MUC5B, MUC7 and the salivary agglutinin (SAG). MUC7/SAG contained a higher relative abundance of Lewis type structures, including Lewis b/y, sialyl-Lewis a/x and α2,3-linked sialic acid, compared to MUC5B. S. oralis subsp. oralis binding to MUC5B and MUC7/SAG was inhibited by Lewis b and Lacto-N-tetraose glycoconjugates. In addition, S. oralis binding to MUC7/SAG was inhibited by sialyl Lewis x. Binding was not inhibited by Lacto-N-fucopentaose, H type 2 and Lewis x conjugates. These data suggest that three distinct carbohydrate binding specificities are involved in S. oralis subsp. oralis binding to oral mucins and that the mechanisms of binding MUC5B and MUC7 differ. Efficient binding of S. oralis subsp. oralis to MUC5B and MUC7 required the gene encoding sortase A, suggesting that the adhesin(s) are LPXTG-containing surface protein(s). Further investigation demonstrated that one of these adhesins is the sialic acid binding protein AsaA.
Collapse
Affiliation(s)
- Gurdeep Chahal
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Meztlli O. Gaytán
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children´s Hospital, Columbus, OH, United States
| | - John Benktander
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Medea Padra
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Samantha J. King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children´s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Sara K. Linden, ; Samantha J. King,
| | - Sara K. Linden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Sara K. Linden, ; Samantha J. King,
| |
Collapse
|
4
|
Król J, Nowakiewicz A, Błaszków A, Brodala M, Domagała A, Prassol AN, Sławska D, Wojtynia J. Genetic diversity of oral streptococci in the guinea pig as assessed by sequence analysis of the 16S rRNA and groEL genes. Folia Microbiol (Praha) 2021; 67:311-318. [PMID: 34932210 PMCID: PMC8933309 DOI: 10.1007/s12223-021-00936-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 11/28/2021] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to characterize bacteria of the genus Streptococcus isolated from the oral cavity of the guinea pig as well as to assess the significance of these microorganisms as potential veterinary and human pathogens. Sixty-two streptococcal isolates recovered from 27 clinically healthy guinea pigs were examined genotypically by sequencing the 16S rRNA and groEL genes. Among these isolates, only 13 could be assigned to a species described previously (mainly Streptococcus parasanguinis, S. mitis and S. suis), and the majority of the remaining ones differed considerably from the streptococcal species known to date (16S rRNA and groEL sequence similarities were < 97% and < 87%, respectively). Based on 16S rRNA sequences, these unidentified isolates were divided into seven groups (clades), of which clades I through III comprised most of the isolates examined and had also the widest distribution among guinea pig colonies. Upon groEL gene sequence analysis, however, members of the three clades grouped together without forming such distinct clusters. The remaining clades distinguished by 16S rRNA sequencing could also be discerned by the second gene, and they contained only a few isolates often restricted to one or a few animal colonies. The present work reveals that the guinea pig mouth is inhabited by a vast number of phylogenetically diverse, so far unrecognized populations of streptococci, most of them being apparently host-specific genomospecies. On the contrary, S. parasanguinis and S. mitis are also common human commensals and S. suis is a well-recognized zoonotic pathogen.
Collapse
Affiliation(s)
- Jarosław Król
- Department of Pathology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, St. Norwida 31, 50-375, Wrocław, Poland.
| | - Aneta Nowakiewicz
- Sub-Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, St. Akademicka 12, 20-033, Lublin, Poland
| | - Alicja Błaszków
- Student of the Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wrocław, Poland
| | - Maria Brodala
- Student of the Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wrocław, Poland
| | - Adrianna Domagała
- Student of the Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wrocław, Poland
| | - Anna-Nicole Prassol
- Student of the Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wrocław, Poland
| | - Dominika Sławska
- Student of the Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wrocław, Poland
| | - Julita Wojtynia
- Student of the Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
5
|
Gaytán MO, Singh AK, Woodiga SA, Patel SA, An SS, Vera-Ponce de León A, McGrath S, Miller AR, Bush JM, van der Linden M, Magrini V, Wilson RK, Kitten T, King SJ. A novel sialic acid-binding adhesin present in multiple species contributes to the pathogenesis of Infective endocarditis. PLoS Pathog 2021; 17:e1009222. [PMID: 33465168 PMCID: PMC7846122 DOI: 10.1371/journal.ppat.1009222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/29/2021] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial binding to platelets is a key step in the development of infective endocarditis (IE). Sialic acid, a common terminal carbohydrate on host glycans, is the major receptor for streptococci on platelets. So far, all defined interactions between streptococci and sialic acid on platelets are mediated by serine-rich repeat proteins (SRRPs). However, we identified Streptococcus oralis subsp. oralis IE-isolates that bind sialic acid but lack SRRPs. In addition to binding sialic acid, some SRRP- isolates also bind the cryptic receptor β-1,4-linked galactose through a yet unknown mechanism. Using comparative genomics, we identified a novel sialic acid-binding adhesin, here named AsaA (associated with sialic acid adhesion A), present in IE-isolates lacking SRRPs. We demonstrated that S. oralis subsp. oralis AsaA is required for binding to platelets in a sialic acid-dependent manner. AsaA comprises a non-repeat region (NRR), consisting of a FIVAR/CBM and two Siglec-like and Unique domains, followed by 31 DUF1542 domains. When recombinantly expressed, Siglec-like and Unique domains competitively inhibited binding of S. oralis subsp. oralis and directly interacted with sialic acid on platelets. We further demonstrated that AsaA impacts the pathogenesis of S. oralis subsp. oralis in a rabbit model of IE. Additionally, we found AsaA orthologues in other IE-causing species and demonstrated that the NRR of AsaA from Gemella haemolysans blocked binding of S. oralis subsp. oralis, suggesting that AsaA contributes to the pathogenesis of multiple IE-causing species. Finally, our findings provide evidence that sialic acid is a key factor for bacterial-platelets interactions in a broader range of species than previously appreciated, highlighting its potential as a therapeutic target. Infective endocarditis (IE) is typically a bacterial infection of the heart valves that causes high mortality. Infective endocarditis can affect people with preexisting lesions on their heart valves (Subacute IE). These lesions contain platelets and other host factors to which bacteria can bind. Growth of bacteria and accumulation of host factors results in heart failure. Therefore, the ability of bacteria to bind platelets is key to the development of IE. Here, we identified a novel bacterial protein, AsaA, which helps bacteria bind to platelets and contributes to the development of disease. Although this virulence factor was characterized in Streptococcus oralis, a leading cause of IE, we demonstrated that AsaA is also present in several other IE-causing bacterial species and is likely relevant to their ability to cause disease. We showed that AsaA binds to sialic acid, a terminal sugar present on platelets, thereby demonstrating that sialic acid serves as a receptor for a wider range of IE-causing bacteria than previously appreciated, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Meztlli O. Gaytán
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Anirudh K. Singh
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Shireen A. Woodiga
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Surina A. Patel
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Seon-Sook An
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Arturo Vera-Ponce de León
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Sean McGrath
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Anthony R. Miller
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Jocelyn M. Bush
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Mark van der Linden
- Institute of Medical Microbiology, German National Reference Center for Streptococci, University Hospital (RWTH), Aachen, Germany
| | - Vincent Magrini
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Richard K. Wilson
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Samantha J. King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
6
|
Chen Q, Wu G, Chen H, Li H, Li S, Zhang C, Pang X, Wang L, Zhao L, Shen J. Quantification of Human Oral and Fecal Streptococcus parasanguinis by Use of Quantitative Real-Time PCR Targeting the groEL Gene. Front Microbiol 2020; 10:2910. [PMID: 31921079 PMCID: PMC6933288 DOI: 10.3389/fmicb.2019.02910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/03/2019] [Indexed: 11/13/2022] Open
Abstract
Two pairs of species-specific PCR primers targeting the housekeeping groEL gene, Spa146f-Spa525r and Spa93f-Spa525r, were designed to quantify human oral and fecal Streptococcus parasanguinis. Blast analysis against reference sequences of NCBI nucleotide collection database and the Chaperonin Sequence Database showed the forward primers Spa146f and Spa93f 100% matched only with S. parasanguinis, and the in silico Simulated PCR algorithm showed both primer pairs hit only S. parasanguinis groEL gene in Chaperonin Sequence Database. The two primer pairs were respectively used to perform PCR with saliva DNA of each of 6 human subjects, and the amplicons of individual PCR reactions were cloned. The phylogenetic analysis showed cloned sequences were all affiliated to S. parasanguinis, which further validates the specificity of two primer pairs, and that individual subjects harbored multiple genotypes of S. parasanguinis in saliva. By spiking S. parasanguinis into human fecal samples, we found the quantification limit of quantitative real-time PCR (qPCR) assays for both primer pairs was 5-6 log10 groEL copies/g feces. Human fecal S. parasanguinis amounts quantified with qPCR using each of the two primer pairs correlated well with those determined with metagenomic sequencing. qPCR with either primer pair showed periodontitis patients had significantly lower level of saliva S. parasanguinis than healthy people. In both feces and saliva, the S. parasanguinis abundances quantified with two primer pairs exhibited strong and significant correlation. Our results show that the two S. parasanguinis-specific primer pairs can be used to quantify and profile human saliva and fecal S. parasanguinis.
Collapse
Affiliation(s)
- Qiurong Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guojun Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Pang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Linghua Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Shen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Antimicrobial Activity of Exebacase (Lysin CF-301) against the Most Common Causes of Infective Endocarditis. Antimicrob Agents Chemother 2019; 63:AAC.01078-19. [PMID: 31332073 DOI: 10.1128/aac.01078-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Exebacase, a recombinantly produced lysin (cell wall hydrolase), and comparator antibiotics were tested by the broth microdilution method against strain sets of Staphylococcus and Streptococcus spp., which are the most common causes of infective endocarditis in humans. Exebacase was active against all Staphylococcus spp. tested, including S. aureus and coagulase-negative staphylococci (MIC50/90, 0.5/1 μg/ml). Activity against Streptococcus spp. was variable, with S. pyogenes, S. agalactiae, and S. dysgalactiae (MIC50/90, 1/2 μg/ml) among the most susceptible.
Collapse
|
8
|
Streptococcus oralis subsp. dentisani Produces Monolateral Serine-Rich Repeat Protein Fibrils, One of Which Contributes to Saliva Binding via Sialic Acid. Infect Immun 2019; 87:IAI.00406-19. [PMID: 31308084 DOI: 10.1128/iai.00406-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022] Open
Abstract
Our studies reveal that the oral colonizer and cause of infective endocarditis Streptococcus oralis subsp. dentisani displays a striking monolateral distribution of surface fibrils. Furthermore, our data suggest that these fibrils impact the structure of adherent bacterial chains. Mutagenesis studies indicate that these fibrils are dependent on three serine-rich repeat proteins (SRRPs), here named fibril-associated protein A (FapA), FapB, and FapC, and that each SRRP forms a different fibril with a distinct distribution. SRRPs are a family of bacterial adhesins that have diverse roles in adhesion and that can bind to different receptors through modular nonrepeat region domains. Amino acid sequence and predicted structural similarity searches using the nonrepeat regions suggested that FapA may contribute to interspecies interactions, that FapA and FapB may contribute to intraspecies interactions, and that FapC may contribute to sialic acid binding. We demonstrate that a fapC mutant was significantly reduced in binding to saliva. We confirmed a role for FapC in sialic acid binding by demonstrating that the parental strain was significantly reduced in adhesion upon addition of a recombinantly expressed, sialic acid-specific, carbohydrate binding module, while the fapC mutant was not reduced. However, mutation of a residue previously shown to be essential for sialic acid binding did not decrease bacterial adhesion, leaving the precise mechanism of FapC-mediated adhesion to sialic acid to be defined. We also demonstrate that the presence of any one of the SRRPs is sufficient for efficient biofilm formation. Similar structures were observed on all infective endocarditis isolates examined, suggesting that this distribution is a conserved feature of this S. oralis subspecies.
Collapse
|
9
|
Su TY, Lee MH, Huang CT, Liu TP, Lu JJ. The clinical impact of patients with bloodstream infection with different groups of Viridans group streptococci by using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Medicine (Baltimore) 2018; 97:e13607. [PMID: 30558035 PMCID: PMC6320099 DOI: 10.1097/md.0000000000013607] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The accuracy of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for identifying viridans group streptococcus (VGS) was improving. However, the clinical impact of identifying VGS had not been well recognized. Our study had comprehensively studied the clinical manifestations and outcome of VGS blood stream infection by using MALDI-TOF MS for identification.This retrospective study enrolled 312 adult patients with a monomicrobial blood culture positive for VGS. Blood culture was examined through MALDI-TOF MS.The most common VGS species were the Streptococcus anginosus group (38.8%) and Streptococcus mitis group (22.8%). Most species showed resistance to erythromycin (35.6%), followed by clindamycin (25.3%) and penicillin (12.5%). Skin and soft tissue infection and biliary tract infection were significantly related to S. anginosus group bacteremia (P = .001 and P = .005, respectively). S. mitis group bacteremia was related to infective endocarditis and bacteremia with febrile neutropenia (P = .005 and P < .001, respectively). Infective endocarditis was also more likely associated with S. sanguinis group bacteremia (P = .009). S. anginosus group had less resistance rate to ampicillin, erythromycin, clindamycin, and ceftriaxone (P = .019, <.001, .001, and .046, respectively). A more staying in intensive care unit, underlying solid organ malignancy, and a shorter treatment duration were independent risk factors for 30-day mortality. This study comprehensively evaluated different VGS group and their clinical manifestations, infection sources, concomitant diseases, treatments, and outcomes. Categorizing VGS into different groups by MALDI-TOF MS could help clinical physicians well understand their clinical presentations.
Collapse
Affiliation(s)
- Ting-Yi Su
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine
| | - Ming-Hsun Lee
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine
| | - Ching-Tai Huang
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine
| | - Tsui-Ping Liu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
10
|
Zapata B, Alvarez DN, Farah S, Garcia-de-la-Maria C, Miro JM, Sakoulas G, Bayer AS, Mishra NN. Prevention of High-Level Daptomycin-Resistance Emergence In Vitro in Streptococcus mitis-oralis by Using Combination Antimicrobial Strategies. Curr Microbiol 2018; 75:1062-1067. [PMID: 29651552 DOI: 10.1007/s00284-018-1491-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/09/2018] [Indexed: 01/04/2023]
Abstract
Among the viridans group streptococci, S. mitis-oralis strains are frequently resistant to multiple β-lactams and tolerant to vancomycin (VAN). This scenario has led to the proposed clinical use of newer agents, like daptomycin (DAP) for such S. mitis-oralis strains. However, recent recognition of the rapid and durable emergence of high-level DAP-resistance (DAP-R; DAP MICs > 256 µg/ml) induced by DAP exposures in vitro and in vivo has dampened enthusiasm for such approaches. In this study, we evaluated a broad range of DAP combination regimens in vitro for their capacity to prevent emergence of high-level DAP-R in a prototype S. mitis-oralis strain (351) during serial passage experiments, including DAP + either gentamicin (GEN), rifampin (RIF), trimethoprim-sulfamethoxazole (TMP-SMX), imipenem (IMP), ceftaroline (CPT), tedizolid (TDZ), or linezolid (LDZ). In addition, we assessed selected DAP combination regimens for their ability to exert either an early bactericidal impact and/or synergistically kill the S. mitis-oralis study strain. During serial passage, three of the eight antibiotic combinations (DAP + GEN, CPT, or TMP- SMX) exhibited significantly reduced DAP MICs (≈ by 8-40 fold) vs serial exposure in DAP alone (DAP MICs > 256 µg/ml). In addition, combinations of DAP + GEN and DAP + CPT were both bactericidal and synergistic in early time-kill curve interactions.
Collapse
Affiliation(s)
- Brianne Zapata
- Divison of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Danya N Alvarez
- Divison of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Center for Infectious Diseases, California State Department of Public Health, Richmond, CA, USA
| | - Sabrina Farah
- Divison of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Jose M Miro
- Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - George Sakoulas
- Division of Host-Microbe Systems & Therapeutics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Arnold S Bayer
- Divison of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Nagendra N Mishra
- Divison of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.
- David Geffen School of Medicine at University of California, Los Angeles, CA, USA.
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor - UCLA Medical Center, Torrance, CA, USA.
| |
Collapse
|
11
|
Macrophage Polarization Alters Postphagocytosis Survivability of the Commensal Streptococcus gordonii. Infect Immun 2018; 86:IAI.00858-17. [PMID: 29229734 DOI: 10.1128/iai.00858-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
Oral streptococci are generally considered commensal organisms; however, they are becoming recognized as important associate pathogens during the development of periodontal disease as well as being associated with several systemic diseases, including as a causative agent of infective endocarditis. An important virulence determinant of these bacteria is an ability to evade destruction by phagocytic cells, yet how this subversion occurs is mostly unknown. Using Streptococcus gordonii as a model commensal oral streptococcus that is also associated with disease, we find that resistance to reactive oxygen species (ROS) with an active ability to damage phagosomes allows the bacterium to avoid destruction within macrophages. This ability to survive relies not only on the ROS resistance capabilities of the bacterium but also on ROS production by macrophages, with both being required for maximal survival of internalized bacteria. Importantly, we also show that this dependence on ROS production by macrophages for resistance has functional significance: S. gordonii intracellular survival increases when macrophages are polarized toward an activated (M1) profile, which is known to result in prolonged phagosomal ROS production compared to that of alternatively (M2) polarized macrophages. We additionally find evidence of the bacterium being capable of both delaying the maturation of and damaging phagosomes. Taken together, these results provide essential insights regarding the mechanisms through which normally commensal oral bacteria can contribute to both local and systemic inflammatory disease.
Collapse
|
12
|
Members of a new subgroup of Streptococcus anginosus harbor virulence related genes previously observed in Streptococcus pyogenes. Int J Med Microbiol 2017; 307:174-181. [DOI: 10.1016/j.ijmm.2017.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/15/2016] [Accepted: 02/24/2017] [Indexed: 11/22/2022] Open
|
13
|
Streptococcus oralis Neuraminidase Modulates Adherence to Multiple Carbohydrates on Platelets. Infect Immun 2017; 85:IAI.00774-16. [PMID: 27993975 DOI: 10.1128/iai.00774-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/15/2016] [Indexed: 11/20/2022] Open
Abstract
Adherence to host surfaces is often mediated by bacterial binding to surface carbohydrates. Although it is widely appreciated that some bacterial species express glycosidases, previous studies have not considered whether bacteria bind to multiple carbohydrates within host glycans as they are modified by bacterial glycosidases. Streptococcus oralis is a leading cause of subacute infective endocarditis. Binding to platelets is a critical step in disease; however, the mechanisms utilized by S. oralis remain largely undefined. Studies revealed that S. oralis, like Streptococcus gordonii and Streptococcus sanguinis, binds platelets via terminal sialic acid. However, unlike those organisms, S. oralis produces a neuraminidase, NanA, which cleaves terminal sialic acid. Further studies revealed that following NanA-dependent removal of terminal sialic acid, S. oralis bound exposed β-1,4-linked galactose. Adherence to both these carbohydrates required Fap1, the S. oralis member of the serine-rich repeat protein (SRRP) family of adhesins. Mutation of a conserved residue required for sialic acid binding by other SRRPs significantly reduced platelet binding, supporting the hypothesis that Fap1 binds this carbohydrate. The mechanism by which Fap1 contributes to β-1,4-linked galactose binding remains to be defined; however, binding may occur via additional domains of unknown function within the nonrepeat region, one of which shares some similarity with a carbohydrate binding module. This study is the first demonstration that an SRRP is required to bind β-1,4-linked galactose and the first time that one of these adhesins has been shown to be required for binding of multiple glycan receptors.
Collapse
|
14
|
Abstract
The viridans group streptococci are a heterogeneous group of organisms which exist as commensals in the oropharynx and the gut. They cause serious infections when they gain entry into sterile sites particularly in patients with predisposing conditions. Classification and species differentiation of these organisms has always been a challenge because of phenotypic differences between strains of the same species. Facklam's typing scheme based on six metabolic properties has been the most widely used and many commercial identification systems are based on it. Due to the ambiguity in species differentiation based on phenotypic tests, nucleic acid-based methods have been developed to improve the identification of these organisms. Results using genotypic methods such as 16S rRNA and sodA gene sequencing have been promising. Multilocus sequence analysis of seven house-keeping genes map, pfl, pyk, ppaC, rpoB, soda and tuf amplified by polymerase chain reaction was found to be an accurate alternative to other methods and could be useful in the characterisation of larger collections of isolates.
Collapse
Affiliation(s)
- T Menon
- Department of Microbiology, Dr AL Mudaliar, Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
15
|
Clinical presentation of infective endocarditis caused by different groups of non-beta haemolytic streptococci. Eur J Clin Microbiol Infect Dis 2015; 35:215-8. [PMID: 26610338 DOI: 10.1007/s10096-015-2532-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/09/2015] [Indexed: 01/22/2023]
Abstract
Streptococci are common causes of infective endocarditis (IE) and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has provided a practical tool for their species determination. We aimed to investigate if particular groups of non-beta heamolytic streptococci were associated with IE or to specific presentations thereof. The Swedish Registry of Infective Endocarditis was used to identify cases of IE caused by streptococci and a local database to identify cases of streptococcal bacteremia. The bacteria were grouped using MALDI-TOF MS and the clinical characteristics of IE caused by different groups were compared. We identified a group of 201 streptococcal IE isolates: 18 isolates belonged to the anginosus, 19 to the bovis, 140 to the mitis, 17 to the mutans, and seven to the salivarius groups. The mitis and mutans groups were significantly more common and the anginosus group less common among IE cases as compared to all cause bacteremia. Patients infected with the bovis group isolates were older, had more cardiac devices, and had more commonly prosthetic valve IE compared to IE caused by streptococci of the other groups. Twenty-one percent of patients needed surgery, and in-hospital mortality was 8% with no significant differences between the groups. Grouping of non-beta haemolytic streptococci using MALDI-TOF MS can provide a basis for decision-making in streptococcal bacteremia. IE caused by bovis group isolates have clinical characteristics distinguishing them from IE caused by other groups of Streptococcus.
Collapse
|
16
|
Menon T, Gopalakrishnan S, Ravi MS. Native valve endocarditis caused by Streptococcus oligofermentans: a case report. JMM Case Rep 2015. [DOI: 10.1099/jmmcr.0.000057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Thangam Menon
- Department of Microbiology, Dr. AL Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, India
| | - Sathyanarayanan Gopalakrishnan
- Department of Microbiology, Dr. AL Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, India
| | - Marimuthu Shanmugam Ravi
- Department of Cardiology, Madras Medical College & Rajiv Gandhi General Hospital, Chennai, India
| |
Collapse
|
17
|
Asam D, Spellerberg B. Molecular pathogenicity of Streptococcus anginosus. Mol Oral Microbiol 2014; 29:145-55. [PMID: 24848553 DOI: 10.1111/omi.12056] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2014] [Indexed: 01/21/2023]
Abstract
Streptococcus anginosus and the closely related species Streptococcus constellatus and Streptococcus intermedius, are primarily commensals of the mucosa. The true pathogenic potential of this group has been under-recognized for a long time because of difficulties in correct species identification as well as the commensal nature of these species. In recent years, streptococci of the S. anginosus group have been increasingly found as relevant microbial pathogens in abscesses and blood cultures and they play a pathogenic role in cystic fibrosis. Several international studies have shown a surprisingly high frequency of infections caused by the S. anginosus group. Recent studies and a genome-wide comparative analysis suggested the presence of multiple putative virulence factors that are well-known from other streptococcal species. However, very little is known about the molecular basis of pathogenicity in these bacteria. This review summarizes our current knowledge of pathogenicity factors and their regulation in S. anginosus.
Collapse
Affiliation(s)
- D Asam
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | | |
Collapse
|
18
|
GyrB polymorphisms accurately assign invasive viridans group streptococcal species. J Clin Microbiol 2014; 52:2905-12. [PMID: 24899021 DOI: 10.1128/jcm.01068-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Viridans group streptococci (VGS) are a heterogeneous group of medically important bacteria that cannot be accurately assigned to a particular species using conventional phenotypic methods. Although multilocus sequence analysis (MLSA) is considered the gold standard for VGS species-level identification, MLSA is not yet feasible in the clinical setting. Conversely, molecular methods, such as sodA and 16S rRNA gene sequencing, are clinically practical but not sufficiently accurate for VGS species-level identification. Here, we present data regarding the use of an ∼ 400-nucleotide internal fragment of the gene encoding DNA gyrase subunit B (GyrB) for VGS species-level identification. MLSA, internal gyrB, sodA, full-length, and 5' 16S gene sequences were used to characterize 102 unique VGS blood isolates collected from 2011 to 2012. When using the MLSA species assignment as a reference, full-length and 5' partial 16S gene and sodA sequence analyses failed to correctly assign all strains to a species. Precise species determination was particularly problematic for Streptococcus mitis and Streptococcus oralis isolates. However, the internal gyrB fragment allowed for accurate species designations for all 102 strains. We validated these findings using 54 VGS strains for which MLSA, 16S gene, sodA, and gyrB data are available at the NCBI, showing that gyrB is superior to 16S gene and sodA sequence analyses for VGS species identification. We also observed that specific polymorphisms in the 133-amino acid sequence of the internal GyrB fragment can be used to identify invasive VGS species. Thus, the GyrB amino acid sequence may offer a more practical and accurate method for classifying invasive VGS strains to the species level.
Collapse
|