1
|
Samson R, Dharne M, Khairnar K. Bacteriophages: Status quo and emerging trends toward one health approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168461. [PMID: 37967634 DOI: 10.1016/j.scitotenv.2023.168461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
The alarming rise in antimicrobial resistance (AMR) among the drug-resistant pathogens has been attributed to the ESKAPEE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, Enterobacter sp., and Escherichia coli). Recently, these AMR microbes have become difficult to treat, as they have rendered the existing therapeutics ineffective. Thus, there is an urgent need for effective alternatives to lessen or eliminate the current infections and limit the spread of emerging diseases under the "One Health" framework. Bacteriophages (phages) are naturally occurring biological resources with extraordinary potential for biomedical, agriculture/food safety, environmental protection, and energy production. Specific unique properties of phages, such as their bactericidal activity, host specificity, potency, and biocompatibility, make them desirable candidates in therapeutics. The recent biotechnological advancement has broadened the repertoire of phage applications in nanoscience, material science, physical chemistry, and soft-matter research. Herein, we present a comprehensive review, coupling the substantial aspects of phages with their applicability status and emerging opportunities in several interdependent areas under one health concept. Consolidating the recent state-of-the-art studies that integrate human, animal, plant, and environment health, the following points have been highlighted: (i) The biomedical and pharmacological advantages of phages and their antimicrobial derivatives with particular emphasis on in-vivo and clinical studies. (ii) The remarkable potential of phages to be altered, improved, and applied for drug delivery, biosensors, biomedical imaging, tissue engineering, energy, and catalysis. (iii) Resurgence of phages in biocontrol of plant, food, and animal-borne pathogens. (iv) Commercialization of phage-based products, current challenges, and perspectives.
Collapse
Affiliation(s)
- Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Krishna Khairnar
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Environmental Virology Cell (EVC), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India.
| |
Collapse
|
2
|
Mondal P, Halder P, Mallick B, Bhaumik S, Koley H, Dutta S, Dutta M. Controlling the bacterial load of Salmonella Typhi in an experimental mouse model by a lytic Salmonella phage STWB21: a phage therapy approach. BMC Microbiol 2023; 23:324. [PMID: 37924001 PMCID: PMC10623789 DOI: 10.1186/s12866-023-03040-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/03/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Salmonella enterica serotype Typhi is one of the major pathogens causing typhoid fever and a public health burden worldwide. Recently, the increasing number of multidrug-resistant strains of Salmonella spp. has made this utmost necessary to consider bacteriophages as a potential alternative to antibiotics for S. Typhi infection treatment. Salmonella phage STWB21, isolated from environmental water, has earlier been reported to be effective as a safe biocontrol agent by our group. In this study, we evaluated the efficacy of phage STWB21 in reducing the burden of salmonellosis in a mammalian host by inhibiting Salmonella Typhi invasion into the liver and spleen tissue. RESULTS Phage treatment significantly improved the survival percentage of infected mice. This study also demonstrated that oral administration of phage treatment could be beneficial in both preventive and therapeutic treatment of salmonellosis caused by S. Typhi. Altogether the result showed that the phage treatment could control tissue inflammation in mice before and after Salmonella infection. CONCLUSIONS To the best of our knowledge, this is the first report of phage therapy in a mouse model against a clinically isolated Salmonella Typhi strain that includes direct visualization of histopathology and ultrathin section microscopy images from the liver and spleen sections.
Collapse
Affiliation(s)
- Payel Mondal
- Division of Electron Microscopy, ICMR-National Institute of Cholera & Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, 700010, Kolkata, West Bengal, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera & Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, 700010, Kolkata, West Bengal, India
| | - Bani Mallick
- Division of Electron Microscopy, ICMR-National Institute of Cholera & Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, 700010, Kolkata, West Bengal, India
| | - Subhadip Bhaumik
- University Science Instrumentation Centre, The University of Burdwan, Golapbag, Burdwan, 713104, West Bengal, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera & Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, 700010, Kolkata, West Bengal, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera & Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, 700010, Kolkata, West Bengal, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera & Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, 700010, Kolkata, West Bengal, India.
| |
Collapse
|
3
|
Karn SL, Gangwar M, Kumar R, Bhartiya SK, Nath G. Phage therapy: a revolutionary shift in the management of bacterial infections, pioneering new horizons in clinical practice, and reimagining the arsenal against microbial pathogens. Front Med (Lausanne) 2023; 10:1209782. [PMID: 37928478 PMCID: PMC10620811 DOI: 10.3389/fmed.2023.1209782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
The recent approval of experimental phage therapies by the FDA and other regulatory bodies with expanded access in cases in the United States and other nations caught the attention of the media and the general public, generating enthusiasm for phage therapy. It started to alter the situation so that more medical professionals are willing to use phage therapies with conventional antibiotics. However, more study is required to fully comprehend phage therapy's potential advantages and restrictions, which is still a relatively new field in medicine. It shows promise, nevertheless, as a secure and prosperous substitute for antibiotics when treating bacterial illnesses in animals and humans. Because of their uniqueness, phage disinfection is excellent for ready-to-eat (RTE) foods like milk, vegetables, and meat products. The traditional farm-to-fork method can be used throughout the food chain to employ bacteriophages to prevent food infections at all production stages. Phage therapy improves clinical outcomes in animal models and lowers bacterial burdens in numerous preclinical investigations. The potential of phage resistance and the need to make sure that enough phages are delivered to the infection site are obstacles to employing phages in vivo. However, according to preclinical studies, phages appear to be a promising alternative to antibiotics for treating bacterial infections in vivo. Phage therapy used with compassion (a profound understanding of and empathy for another's suffering) has recently grown with many case reports of supposedly treated patients and clinical trials. This review summarizes the knowledge on the uses of phages in various fields, such as the food industry, preclinical research, and clinical settings. It also includes a list of FDA-approved bacteriophage-based products, commercial phage products, and a global list of companies that use phages for therapeutic purposes.
Collapse
Affiliation(s)
- Subhash Lal Karn
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mayank Gangwar
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajesh Kumar
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Satyanam Kumar Bhartiya
- Department of General Surgery, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Gopal Nath
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Emencheta SC, Olovo CV, Eze OC, Kalu CF, Berebon DP, Onuigbo EB, Vila MMDC, Balcão VM, Attama AA. The Role of Bacteriophages in the Gut Microbiota: Implications for Human Health. Pharmaceutics 2023; 15:2416. [PMID: 37896176 PMCID: PMC10609668 DOI: 10.3390/pharmaceutics15102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteriophages (phages) are nano-sized viruses characterized by their inherent ability to live off bacteria. They utilize diverse mechanisms to absorb and gain entry into the bacterial cell wall via the release of viral genetic material, which uses the replication mechanisms of the host bacteria to produce and release daughter progeny virions that attack the surrounding host cells. They possess specific characteristics, including specificity for particular or closely related bacterial species. They have many applications, including as potential alternatives to antibiotics against multi-resistant bacterial pathogens and as control agents in bacteria-contaminated environments. They are ubiquitously abundant in nature and have diverse biota, including in the gut. Gut microbiota describes the community and interactions of microorganisms within the intestine. As with bacteria, parasitic bacteriophages constantly interact with the host bacterial cells within the gut system and have obvious implications for human health. However, it is imperative to understand these interactions as they open up possible applicable techniques to control gut-implicated bacterial diseases. Thus, this review aims to explore the interactions of bacteriophages with bacterial communities in the gut and their current and potential impacts on human health.
Collapse
Affiliation(s)
- Stephen C. Emencheta
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, Brazil; (M.M.D.C.V.); (V.M.B.)
| | - Chinasa V. Olovo
- Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria;
| | - Osita C. Eze
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Chisom F. Kalu
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Dinebari P. Berebon
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Ebele B. Onuigbo
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Marta M. D. C. Vila
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, Brazil; (M.M.D.C.V.); (V.M.B.)
| | - Victor M. Balcão
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, Brazil; (M.M.D.C.V.); (V.M.B.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| | - Anthony A. Attama
- Department of Pharmaceutics, University of Nigeria, Nsukka 410001, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka 410001, Nigeria
| |
Collapse
|
5
|
Gómez-Ochoa SA, Pitton M, Valente LG, Sosa Vesga CD, Largo J, Quiroga-Centeno AC, Hernández Vargas JA, Trujillo-Cáceres SJ, Muka T, Cameron DR, Que YA. Efficacy of phage therapy in preclinical models of bacterial infection: a systematic review and meta-analysis. THE LANCET. MICROBE 2022; 3:e956-e968. [PMID: 36370748 DOI: 10.1016/s2666-5247(22)00288-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Antimicrobial resistance of bacterial pathogens is an increasing clinical problem and alternative approaches to antibiotic chemotherapy are needed. One of these approaches is the use of lytic bacterial viruses known as phage therapy. We aimed to assess the efficacy of phage therapy in preclinical animal models of bacterial infection. METHODS In this systematic review and meta-analysis, MEDLINE/Ovid, Embase/Ovid, CINAHL/EbscoHOST, Web of Science/Wiley, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Google Scholar were searched from inception to Sept 30, 2021. Studies assessing phage efficacy in animal models were included. Only studies that assessed the efficacy of phage therapy in treating established bacterial infections in terms of survival and bacterial abundance or density were included. Studies reporting only in-vitro or ex-vivo results and those with incomplete information were excluded. Risk-of-bias assessment was performed using the Systematic Review Centre for Laboratory Animal Experimentation tool. The main endpoints were animal survival and tissue bacterial burden, which were reported using pooled odds ratios (ORs) and mean differences with random-effects models. The I2 measure and its 95% CI were also calculated. This study is registered with PROSPERO, CRD42022311309. FINDINGS Of the 5084 references screened, 124 studies fulfilled the selection criteria. Risk of bias was high for 70 (56%) of the 124 included studies; therefore, only studies classified as having a low-to-moderate risk of bias were considered for quantitative data synthesis (n=32). Phage therapy was associated with significantly improved survival at 24 h in systemic infection models (OR 0·08 [95% CI 0·03 to 0·20]; I2=55% [95% CI 8 to 77]), skin infection (OR 0·08 [0·04 to 0·19]; I2 = 0% [0 to 79]), and pneumonia models (OR 0·13 [0·06 to 0·31]; I2=0% [0 to 68]) when compared with placebo. Animals with skin infections (mean difference -2·66 [95% CI -3·17 to -2·16]; I2 = 95% [90 to 96]) and those with pneumonia (mean difference -3·35 [-6·00 to -0·69]; I2 = 99% [98 to 99]) treated with phage therapy had significantly lower tissue bacterial loads at 5 ± 2 days of follow-up compared with placebo. INTERPRETATION Phage therapy significantly improved animal survival and reduced organ bacterial loads compared with placebo in preclinical animal models. However, high heterogeneity was observed in some comparisons. More evidence is needed to identify the factors influencing phage therapy performance to improve future clinical application. FUNDING Swiss National Foundation and Swiss Heart Foundation.
Collapse
Affiliation(s)
- Sergio Alejandro Gómez-Ochoa
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Research Center, Fundación Cardiovascular de Colombia, Bucaramanga, Colombia.
| | - Melissa Pitton
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luca G Valente
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Jorge Largo
- Internal Medicine Department, Universidad Militar Nueva Granada, Bogotá, Colombia
| | | | | | | | - Taulant Muka
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Epistudia, Bern, Switzerland
| | - David R Cameron
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Feng L, Ye W, Zhang K, Qu D, Liu W, Wu M, Han J. In vitro Digestion Characteristics of Hydrolyzed Infant Formula and Its Effects on the Growth and Development in Mice. Front Nutr 2022; 9:912207. [PMID: 35811942 PMCID: PMC9263559 DOI: 10.3389/fnut.2022.912207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Infant formula, an important food for babies, is convenient and nutritious, and hydrolyzed formulas have attracted much attention due to their non-allergicity. However, it is uncertain whether hydrolyzed formulars cause obesity and other side effects in infants. Herein, three infant formulas, standard (sIF), partially hydrolyzed (pHIF), and extensively hydrolyzed (eHIF), were analyzed in an in vitro gastrointestinal digestion model. With increasing degree of hydrolysis, the protein moleculars, and allergenicity of the proteins decreased and the long-chain polyunsaturated fatty acid content increased. Moreover, the digestion model solutions quickly digested the small fat globules and proteins in the hydrolyzed formula, allowing it to become electrostatically stable sooner. The eHIF-fed mice presented larger body sizes, and exhibited excellent exploratory and spatial memory abilities in the maze test. Based on villus height and crypt depth histological characterizations and amplicon sequencing, eHIF promoted mouse small intestine development and changed the gut microbiota composition, eventually favoring weight gain. The mouse spleen index showed that long-term infant formula consumption might be detrimental to immune system development, and the weight-bearing swimming test showed that eHIF could cause severe physical strength decline. Therefore, long-term consumption of infant formula, especially eHIF, may have both positive and negative effects on mouse growth and development, and our results might shed light on feeding formula to infants.
Collapse
Affiliation(s)
- Lifang Feng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Wei Ye
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Kuo Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Daofeng Qu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Min Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Ecology and Health Institute, Hangzhou Vocational and Technical College, Hangzhou, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- *Correspondence: Jianzhong Han,
| |
Collapse
|
7
|
Feng L, Xu M, Zhu J, Lu H. Genetic Basis of High-Pressure Tolerance of a Vibrio parahaemolyticus Mutant and Its Pathogenicity. Front Microbiol 2022; 13:827856. [PMID: 35432286 PMCID: PMC9008460 DOI: 10.3389/fmicb.2022.827856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Foodborne pathogens with high-pressure processing (HPP) tolerance and their pathogenicity have gained considerable attention in the field of food safety. However, tolerance to pressure treatment varies among microorganisms and growth phases, and the mechanism by which Vibrio parahaemolyticus can become tolerant of HPP is currently not known. In this study, 183 strains of V. parahaemolyticus were isolated from seafood products, and one strain, C4, carried a thermostable direct hemolysin (tdh) gene. A strain, N11, which was acquired from the C4 strain through adaptive laboratory evolution under HPP stress, could tolerate up to 200 MPa for 10 min. Compared with the C4 strain, the catalase and Na+/K+-ATPase activities in N11 strain were increased by about 2–3 times, and the cells maintained an intact cell membrane structure under HPP treatment. As shown by murine infection trials, the C4 and N11 strains impacted the physiological activities of mice and damaged liver and spleen cells. Comparative genomic analysis showed that 19 nucleotides were mutated in the N11 strain, which led to sustained high expression of mlaC and mlaD genes in this strain. Knockout of these genes confirmed that they were involved in the high-pressure stress response, and also related to pathogenicity of V. parahaemolyticus. Thereby, our findings revealed a HPP tolerance mechanism of V. parahaemolyticus, and the high-pressure-tolerant strain still retained pathogenicity in mice with skin and fur pleating and lethargy, indicating the pressure-tolerant foodborne pathogens present health risks.
Collapse
|
8
|
Abstract
Several human intestinal microbiota studies suggest that bacteriophages, viruses infecting bacteria, play a role in gut homeostasis. Currently, bacteriophages are considered a tool to precisely engineer the intestinal microbiota, but they have also attracted considerable attention as a possible solution to fight against bacterial pathogens resistant to antibiotics. These two applications necessitate bacteriophages to reach and kill their bacterial target within the gut environment. Unfortunately, exploitable clinical data in this field are scarce. Here, we review the administration of bacteriophages to target intestinal bacteria in mammalian experimental models. While bacteriophage amplification in the gut was often confirmed, we found that in most studies, it had no significant impact on the load of the targeted bacteria. In particular, we observed that the outcome of bacteriophage treatments is linked to the behavior of the target bacteria toward each animal model. Treatment efficacy ranges from poor in asymptomatic intestinal carriage to high in intestinal disease. This broad range of efficacy underlines the difficulties to reach a consensus on the impact of bacteriophages in the gut and calls for deeper investigations of key parameters that influence the success of such interventions before launching clinical trials.
Collapse
|
9
|
Donati VL, Dalsgaard I, Sundell K, Castillo D, Er-Rafik M, Clark J, Wiklund T, Middelboe M, Madsen L. Phage-Mediated Control of Flavobacterium psychrophilum in Aquaculture: In vivo Experiments to Compare Delivery Methods. Front Microbiol 2021; 12:628309. [PMID: 33763046 PMCID: PMC7983945 DOI: 10.3389/fmicb.2021.628309] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/15/2021] [Indexed: 12/31/2022] Open
Abstract
Phage-based approaches have gained increasing interest as sustainable alternative strategies to antibiotic treatment or as prophylactic measures against disease outbreaks in aquaculture. The potential of three methods (oral, bath, and injection) for delivering a two-component phage mixture to rainbow trout fry for controlling Flavobacterium psychrophilum infections and reduce fish mortality was investigated using bacteriophages FpV4 and FPSV-D22. For the oral administration experiment, bacteriophages were applied on feed pellets by spraying (1.6 × 108 PFU g-1) or by irreversible immobilization (8.3 × 107 PFU g-1), using the corona discharge technology (Fixed Phage Ltd.). The fish showed normal growth for every group and no mortality was observed prior to infection as well as in control groups during the infection. Constant detection of phages in the intestine (∼103 PFU mg-1) and more sporadic occurrence in kidney, spleen, and brain was observed. When fish were exposed to F. psychrophilum, no significant effect on fish survival, nor a direct impact on the number of phages in the sampled organs, were detected. Similarly, no significant increase in fish survival was detected when phages were delivered by bath (1st and 2nd bath: ∼106 PFU ml-1; 3rd bath: ∼105 PFU ml-1). However, when phages FpV4 and FPSV-D22 (1.7 × 108 PFU fish-1) were administered by intraperitoneal injection 3 days after the bacterial challenge, the final percent survival observed in the group injected with bacteriophages FpV4 and FPSV-D22 (80.0%) was significantly higher than in the control group (56.7%). The work demonstrates the delivery of phages to fish organs by oral administration, but also suggests that higher phage dosages than the tested ones may be needed on feed pellets to offer fish an adequate protection against F. psychrophilum infections.
Collapse
Affiliation(s)
- Valentina Laura Donati
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Inger Dalsgaard
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Krister Sundell
- Laboratory of Aquatic Pathobiology, Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | - Daniel Castillo
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Mériem Er-Rafik
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Tom Wiklund
- Laboratory of Aquatic Pathobiology, Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | - Mathias Middelboe
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Lone Madsen
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Penziner S, Schooley RT, Pride DT. Animal Models of Phage Therapy. Front Microbiol 2021; 12:631794. [PMID: 33584632 PMCID: PMC7876411 DOI: 10.3389/fmicb.2021.631794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/11/2021] [Indexed: 01/21/2023] Open
Abstract
Amidst the rising tide of antibiotic resistance, phage therapy holds promise as an alternative to antibiotics. Most well-designed studies on phage therapy exist in animal models. In order to progress to human clinical trials, it is important to understand what these models have accomplished and determine how to improve upon them. Here we provide a review of the animal models of phage therapy in Western literature and outline what can be learned from them in order to bring phage therapy closer to becoming a feasible alternative to antibiotics in clinical practice.
Collapse
Affiliation(s)
- Samuel Penziner
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Robert T Schooley
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - David T Pride
- Department of Medicine, University of California, San Diego, San Diego, CA, United States.,Department of Pathology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
11
|
Melo LDR, Oliveira H, Pires DP, Dabrowska K, Azeredo J. Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit Rev Microbiol 2020; 46:78-99. [DOI: 10.1080/1040841x.2020.1729695] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Luís D. R. Melo
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Hugo Oliveira
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Diana P. Pires
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Krystyna Dabrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Joana Azeredo
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
12
|
Caflisch KM, Suh GA, Patel R. Biological challenges of phage therapy and proposed solutions: a literature review. Expert Rev Anti Infect Ther 2019; 17:1011-1041. [PMID: 31735090 DOI: 10.1080/14787210.2019.1694905] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: In light of the emergence of antibiotic-resistant bacteria, phage (bacteriophage) therapy has been recognized as a potential alternative or addition to antibiotics in Western medicine for use in humans.Areas covered: This review assessed the scientific literature on phage therapy published between 1 January 2007 and 21 October 2019, with a focus on the successes and challenges of this prospective therapeutic.Expert opinion: Efficacy has been shown in animal models and experimental findings suggest promise for the safety of human phagotherapy. Significant challenges remain to be addressed prior to the standardization of phage therapy in the West, including the development of phage-resistant bacteria; the pharmacokinetic complexities of phage; and any potential human immune response incited by phagotherapy.
Collapse
Affiliation(s)
- Katherine M Caflisch
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gina A Suh
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Robin Patel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Dąbrowska K, Abedon ST. Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies. Microbiol Mol Biol Rev 2019; 83:e00012-19. [PMID: 31666296 PMCID: PMC6822990 DOI: 10.1128/mmbr.00012-19] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial of efficacy, this phage therapy is not yet a mainstream approach in medicine. One explanation for why phage therapy has not been subject to more widespread implementation is that phage therapy research, both preclinical and clinical, can be insufficiently pharmacologically aware. Consequently, here we consider the pharmacological obstacles to phage therapy effectiveness, with phages in phage therapy explicitly being considered to serve as drug equivalents. The study of pharmacology has traditionally been differentiated into pharmacokinetic and pharmacodynamic aspects. We therefore separately consider the difficulties that phages as virions can have in traveling through body compartments toward reaching their target bacteria (pharmacokinetics) and the difficulties that phages can have in exerting antibacterial activity once they have reached those bacteria (pharmacodynamics). The latter difficulties, at least in part, are functions of phage host range and bacterial resistance to phages. Given the apparently low toxicity of phages and the minimal side effects of phage therapy as practiced, phage therapy should be successful so long as phages can reach the targeted bacteria in sufficiently high numbers, adsorb, and then kill those bacteria. Greater awareness of what obstacles to this success generally or specifically can exist, as documented in this review, should aid in the further development of phage therapy toward wider use.
Collapse
Affiliation(s)
- Krystyna Dąbrowska
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, USA
| |
Collapse
|
14
|
Van Belleghem JD, Dąbrowska K, Vaneechoutte M, Barr JJ, Bollyky PL. Interactions between Bacteriophage, Bacteria, and the Mammalian Immune System. Viruses 2018; 11:E10. [PMID: 30585199 PMCID: PMC6356784 DOI: 10.3390/v11010010] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
The human body is host to large numbers of bacteriophages (phages)⁻a diverse group of bacterial viruses that infect bacteria. Phage were previously regarded as bystanders that only impacted immunity indirectly via effects on the mammalian microbiome. However, it has become clear that phages also impact immunity directly, in ways that are typically anti-inflammatory. Phages can modulate innate immunity via phagocytosis and cytokine responses, but also impact adaptive immunity via effects on antibody production and effector polarization. Phages may thereby have profound effects on the outcome of bacterial infections by modulating the immune response. In this review we highlight the diverse ways in which phages interact with human cells. We present a computational model for predicting these complex and dynamic interactions. These models predict that the phageome may play important roles in shaping mammalian-bacterial interactions.
Collapse
Affiliation(s)
- Jonas D Van Belleghem
- Laboratory Bacteriology Research, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium.
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Krystyna Dąbrowska
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland.
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium.
| | - Jeremy J Barr
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
Cholera: an overview with reference to the Yemen epidemic. Front Med 2018; 13:213-228. [DOI: 10.1007/s11684-018-0631-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022]
|
16
|
Sarkar S, Das M, Bhowmick TS, Koley H, Atterbury R, Chakrabarti AK, Sarkar BL. Isolation and Characterization of Novel Broad Host Range Bacteriophages of Vibrio cholerae O1 from Bengal. J Glob Infect Dis 2018; 10:84-88. [PMID: 29910569 PMCID: PMC5987377 DOI: 10.4103/jgid.jgid_37_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES We have isolated a total of five newer cholera phages which are novel broad host range to incorporate with the existing phage typing schemes for an extended typing scheme. MATERIALS AND METHODS These newly isolated phages were well characterized including the electron micrograph. A total of 300 Vibrio cholerae strains were isolated from the different endemic region in India were included in phage typing study. RESULTS These phages were found different from the existing phages. Electron microscopic results showed that the phages belonged to myophage and podophage group. Characterization of the phages based on pH, temperature, and organic solvent sensitivity showed differences among the phages used in this study. All the strains of Vibrio O1 were typeable (100%) with the five set of cholera phages. Of these, 40% strains were clustered under Type-1. CONCLUSION The newer Vibrio phages are novel and broad host range and will be useful to incorporate with the existing phage typing system for more precisely discriminate the strains of Vibrio cholerae.
Collapse
Affiliation(s)
- Sounak Sarkar
- Division of Bacteriology, Vibrio Phage Reference Laboratory, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Mayukh Das
- Department of Plant Pathology and Microbiology, Texas Aandm University, Texas, USA
| | | | - Hemanta Koley
- Division of Bacteriology, Vibrio Phage Reference Laboratory, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Robert Atterbury
- Department of Veterinary infectioua Diseases, School of Veterinary Medicine and Science, The University of Nottingham, Leicestershire, UK
| | - Alok K Chakrabarti
- Division of Bacteriology, Vibrio Phage Reference Laboratory, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Banwarilal L Sarkar
- Division of Bacteriology, Vibrio Phage Reference Laboratory, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| |
Collapse
|
17
|
|
18
|
A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nat Commun 2017; 8:14187. [PMID: 28146150 PMCID: PMC5296635 DOI: 10.1038/ncomms14187] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022] Open
Abstract
Effective prevention strategies will be essential in reducing disease burden due to bacterial infections. Here we harness the specificity and rapid-acting properties of bacteriophages as a potential prophylaxis therapy for cholera, a severely dehydrating disease caused by Vibrio cholerae. To this end, we test a cocktail of three virulent phages in two animal models of cholera pathogenesis (infant mouse and rabbit models). Oral administration of the phages up to 24 h before V. cholerae challenge reduces colonization of the intestinal tract and prevents cholera-like diarrhea. None of the surviving V. cholerae colonies are resistant to all three phages. Genome sequencing and variant analysis of the surviving colonies indicate that resistance to the phages is largely conferred by mutations in genes required for the production of the phage receptors. For acute infections, such as cholera, phage prophylaxis could provide a strategy to limit the impact of bacterial disease on human health.
Collapse
|
19
|
Zelasko S, Gorski A, Dabrowska K. Delivering phage therapy per os: benefits and barriers. Expert Rev Anti Infect Ther 2016; 15:167-179. [DOI: 10.1080/14787210.2017.1265447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Susan Zelasko
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Andrzej Gorski
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Krystyna Dabrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
20
|
Letchumanan V, Chan KG, Pusparajah P, Saokaew S, Duangjai A, Goh BH, Ab Mutalib NS, Lee LH. Insights into Bacteriophage Application in Controlling Vibrio Species. Front Microbiol 2016; 7:1114. [PMID: 27486446 PMCID: PMC4949243 DOI: 10.3389/fmicb.2016.01114] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/04/2016] [Indexed: 01/11/2023] Open
Abstract
Bacterial infections from various organisms including Vibrio sp. pose a serious hazard to humans in many forms from clinical infection to affecting the yield of agriculture and aquaculture via infection of livestock. Vibrio sp. is one of the main foodborne pathogens causing human infection and is also a common cause of losses in the aquaculture industry. Prophylactic and therapeutic usage of antibiotics has become the mainstay of managing this problem, however, this in turn led to the emergence of multidrug resistant strains of bacteria in the environment; which has raised awareness of the critical need for alternative non-antibiotic based methods of preventing and treating bacterial infections. Bacteriophages - viruses that infect and result in the death of bacteria - are currently of great interest as a highly viable alternative to antibiotics. This article provides an insight into bacteriophage application in controlling Vibrio species as well underlining the advantages and drawbacks of phage therapy.
Collapse
Affiliation(s)
- Vengadesh Letchumanan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala LumpurMalaysia
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Selangor Darul EhsanMalaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala LumpurMalaysia
| | - Priyia Pusparajah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul EhsanMalaysia
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Selangor Darul EhsanMalaysia
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, PhayaoThailand
- Pharmaceutical Outcomes Research Center, Faculty of Pharmaceutical Sciences, Naresuan University, PhitsanulokThailand
| | - Acharaporn Duangjai
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, PhayaoThailand
- Division of Physiology, School of Medical Sciences, University of Phayao, PhayaoThailand
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Selangor Darul EhsanMalaysia
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, PhayaoThailand
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala LumpurMalaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Selangor Darul EhsanMalaysia
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, PhayaoThailand
| |
Collapse
|
21
|
Xu J, Chen M, He L, Zhang S, Ding T, Yao H, Lu C, Zhang W. Isolation and characterization of a T4-like phage with a relatively wide host range within Escherichia coli. J Basic Microbiol 2015; 56:405-21. [PMID: 26697952 DOI: 10.1002/jobm.201500440] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/02/2015] [Indexed: 01/05/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis in poultry, resulting in severe economic losses worldwide. Coliphages represent alternative antibacterial substitutes based on high lytic efficiency and few side-effects. However, the complete genome sequences information of APEC phages are limited, and knowledge of undesired genes and the narrow host range restrict their applications. In this study, we isolated a virulent phage QL01, with a relatively broad lytic spectrum (41 of 78 APEC strains). Transmission electron micrography showed it belonged to the family Myoviridae with an elongated head and a contractile tail. Whole genome sequencing revealed a linear double-stranded DNA (170,527 kb; GC content, 39.6%) with 275 possible ORFs. Comparative genome analysis revealed high homology between QL01 and other T4-like phages. However, it also showed some unique features, for example, ORF142 and ORF143, which encode IP9 and IP8, respectively, and may counteract host resistance only exist in a few T4-like phages such as IME08 and vB_EcoM_VR5. Furthermore, phage therapy in artificially infected ducks showed a 26.67% decrease in mortality compared with the untreated group. Our study indicates the potential antibacterial function of phage QL01 against APEC infections and highlights unique molecular features underlying the relatively broad host range.
Collapse
Affiliation(s)
- Juntian Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Mianmian Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Lingchen He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Shuqing Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Tianyun Ding
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| |
Collapse
|