1
|
Stewart PS, Kim J, James G, Yi F, Stechmiller J, Weaver M, Kelly DL, Fisher S, Schultz G, Lyon D. Association of biofilm and microbial metrics with healing rate in older adults with chronic venous leg ulcers. Wound Repair Regen 2024. [PMID: 39425525 DOI: 10.1111/wrr.13230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
The presence of microbial biofilms in many human chronic wounds led to the hypothesis that biofilms delay healing of these wounds. We tested this hypothesis in a population of 117 older individuals with venous leg ulcers who were receiving standardised therapy, including frequent debridement. Debridement specimens were analysed for the amount of bacterial biomass by two independent methods: a microscopic approach that scored the relative size and number of bacterial aggregates, interpreted as a biofilm metric, and conventional enumeration by agar plating for viable bacteria. The plating protocol yielded three distinct values: the total viable bacterial count, bleach-tolerant bacteria, and the log reduction in viable bacteria upon bleach treatment. Wound healing rates over an 8-week observation period were calculated as the rate of decrease of the equivalent diameter of the wound. There was no statistically significant association between wound healing and the biofilm metric in any of the three analyses performed (p ≥0.15). In all three statistical tests, wound healing was associated with the log reduction caused by bleach treatment (p ≤0.004); wounds that harboured bacteria that were more bleach-susceptible healed more slowly. A refinement of the model of chronic wound infection pathogenesis is proposed in which dormant bacteria constitute a persistent nidus and outgrowth of metabolically active cells impairs healing. This model constitutes a new hypothesis as metabolic activity was not directly measured in this investigation.
Collapse
Affiliation(s)
- Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Junglyun Kim
- Chungnam National University College of Nursing, Daejeon, South Korea
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Garth James
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Fan Yi
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, Idaho, USA
| | - Joyce Stechmiller
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Michael Weaver
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Debra L Kelly
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Steve Fisher
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
| | - Gregory Schultz
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida, USA
| | - Debra Lyon
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| |
Collapse
|
2
|
Liu H, Huang Y, Huang M, Wang M, Ming Y, Chen W, Chen Y, Tang Z, Jia B. From nitrate to NO: potential effects of nitrate-reducing bacteria on systemic health and disease. Eur J Med Res 2023; 28:425. [PMID: 37821966 PMCID: PMC10566198 DOI: 10.1186/s40001-023-01413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
Current research has described improving multisystem disease and organ function through dietary nitrate (DN) supplementation. They have provided some evidence that these floras with nitrate (NO3-) reductase are mediators of the underlying mechanism. Symbiotic bacteria with nitrate reductase activity (NRA) are found in the human digestive tract, including the mouth, esophagus and gastrointestinal tract (GT). Nitrate in food can be converted to nitrite under the tongue or in the stomach by these symbiotic bacteria. Then, nitrite is transformed to nitric oxide (NO) by non-enzymatic synthesis. NO is currently recognized as a potent bioactive agent with biological activities, such as vasodilation, regulation of cardiomyocyte function, neurotransmission, suppression of platelet agglutination, and prevention of vascular smooth muscle cell proliferation. NO also can be produced through the conventional L-arginine-NO synthase (L-NOS) pathway, whereas endogenous NO production by L-arginine is inhibited under hypoxia-ischemia or disease conditions. In contrast, exogenous NO3-/NO2-/NO activity is enhanced and becomes a practical supplemental pathway for NO in the body, playing an essential role in various physiological activities. Moreover, many diseases (such as metabolic or geriatric diseases) are primarily associated with disorders of endogenous NO synthesis, and NO generation from the exogenous NO3-/NO2-/NO route can partially alleviate the disease progression. The imbalance of NO in the body may be one of the potential mechanisms of disease development. Therefore, the impact of these floras with nitrate reductase on host systemic health through exogenous NO3-/NO2-/NO pathway production of NO or direct regulation of floras ecological balance is essential (e.g., regulation of body homeostasis, amelioration of diseases, etc.). This review summarizes the bacteria with nitrate reductase in humans, emphasizing the relationship between the metabolic processes of this microflora and host systemic health and disease. The potential effects of nitrate reduction bacteria on human health and disease were also highlighted in disease models from different human systems, including digestive, cardiovascular, endocrine, nervous, respiratory, and urinary systems, providing innovative ideas for future disease diagnosis and treatment based on nitrate reduction bacteria.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Codru IR, Sava M, Vintilă BI, Bereanu AS, Bîrluțiu V. A Study on the Contributions of Sonication to the Identification of Bacteria Associated with Intubation Cannula Biofilm and the Risk of Ventilator-Associated Pneumonia. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1058. [PMID: 37374262 DOI: 10.3390/medicina59061058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023]
Abstract
Ventilator-associated pneumonia is one of the most severe complications of critically ill patients that need mechanical respiratory support, as it poses a significant risk of prolonging hospitalization, disability, and even death. This is why physicians worldwide target newer methods for prevention, early diagnosis, and early target treatment for this condition. There are few methods for a quick etiological diagnosis of pneumonia, especially point of care, and most are only readily available in some intensive care units. This is why a new, simple, and cheap method is needed for determining the bacteria that might be infectious in a particular patient. The manner in question is sonication. Method: In this prospective, observational, single-center study, endotracheal cannula specimens will be collected from at least 100 patients in our intensive care unit. This specimen will be submitted to a specific sonication protocol for bacteria to dislodge the biofilm inside the cannula. The resulting liquid will be seeded on growth media, and then a comparison will be made between the germs in the biofilm and the ones in the tracheal secretion of the patient. The primary purpose is to determine the bacteria before the appearance of a manifest infection.
Collapse
Affiliation(s)
- Ioana Roxana Codru
- Faculty of Medicine, Lucian Blaga University, 2A, Lucian Blaga Str., 550169 Sibiu, Romania
- County Clinical Emergency Hospital, 2-4, Corneliu Coposu Bld., 550245 Sibiu, Romania
| | - Mihai Sava
- Faculty of Medicine, Lucian Blaga University, 2A, Lucian Blaga Str., 550169 Sibiu, Romania
- County Clinical Emergency Hospital, 2-4, Corneliu Coposu Bld., 550245 Sibiu, Romania
| | - Bogdan Ioan Vintilă
- Faculty of Medicine, Lucian Blaga University, 2A, Lucian Blaga Str., 550169 Sibiu, Romania
- County Clinical Emergency Hospital, 2-4, Corneliu Coposu Bld., 550245 Sibiu, Romania
| | - Alina Simona Bereanu
- Faculty of Medicine, Lucian Blaga University, 2A, Lucian Blaga Str., 550169 Sibiu, Romania
- County Clinical Emergency Hospital, 2-4, Corneliu Coposu Bld., 550245 Sibiu, Romania
| | - Victoria Bîrluțiu
- Faculty of Medicine, Lucian Blaga University, 2A, Lucian Blaga Str., 550169 Sibiu, Romania
- County Clinical Emergency Hospital, 2-4, Corneliu Coposu Bld., 550245 Sibiu, Romania
| |
Collapse
|
4
|
Roman MD, Bocea BA, Ion NIC, Vorovenci AE, Dragomirescu D, Birlutiu RM, Birlutiu V, Fleaca SR. Are There Any Changes in the Causative Microorganisms Isolated in the Last Years from Hip and Knee Periprosthetic Joint Infections? Antimicrobial Susceptibility Test Results Analysis. Microorganisms 2023; 11:microorganisms11010116. [PMID: 36677407 PMCID: PMC9863502 DOI: 10.3390/microorganisms11010116] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND PJIs following total hip and knee arthroplasty represent severe complications with broad implications, and with significant disability, morbidity, and mortality. To be able to provide correct and effective management of these cases, an accurate diagnosis is needed. Classically, acute PJIs are characterized by a preponderance of virulent microorganisms, and chronic PJIs are characterized by a preponderance of less-virulent pathogens like coagulase-negative staphylococci or Cutibacterium species. This paper aims to analyze if there are any changes in the causative microorganisms isolated in the last years, as well as to provide a subanalysis of the types of PJIs. METHODS In this single-center study, we prospectively included all retrospectively consecutive collected data from patients aged over 18 years that were hospitalized from 2016 through 2022, and patients that underwent a joint arthroplasty revision surgery. A standardized diagnostic protocol was used in all cases, and the 2021 EBJIS definition criteria for PJIs was used. RESULTS 114 patients were included in our analysis; of them, 67 were diagnosed with PJIs, 12 were acute/acute hematogenous, and 55 were chronic PJIs. 49 strains of gram-positive aerobic or microaerophilic cocci and 35 gram-negative aerobic bacilli were isolated. Overall, Staphylococcus aureus was the most common isolated pathogen, followed by coagulase-negative staphylococci (CoNS). All cases of acute/acute hematogenous PJIs were caused by gram-positive aerobic or microaerophilic cocci pathogens. Both Staphylococcus epidermidis and methicillin-resistant S. aureus were involved in 91.66% of the acute/acute hematogenous PJIs cases. 21.8% of the chronic PJIs cases were caused by pathogens belonging to the Enterobacterales group of bacteria, followed by the gram-negative nonfermenting bacilli group of bacteria, which were involved in 18.4% of the cases. 12 chronic cases were polymicrobial. CONCLUSION Based on our findings, empiric broad-spectrum antibiotic therapy in acute PJIs could be focused on the bacteria belonging to the gram-positive aerobic or microaerophilic cocci, but the results should be analyzed carefully, and the local resistance of the pathogens should be taken into consideration.
Collapse
Affiliation(s)
- Mihai Dan Roman
- Faculty of Medicine Sibiu, Lucian Blaga University, Str. Lucian Blaga, Nr. 2A, 550169 Sibiu, Romania
- County Clinical Emergency Hospital, 550245 Sibiu, Romania
| | - Bogdan-Axente Bocea
- Faculty of Medicine Sibiu, Lucian Blaga University, Str. Lucian Blaga, Nr. 2A, 550169 Sibiu, Romania
- County Clinical Emergency Hospital, 550245 Sibiu, Romania
| | - Nicolas-Ionut-Catalin Ion
- Faculty of Medicine Sibiu, Lucian Blaga University, Str. Lucian Blaga, Nr. 2A, 550169 Sibiu, Romania
- County Clinical Emergency Hospital, 550245 Sibiu, Romania
| | - Andreea Elena Vorovenci
- Economic Cybernetics and Statistics Doctoral School, Bucharest University of Economic Studies, Piata Romana 6, 010371 Bucharest, Romania
| | - Dan Dragomirescu
- Economic Cybernetics and Statistics Doctoral School, Bucharest University of Economic Studies, Piata Romana 6, 010371 Bucharest, Romania
| | - Rares-Mircea Birlutiu
- Clinical Hospital of Orthopedics, Traumatology, and Osteoarticular TB, B-dul Ferdinand 35–37, Sector 2, 021382 Bucharest, Romania
- Correspondence:
| | - Victoria Birlutiu
- Faculty of Medicine Sibiu, Lucian Blaga University, Str. Lucian Blaga, Nr. 2A, 550169 Sibiu, Romania
- County Clinical Emergency Hospital, 550245 Sibiu, Romania
| | - Sorin Radu Fleaca
- Faculty of Medicine Sibiu, Lucian Blaga University, Str. Lucian Blaga, Nr. 2A, 550169 Sibiu, Romania
- County Clinical Emergency Hospital, 550245 Sibiu, Romania
| |
Collapse
|
5
|
Ciofu O, Moser C, Jensen PØ, Høiby N. Tolerance and resistance of microbial biofilms. Nat Rev Microbiol 2022; 20:621-635. [PMID: 35115704 DOI: 10.1038/s41579-022-00682-4] [Citation(s) in RCA: 359] [Impact Index Per Article: 179.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Chronic infections caused by microbial biofilms represent an important clinical challenge. The recalcitrance of microbial biofilms to antimicrobials and to the immune system is a major cause of persistence and clinical recurrence of these infections. In this Review, we present the extent of the clinical problem, and the mechanisms underlying the tolerance of biofilms to antibiotics and to host responses. We also explore the role of biofilms in the development of antimicrobial resistance mechanisms.
Collapse
Affiliation(s)
- Oana Ciofu
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Claus Moser
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Niels Høiby
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
6
|
Valzano F, Boncompagni SR, Micieli M, Di Maggio T, Di Pilato V, Colombini L, Santoro F, Pozzi G, Rossolini GM, Pallecchi L. Activity of N-Acetylcysteine Alone and in Combination with Colistin against Pseudomonas aeruginosa Biofilms and Transcriptomic Response to N-Acetylcysteine Exposure. Microbiol Spectr 2022; 10:e0100622. [PMID: 35735984 PMCID: PMC9431628 DOI: 10.1128/spectrum.01006-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/03/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic colonization by Pseudomonas aeruginosa is critical in cystic fibrosis (CF) and other chronic lung diseases, contributing to disease progression. Biofilm growth and a propensity to evolve multidrug resistance phenotypes drastically limit the available therapeutic options. In this perspective, there has been growing interest in evaluating combination therapies, especially for drugs that can be administered by nebulization, which allows high drug concentrations to be reached at the site of infections while limiting systemic toxicity. Here, we investigated the potential antibiofilm activity of N-acetylcysteine (NAC) alone and in combination with colistin against a panel of P. aeruginosa strains (most of which are from CF patients) and the transcriptomic response of a P. aeruginosa CF strain to NAC exposure. NAC alone (8,000 mg/L) showed a limited and strain-dependent antibiofilm activity. Nonetheless, a relevant antibiofilm synergism of NAC-colistin combinations (NAC at 8,000 mg/L plus colistin at 2 to 32 mg/L) was observed with all strains. Synergism was also confirmed with the artificial sputum medium model. RNA sequencing of NAC-exposed planktonic cultures revealed that NAC (8,000 mg/L) mainly induced (i) a Zn2+ starvation response (known to induce attenuation of P. aeruginosa virulence), (ii) downregulation of genes of the denitrification apparatus, and (iii) downregulation of flagellar biosynthesis pathway. NAC-mediated inhibition of P. aeruginosa denitrification pathway and flagellum-mediated motility were confirmed experimentally. These findings suggested that NAC-colistin combinations might contribute to the management of biofilm-associated P. aeruginosa lung infections. NAC might also have a role in reducing P. aeruginosa virulence, which could be relevant in the very early stages of lung colonization. IMPORTANCE Pseudomonas aeruginosa biofilm-related chronic lung colonization contributes to cystic fibrosis (CF) disease progression. Colistin is often a last-resort antibiotic for the treatment of such P. aeruginosa infections, and it has been increasingly used in CF, especially by nebulization. N-acetylcysteine (NAC) is a mucolytic agent with antioxidant activity, commonly administered with antibiotics for the treatment of lower respiratory tract infections. Here, we show that NAC potentiated colistin activity against in vitro biofilms models of P. aeruginosa strains, with both drugs tested at the high concentrations achievable after nebulization. In addition, we report the first transcriptomic data on the P. aeruginosa response to NAC exposure.
Collapse
Affiliation(s)
- Felice Valzano
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Maria Micieli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Tiziana Di Maggio
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Lorenzo Colombini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Clinical Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Lucia Pallecchi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
7
|
Marro FC, Laurent F, Josse J, Blocker AJ. Methods to monitor bacterial growth and replicative rates at the single-cell level. FEMS Microbiol Rev 2022; 46:6623663. [PMID: 35772001 PMCID: PMC9629498 DOI: 10.1093/femsre/fuac030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/01/2022] [Accepted: 06/28/2022] [Indexed: 01/09/2023] Open
Abstract
The heterogeneity of bacterial growth and replicative rates within a population was proposed a century ago notably to explain the presence of bacterial persisters. The term "growth rate" at the single-cell level corresponds to the increase in size or mass of an individual bacterium while the "replicative rate" refers to its division capacity within a defined temporality. After a decades long hiatus, recent technical innovative approaches allow population growth and replicative rates heterogeneity monitoring at the single-cell level resuming in earnest. Among these techniques, the oldest and widely used is time-lapse microscopy, most recently combined with microfluidics. We also discuss recent fluorescence dilution methods informing only on replicative rates and best suited. Some new elegant single cell methods so far only sporadically used such as buoyant mass measurement and stable isotope probing have emerged. Overall, such tools are widely used to investigate and compare the growth and replicative rates of bacteria displaying drug-persistent behaviors to that of bacteria growing in specific ecological niches or collected from patients. In this review, we describe the current methods available, discussing both the type of queries these have been used to answer and the specific strengths and limitations of each method.
Collapse
Affiliation(s)
- Florian C Marro
- Evotec ID Lyon, In Vitro Biology, Infectious Diseases and Antibacterials Unit, Gerland, 69007 Lyon, France,CIRI – Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France
| | - Frédéric Laurent
- CIRI – Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France,Institut des Sciences Pharmaceutiques et Biologiques (ISPB), Université Claude Bernard Lyon 1, Lyon, France,Centre de Référence pour la prise en charge des Infections ostéo-articulaires complexes (CRIOAc Lyon; www.crioac-lyon.fr), Hospices Civils de Lyon, Lyon, France,Laboratoire de bactériologie, Institut des Agents Infectieux, French National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Josse
- CIRI – Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France,Institut des Sciences Pharmaceutiques et Biologiques (ISPB), Université Claude Bernard Lyon 1, Lyon, France,Centre de Référence pour la prise en charge des Infections ostéo-articulaires complexes (CRIOAc Lyon; www.crioac-lyon.fr), Hospices Civils de Lyon, Lyon, France
| | - Ariel J Blocker
- Corresponding author. Evotec ID Lyon, In Vitro Biology, Infectious Diseases and Antibacterials Unit, France. E-mail:
| |
Collapse
|
8
|
Kolpen M, Kragh KN, Enciso JB, Faurholt-Jepsen D, Lindegaard B, Egelund GB, Jensen AV, Ravn P, Mathiesen IHM, Gheorge AG, Hertz FB, Qvist T, Whiteley M, Jensen PØ, Bjarnsholt T. Bacterial biofilms predominate in both acute and chronic human lung infections. Thorax 2022; 77:1015-1022. [PMID: 35017313 PMCID: PMC9510407 DOI: 10.1136/thoraxjnl-2021-217576] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/14/2021] [Indexed: 01/13/2023]
Abstract
Background A basic paradigm of human infection is that acute bacterial disease is caused by fast growing planktonic bacteria while chronic infections are caused by slow-growing, aggregated bacteria, a phenomenon known as a biofilm. For lung infections, this paradigm has been thought to be supported by observations of how bacteria proliferate in well-established growth media in the laboratory—the gold standard of microbiology. Objective To investigate the bacterial architecture in sputum from patients with acute and chronic lung infections. Methods Advanced imaging technology was used for quantification and direct comparison of infection types on fresh sputum samples, thereby directly testing the acute versus chronic paradigm. Results In this study, we compared the bacterial lifestyle (planktonic or biofilm), growth rate and inflammatory response of bacteria in freshly collected sputum (n=43) from patient groups presenting with acute or chronic lung infections. We found that both acute and chronic lung infections are dominated by biofilms (aggregates of bacteria within an extracellular matrix), although planktonic cells were observed in both sample types. Bacteria grew faster in sputum from acute infections, but these fast-growing bacteria were enriched in biofilms similar to the architecture thought to be reserved for chronic infections. Cellular inflammation in the lungs was also similar across patient groups, but systemic inflammatory markers were only elevated in acute infections. Conclusions Our findings indicate that the current paradigm of equating planktonic with acute and biofilm with chronic infection needs to be revisited as the difference lies primarily in metabolic rates, not bacterial architecture.
Collapse
Affiliation(s)
- Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Kasper Nørskov Kragh
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Juan Barraza Enciso
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Daniel Faurholt-Jepsen
- Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark.,Department of Pulmonary and Infectious Diseases, Nordsjællands University Hospital, Hillerød, Denmark
| | - Birgitte Lindegaard
- Department of Pulmonary and Infectious Diseases, Nordsjællands University Hospital, Hillerød, Denmark
| | - Gertrud Baunbæk Egelund
- Department of Pulmonary and Infectious Diseases, Nordsjællands University Hospital, Hillerød, Denmark
| | | | - Pernille Ravn
- Department of Medicine Section for Infectious Diseases, Herlev-Gentofte University Hospital, Hellerup, Denmark
| | | | - Alexandra Gabriella Gheorge
- Department of Forensic Pathology and Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Tavs Qvist
- Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.,Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark .,Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
9
|
Lichtenberg M, Jakobsen TH, Kühl M, Kolpen M, Jensen PØ, Bjarnsholt T. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6574409. [PMID: 35472245 PMCID: PMC9438473 DOI: 10.1093/femsre/fuac018] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/04/2022] [Accepted: 04/24/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mads Lichtenberg
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, København, Denmark
| | - Tim Holm Jakobsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, København, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Copenhagen University Hospital, Ole Maaløes vej 26, 2200, København, Denmark
| | - Peter Østrup Jensen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, København, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Ole Maaløes vej 26, 2200, København, Denmark
| | - Thomas Bjarnsholt
- Corresponding author: Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, København, Denmark. Tel: +45 20659888; E-mail:
| |
Collapse
|
10
|
Bay L, Ring HC. Human skin microbiota in health and disease: The cutaneous communities' interplay in equilibrium and dysbiosis: The cutaneous communities' interplay in equilibrium and dysbiosis. APMIS 2021; 130:706-718. [PMID: 34919288 DOI: 10.1111/apm.13201] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/14/2021] [Indexed: 01/20/2023]
Abstract
Cutaneous microbial composition is driven by the microenvironment of the skin, as well as by internal and external factors. Local changes in the microenvironment can affect the configuration of the community, which may lead toward an imbalance of microbiota. Alterations in the microbial profile are common in both inflammatory skin diseases and chronic infections. A shift in balance within the microbiota, toward limited variation and a greater abundance of specific pathogens, may further worsen the pathogenicity of the diseases. These alterations may be prevented by topical treatment of probiotic solutions stimulating a balanced multispecies community. Compositional variations may further constitute potential biomarkers to predict flares or monitor efficacy during therapy. New approaches such as machine learning may contribute to this prediction of microbial alterations prior to the development of chronic infections and flares. This review provides insight into the composition and distribution of a healthy community of microorganisms in the skin and draws parallels with the community in chronic infections and chronic inflammatory skin diseases such acne vulgaris and Hidradenitis Suppurativa. We discuss the potential role of specific species in the pathogenesis and the possible prevention of disease exacerbation.
Collapse
Affiliation(s)
- Lene Bay
- Bacterial Infection Biology, Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Hans Christian Ring
- Department of Dermato-Venereology and Wound Healing Centre, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Bjarnsholt T, Whiteley M, Rumbaugh KP, Stewart PS, Jensen PØ, Frimodt-Møller N. The importance of understanding the infectious microenvironment. THE LANCET. INFECTIOUS DISEASES 2021; 22:e88-e92. [PMID: 34506737 DOI: 10.1016/s1473-3099(21)00122-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Standard doses of antibiotics do not efficiently treat chronic infections of the soft tissue and bone. In this Personal View, we advocate for improving treatment of these infections by taking the infectious microenvironment into account. The infectious microenvironment can cause sensitive bacteria to lose their susceptibility to antibiotics that are effective in standard laboratory susceptibility testing. We propose that bacteria behave substantially different in standard laboratory conditions than they do in actual infections. The infectious microenvironment could impose changes in growth and metabolic activity that result in increased protection against antibiotics. Therefore, we advocate that improved antibiotic treatment of chronic infection is achievable when antibiotics are recommended on the basis of susceptibility testing in relevant in vitro conditions that resemble actual infectious microenvironments. We recommend establishing knowledge of the relevant conditions of the chemical and physical composition of the infectious microenvironment. Recent advances in RNA sequencing, metabolomics, and microscopy have made it possible for the characterisation of the microenvironment of infections and to validate the clinical relevance of in vitro conditions to actual infections.
Collapse
Affiliation(s)
- Thomas Bjarnsholt
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark; Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA; Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
| | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Peter Ø Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark; Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Frimodt-Møller
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
12
|
Mapping of the Denitrification Pathway in Burkholderia thailandensis by Genome-Wide Mutant Profiling. J Bacteriol 2020; 202:JB.00304-20. [PMID: 32900830 DOI: 10.1128/jb.00304-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Burkholderia thailandensis is a soil saprophyte that is closely related to the pathogen Burkholderia pseudomallei, the etiological agent of melioidosis in humans. The environmental niches and infection sites occupied by these bacteria are thought to contain only limited concentrations of oxygen, where they can generate energy via denitrification. However, knowledge of the underlying molecular basis of the denitrification pathway in these bacteria is scarce. In this study, we employed a transposon sequencing (Tn-Seq) approach to identify genes conferring a fitness benefit for anaerobic growth of B. thailandensis Of the 180 determinants identified, several genes were shown to be required for growth under denitrifying conditions: the nitrate reductase operon narIJHGK2K1, the aniA gene encoding a previously unknown nitrite reductase, and the petABC genes encoding a cytochrome bc 1, as well as three novel regulators that control denitrification. Our Tn-Seq data allowed us to reconstruct the entire denitrification pathway of B. thailandensis and shed light on its regulation. Analyses of growth behaviors combined with measurements of denitrification metabolites of various mutants revealed that nitrate reduction provides sufficient energy for anaerobic growth, an important finding in light of the fact that some pathogenic Burkholderia species can use nitrate as a terminal electron acceptor but are unable to complete denitrification. Finally, we demonstrated that a nitrous oxide reductase mutant is not affected for anaerobic growth but is defective in biofilm formation and accumulates N2O, which may play a role in the dispersal of B. thailandensis biofilms.IMPORTANCE Burkholderia thailandensis is a soil-dwelling saprophyte that is often used as surrogate of the closely related pathogen Burkholderia pseudomallei, the causative agent of melioidosis and a classified biowarfare agent. Both organisms are adapted to grow under oxygen-limited conditions in rice fields by generating energy through denitrification. Microoxic growth of B. pseudomallei is also considered essential for human infections. Here, we have used a Tn-Seq approach to identify the genes encoding the enzymes and regulators required for growth under denitrifying conditions. We show that a mutant that is defective in the conversion of N2O to N2, the last step in the denitrification process, is unaffected in microoxic growth but is severely impaired in biofilm formation, suggesting that N2O may play a role in biofilm dispersal. Our study identified novel targets for the development of therapeutic agents to treat meliodiosis.
Collapse
|
13
|
The State of the Nitric Oxide Cycle in Respiratory Tract Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4859260. [PMID: 33133346 PMCID: PMC7591941 DOI: 10.1155/2020/4859260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/29/2019] [Accepted: 01/14/2020] [Indexed: 12/25/2022]
Abstract
This review describes the unique links of the functioning of the nitric oxide cycle in the respiratory tract in normal and pathological conditions. The concept of a nitric oxide cycle has been expanded to include the NO-synthase and NO-synthase-independent component of its synthesis and the accompanying redox cascades in varying degrees of reversible reactions. The role of non-NO-synthase cycle components has been shown. Detailed characteristics of substrates for the synthesis of nitric oxide (NO) in the human body, which can be nitrogen oxides, nitrite and nitrate anions, and organic nitrates, as well as nitrates and nitrites of food products, are given. The importance of the human microbiota in the nitric oxide cycle has been shown. The role of significant components of nitrite and nitrate reductase systems in the nitric oxide cycle and the mechanisms of their activation and deactivation (participation of enzymes, cofactors, homeostatic indicators, etc.) under various conditions have been determined. Consideration of these factors allows for a detailed understanding of the mechanisms underlying pathological conditions of the respiratory system and the targeting of therapeutic agents. The complexity of the NO cycle with multidirectional cascades could be best understood using dynamic modeling.
Collapse
|
14
|
Schurig-Briccio LA, Parraga Solorzano PK, Lencina AM, Radin JN, Chen GY, Sauer JD, Kehl-Fie TE, Gennis RB. Role of respiratory NADH oxidation in the regulation of Staphylococcus aureus virulence. EMBO Rep 2020; 21:e45832. [PMID: 32202364 DOI: 10.15252/embr.201845832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 01/28/2023] Open
Abstract
The success of Staphylococcus aureus as a pathogen is due to its capability of fine-tuning its cellular physiology to meet the challenges presented by diverse environments, which allows it to colonize multiple niches within a single vertebrate host. Elucidating the roles of energy-yielding metabolic pathways could uncover attractive therapeutic strategies and targets. In this work, we seek to determine the effects of disabling NADH-dependent aerobic respiration on the physiology of S. aureus. Differing from many pathogens, S. aureus has two type-2 respiratory NADH dehydrogenases (NDH-2s) but lacks the respiratory ion-pumping NDHs. Here, we show that the NDH-2s, individually or together, are not essential either for respiration or growth. Nevertheless, their absence eliminates biofilm formation, production of α-toxin, and reduces the ability to colonize specific organs in a mouse model of systemic infection. Moreover, we demonstrate that the reason behind these phenotypes is the alteration of the fatty acid metabolism. Importantly, the SaeRS two-component system, which responds to fatty acids regulation, is responsible for the link between NADH-dependent respiration and virulence in S. aureus.
Collapse
Affiliation(s)
| | - Paola K Parraga Solorzano
- Department of Microbiology, University of Illinois, Urbana, IL, USA.,Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armada ESPE, Sangolquí, Ecuador
| | - Andrea M Lencina
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | - Jana N Radin
- Department of Microbiology, University of Illinois, Urbana, IL, USA
| | - Grischa Y Chen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| |
Collapse
|
15
|
Wallner A, King E, Ngonkeu ELM, Moulin L, Béna G. Genomic analyses of Burkholderia cenocepacia reveal multiple species with differential host-adaptation to plants and humans. BMC Genomics 2019; 20:803. [PMID: 31684866 PMCID: PMC6829993 DOI: 10.1186/s12864-019-6186-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Background Burkholderia cenocepacia is a human opportunistic pathogen causing devastating symptoms in patients suffering from immunodeficiency and cystic fibrosis. Out of the 303 B. cenocepacia strains with available genomes, the large majority were isolated from a clinical context. However, several isolates originate from other environmental sources ranging from aerosols to plant endosphere. Plants can represent reservoirs for human infections as some pathogens can survive and sometimes proliferate in the rhizosphere. We therefore investigated if B. cenocepacia had the same potential. Results We selected genome sequences from 31 different strains, representative of the diversity of ecological niches of B. cenocepacia, and conducted comparative genomic analyses in the aim of finding specific niche or host-related genetic determinants. Phylogenetic analyses and whole genome average nucleotide identity suggest that strains, registered as B. cenocepacia, belong to at least two different species. Core-genome analyses show that the clade enriched in environmental isolates lacks multiple key virulence factors, which are conserved in the sister clade where most clinical isolates fall, including the highly virulent ET12 lineage. Similarly, several plant associated genes display an opposite distribution between the two clades. Finally, we suggest that B. cenocepacia underwent a host jump from plants/environment to animals, as supported by the phylogenetic analysis. We eventually propose a name for the new species that lacks several genetic traits involved in human virulence. Conclusion Regardless of the method used, our studies resulted in a disunited perspective of the B. cenocepacia species. Strains currently affiliated to this taxon belong to at least two distinct species, one having lost several determining animal virulence factors.
Collapse
Affiliation(s)
- Adrian Wallner
- IRD, CIRAD, University of Montpellier, IPME; 911 avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Eoghan King
- IRD, CIRAD, University of Montpellier, IPME; 911 avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Eddy L M Ngonkeu
- Institute of Agronomic Research for Development (IRAD), PO Box 2123, Yaoundé, Cameroon
| | - Lionel Moulin
- IRD, CIRAD, University of Montpellier, IPME; 911 avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Gilles Béna
- IRD, CIRAD, University of Montpellier, IPME; 911 avenue Agropolis, BP 64501, 34394, Montpellier, France.
| |
Collapse
|
16
|
Scott JE, O'Toole GA. The Yin and Yang of Streptococcus Lung Infections in Cystic Fibrosis: a Model for Studying Polymicrobial Interactions. J Bacteriol 2019; 201:e00115-19. [PMID: 30885933 PMCID: PMC6509657 DOI: 10.1128/jb.00115-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The streptococci are increasingly recognized as a core component of the cystic fibrosis (CF) lung microbiome, yet the role that they play in CF lung disease is unclear. The presence of the Streptococcus milleri group (SMG; also known as the anginosus group streptococci [AGS]) correlates with exacerbation when these microbes are the predominant species in the lung. In contrast, microbiome studies have indicated that an increased relative abundance of streptococci in the lung, including members of the oral microflora, correlates with impacts on lung disease less severe than those caused by other CF-associated microflora, indicating a complex role for this genus in the context of CF. Recent findings suggest that streptococci in the CF lung microenvironment may influence the growth and/or virulence of other CF pathogens, as evidenced by increased virulence factor production by Pseudomonas aeruginosa when grown in coculture with oral streptococci. Conversely, the presence of P. aeruginosa can enhance the growth of streptococci, including members of the SMG, a phenomenon that could be exacerbated by the fact that streptococci are not susceptible to some of the frontline antibiotics used to treat P. aeruginosa infections. Collectively, these studies indicate the necessity for further investigation into the role of streptococci in the CF airway to determine how these microbes, alone or via interactions with other CF-associated pathogens, might influence CF lung disease, for better or for worse. We also propose that the interactions of streptococci with other CF pathogens is an ideal model to study clinically relevant microbial interactions.
Collapse
Affiliation(s)
- Jessie E Scott
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
17
|
Cystic Fibrosis-Associated Stenotrophomonas maltophilia Strain-Specific Adaptations and Responses to pH. J Bacteriol 2019; 201:JB.00478-18. [PMID: 30642989 PMCID: PMC6416904 DOI: 10.1128/jb.00478-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/08/2019] [Indexed: 01/22/2023] Open
Abstract
Understanding bacterial responses to physiological conditions is an important priority for combating opportunistic infections. The majority of CF patients succumb to inflammation and necrosis in the airways, arising from chronic infection due to ineffective mucociliary clearance. Steep pH gradients characterize the CF airways but are not often incorporated in standard microbiology culture conditions. Stenotrophomonas maltophilia is a prevalent CF opportunistic pathogen also found in many disparate environments, yet this bacterium’s contribution to CF lung damage and its response to changing environmental factors remain largely understudied. Here, we show that pH impacts the physiology and antibiotic susceptibility of S. maltophilia, with implications for the development of relevant in vitro models and assessment of antibiotic sensitivity. The airway fluids of cystic fibrosis (CF) patients contain local pH gradients and are more acidic than those of healthy individuals. pH is a critical factor that is often overlooked in studies seeking to recapitulate the infection microenvironment. We sought to determine the impact of pH on the physiology of a ubiqituous yet understudied microbe, Stenotrophomonas maltophilia. Phylogenomics was first used to reconstruct evolutionary relationships between 74 strains of S. maltophilia (59 from CF patients). Neither the core genome (2,158 genes) nor the accessory genome (11,978 genes) distinguish the CF and non-CF isolates; however, strains from similar isolation sources grouped into the same subclades. We grew two human and six CF S. maltophilia isolates from different subclades at a range of pH values and observed impaired growth and altered antibiotic tolerances at pH 5. Transcriptomes revealed increased expression of both antibiotic resistance and DNA repair genes in acidic conditions. Although the gene expression profiles of S. maltophilia in lab cultures and CF sputum were distinct, we found that the same genes associated with low pH were also expressed during infection, and the higher pH cultures were more similar to sputum metatranscriptomes. Our findings suggest that S. maltophilia is not well adapted to acidity and may cope with low pH by expressing stress response genes and colonizing less acidic microenvironments. As a whole, our study underlines the impact of microenvironments on bacterial colonization and adaptation in CF infections. IMPORTANCE Understanding bacterial responses to physiological conditions is an important priority for combating opportunistic infections. The majority of CF patients succumb to inflammation and necrosis in the airways, arising from chronic infection due to ineffective mucociliary clearance. Steep pH gradients characterize the CF airways but are not often incorporated in standard microbiology culture conditions. Stenotrophomonas maltophilia is a prevalent CF opportunistic pathogen also found in many disparate environments, yet this bacterium’s contribution to CF lung damage and its response to changing environmental factors remain largely understudied. Here, we show that pH impacts the physiology and antibiotic susceptibility of S. maltophilia, with implications for the development of relevant in vitro models and assessment of antibiotic sensitivity.
Collapse
|
18
|
Motility, Biofilm Formation and Antimicrobial Efflux of Sessile and Planktonic Cells of Achromobacter xylosoxidans. Pathogens 2019; 8:pathogens8010014. [PMID: 30691200 PMCID: PMC6471707 DOI: 10.3390/pathogens8010014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 11/17/2022] Open
Abstract
Achromobacter xylosoxidans is an innately multidrug-resistant bacterium capable of forming biofilms in the respiratory tract of cystic fibrosis (CF) patients. During the transition from the planktonic stage to biofilm growth, bacteria undergo a transcriptionally regulated differentiation. An isolate of A. xylosoxidans cultured from the sputum of a CF patient was separated into sessile and planktonic stages in vitro, and the transcriptomes were compared. The selected genes of interest were subsequently inactivated, and flagellar motility was found to be decisive for biofilm formation in vitro. The spectrum of a new resistance-nodulation-cell division (RND)-type multidrug efflux pump (AxyEF-OprN) was characterized by inactivation of the membrane fusion protein. AxyEF-OprN is capable of extruding some fluoroquinolones (levofloxacin and ciprofloxacin), tetracyclines (doxycycline and tigecycline) and carpabenems (ertapenem and imipenem), which are classes of antimicrobials that are widely used for treatment of CF pulmonary infections.
Collapse
|
19
|
Refining the Application of Microbial Lipids as Tracers of Staphylococcus aureus Growth Rates in Cystic Fibrosis Sputum. J Bacteriol 2018; 200:JB.00365-18. [PMID: 30249710 DOI: 10.1128/jb.00365-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/19/2018] [Indexed: 02/04/2023] Open
Abstract
Chronic lung infections in cystic fibrosis (CF) could be treated more effectively if the effects of antimicrobials on pathogens in situ were known. Here, we compared changes in the microbial community composition and pathogen growth rates in longitudinal studies of seven pediatric CF patients undergoing intravenous antibiotic administration during pulmonary exacerbations. The microbial community composition was determined by counting rRNA with NanoString DNA analysis, and growth rates were obtained by incubating CF sputum with heavy water and tracing incorporation of deuterium into two branched-chain ("anteiso") fatty acids (a-C15:0 and a-C17:0) using gas chromatography-mass spectrometry (GC/MS). Prior to this study, both lipids were thought to be specific for Staphylococcaceae; hence, their isotopic enrichment was interpreted as a growth proxy for Staphylococcus aureus Our experiments revealed, however, that Prevotella is also a relevant microbial producer of a-C17:0 fatty acid in some CF patients; thus, deuterium incorporation into these lipids is better interpreted as a more general pathogen growth rate proxy. Even accounting for a small nonmicrobial background source detected in some patient samples, a-C15:0 fatty acid still appears to be a relatively robust proxy for CF pathogens, revealing a median generation time of ∼1.5 days, similar to prior observations. Contrary to our expectation, pathogen growth rates remained relatively stable throughout exacerbation treatment. We suggest two straightforward "best practices" for application of stable-isotope probing to CF sputum metabolites: (i) parallel determination of microbial community composition in CF sputum using culture-independent tools and (ii) assessing background levels of the diagnostic metabolite.IMPORTANCE In chronic lung infections, populations of microbial pathogens change and mature in ways that are often unknown, which makes it challenging to identify appropriate treatment options. A promising tool to better understand the physiology of microorganisms in a patient is stable-isotope probing, which we previously developed to estimate the growth rates of S. aureus in cystic fibrosis (CF) sputum. Here, we tracked microbial communities in a cohort of CF patients and found that anteiso fatty acids can also originate from other sources in CF sputum. This awareness led us to develop a new workflow for the application of stable-isotope probing in this context, improving our ability to estimate pathogen generation times in clinical samples.
Collapse
|
20
|
Ohrt-Nissen S, Fritz BG, Walbom J, Kragh KN, Bjarnsholt T, Dahl B, Manniche C. Bacterial biofilms: a possible mechanism for chronic infection in patients with lumbar disc herniation - a prospective proof-of-concept study using fluorescence in situ
hybridization. APMIS 2018; 126:440-447. [DOI: 10.1111/apm.12841] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/06/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Søren Ohrt-Nissen
- Department of Orthopaedic Surgery; Spine Unit; Rigshospitalet; Copenhagen Denmark
| | - Blaine G. Fritz
- Faculty of Health Sciences; Department of Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Jonas Walbom
- Department of Orthopaedic Surgery; Spine Unit; Rigshospitalet; Copenhagen Denmark
| | - Kasper N. Kragh
- Faculty of Health Sciences; Department of Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Thomas Bjarnsholt
- Faculty of Health Sciences; Department of Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
- Department of Clinical Microbiology; Rigshospitalet; Copenhagen Denmark
| | - Benny Dahl
- Department of Orthopaedic Surgery; Texas Children's Hospital; Houston TX USA
| | - Claus Manniche
- Spine Centre of Southern Denmark; Institute of Regional Health Service; University of Southern Denmark; Odense Denmark
| |
Collapse
|
21
|
Caskey S, Stirling J, Moore J, Rendall J. Occurrence ofPseudomonas aeruginosain waters: implications for patients with cystic fibrosis (CF). Lett Appl Microbiol 2018. [DOI: 10.1111/lam.12876] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- S. Caskey
- Regional Adult Cystic Fibrosis Centre; Level 8; Belfast City Hospital; Belfast UK
| | - J. Stirling
- Northern Ireland Public Health Laboratory; Department of Bacteriology; Belfast City Hospital; Belfast UK
| | - J.E. Moore
- Regional Adult Cystic Fibrosis Centre; Level 8; Belfast City Hospital; Belfast UK
- Northern Ireland Public Health Laboratory; Department of Bacteriology; Belfast City Hospital; Belfast UK
| | - J.C. Rendall
- Regional Adult Cystic Fibrosis Centre; Level 8; Belfast City Hospital; Belfast UK
| |
Collapse
|
22
|
Sønderholm M, Bjarnsholt T, Alhede M, Kolpen M, Jensen PØ, Kühl M, Kragh KN. The Consequences of Being in an Infectious Biofilm: Microenvironmental Conditions Governing Antibiotic Tolerance. Int J Mol Sci 2017; 18:E2688. [PMID: 29231866 PMCID: PMC5751290 DOI: 10.3390/ijms18122688] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022] Open
Abstract
The main driver behind biofilm research is the desire to understand the mechanisms governing the antibiotic tolerance of biofilm-growing bacteria found in chronic bacterial infections. Rather than genetic traits, several physical and chemical traits of the biofilm have been shown to be attributable to antibiotic tolerance. During infection, bacteria in biofilms exhibit slow growth and a low metabolic state due to O₂ limitation imposed by intense O₂ consumption of polymorphonuclear leukocytes or metabolically active bacteria in the biofilm periphery. Due to variable O₂ availability throughout the infection, pathogen growth can involve aerobic, microaerobic and anaerobic metabolism. This has serious implications for the antibiotic treatment of infections (e.g., in chronic wounds or in the chronic lung infection of cystic fibrosis patients), as antibiotics are usually optimized for aerobic, fast-growing bacteria. This review summarizes knowledge about the links between the microenvironment of biofilms in chronic infections and their tolerance against antibiotics.
Collapse
Affiliation(s)
- Majken Sønderholm
- Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Thomas Bjarnsholt
- Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Clinical Microbiology, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
| | - Maria Alhede
- Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Mette Kolpen
- Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Clinical Microbiology, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
| | - Peter Ø Jensen
- Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Clinical Microbiology, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
| | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, DK-3000 Elsinore, Denmark.
- Climate Change Cluster, University of Technology Sydney, Ultimo NSW 2007, Australia.
| | - Kasper N Kragh
- Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
23
|
Hyperbaric Oxygen Sensitizes Anoxic Pseudomonas aeruginosa Biofilm to Ciprofloxacin. Antimicrob Agents Chemother 2017; 61:AAC.01024-17. [PMID: 28874373 PMCID: PMC5655102 DOI: 10.1128/aac.01024-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023] Open
Abstract
Chronic Pseudomonas aeruginosa lung infection is characterized by the presence of endobronchial antibiotic-tolerant biofilm, which is subject to strong oxygen (O2) depletion due to the activity of surrounding polymorphonuclear leukocytes. The exact mechanisms affecting the antibiotic susceptibility of biofilms remain unclear, but accumulating evidence suggests that the efficacy of several bactericidal antibiotics is enhanced by stimulation of aerobic respiration of pathogens, while lack of O2 increases their tolerance. In fact, the bactericidal effect of several antibiotics depends on active aerobic metabolism activity and the endogenous formation of reactive O2 radicals (ROS). In this study, we aimed to apply hyperbaric oxygen treatment (HBOT) to sensitize anoxic P. aeruginosa agarose biofilms established to mimic situations with intense O2 consumption by the host response in the cystic fibrosis (CF) lung. Application of HBOT resulted in enhanced bactericidal activity of ciprofloxacin at clinically relevant durations and was accompanied by indications of restored aerobic respiration, involvement of endogenous lethal oxidative stress, and increased bacterial growth. The findings highlight that oxygenation by HBOT improves the bactericidal activity of ciprofloxacin on P. aeruginosa biofilm and suggest that bacterial biofilms are sensitized to antibiotics by supplying hyperbaric O2.
Collapse
|
24
|
Jensen PØ, Kolpen M, Kragh KN, Kühl M. Microenvironmental characteristics and physiology of biofilms in chronic infections of CF patients are strongly affected by the host immune response. APMIS 2017; 125:276-288. [PMID: 28407427 DOI: 10.1111/apm.12668] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 01/14/2023]
Abstract
In vitro studies of Pseudomonas aeruginosa and other pathogenic bacteria in biofilm aggregates have yielded detailed insight into their potential growth modes and metabolic flexibility under exposure to gradients of substrate and electron acceptor. However, the growth pattern of P. aeruginosa in chronic lung infections of cystic fibrosis (CF) patients is very different from what is observed in vitro, for example, in biofilms grown in flow chambers. Dense in vitro biofilms of P. aeruginosa exhibit rapid O2 depletion within <50-100 μm due to their own aerobic metabolism. In contrast, in vivo investigations show that P. aeruginosa persists in the chronically infected CF lung as relatively small cell aggregates that are surrounded by numerous PMNs, where the activity of PMNs is the major cause of O2 depletion rendering the P. aeruginosa aggregates anoxic. High levels of nitrate and nitrite enable P. aeruginosa to persist fueled by denitrification in the PMN-surrounded biofilm aggregates. This configuration creates a potentially long-term stable ecological niche for P. aeruginosa in the CF lung, which is largely governed by slow growth and anaerobic metabolism and enables persistence and resilience of this pathogen even under the recurring aggressive antimicrobial treatments of CF patients. As similar slow growth of other CF pathogens has recently been observed in endobronchial secretions, there is now a clear need for better in vitro models that simulate such in vivo growth patterns and anoxic microenvironments in order to help unravel the efficiency of existing or new antimicrobials targeting anaerobic metabolism in P. aeruginosa and other CF pathogens. We also advocate that host immune responses such as PMN-driven O2 depletion play a central role in the formation of anoxic microniches governing bacterial persistence in other chronic infections such as chronic wounds.
Collapse
Affiliation(s)
- Peter Ø Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, UC-CARE, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, UC-CARE, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper N Kragh
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, UC-CARE, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.,Climate Change Cluster, University of Technology, Sydney, NSW, Australia
| |
Collapse
|
25
|
Wijers CD, Chmiel JF, Gaston BM. Bacterial infections in patients with primary ciliary dyskinesia: Comparison with cystic fibrosis. Chron Respir Dis 2017; 14:392-406. [PMID: 29081265 PMCID: PMC5729729 DOI: 10.1177/1479972317694621] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder associated with severely impaired mucociliary clearance caused by defects in ciliary structure and function. Although recurrent bacterial infection of the respiratory tract is one of the major clinical features of this disease, PCD airway microbiology is understudied. Despite the differences in pathophysiology, assumptions about respiratory tract infections in patients with PCD are often extrapolated from cystic fibrosis (CF) airway microbiology. This review aims to summarize the current understanding of bacterial infections in patients with PCD, including infections with Pseudomonas aeruginosa, Staphylococcus aureus, and Moraxella catarrhalis, as it relates to bacterial infections in patients with CF. Further, we will discuss current and potential future treatment strategies aimed at improving the care of patients with PCD suffering from recurring bacterial infections.
Collapse
Affiliation(s)
- Christiaan Dm Wijers
- 1 Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James F Chmiel
- 1 Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Benjamin M Gaston
- 1 Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
26
|
Pompilio A, Crocetta V, Verginelli F, Di Bonaventura G. In vitro activity of levofloxacin against planktonic and biofilm Stenotrophomonas maltophilia lifestyles under conditions relevant to pulmonary infection in cystic fibrosis, and relationship with SmeDEF multidrug efflux pump expression. FEMS Microbiol Lett 2016; 363:fnw145. [PMID: 27242375 DOI: 10.1093/femsle/fnw145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2016] [Indexed: 11/14/2022] Open
Abstract
The activity of levofloxacin against planktonic and biofilm Stenotrophomonas maltophilia cells and the role played by the multidrug efflux pump SmeDEF were evaluated under conditions relevant to the cystic fibrosis (CF) lung. MIC, MBC and MBEC of levofloxacin were assessed, against five CF strains, under 'standard' (CLSI-recommended) and 'CF-like' (pH 6.8, 5% CO2, in a synthetic CF sputum) conditions. Levofloxacin was tested against biofilms at concentrations (10, 50 and 100 μg mL(-1)) corresponding to achievable serum levels and sputum levels by aerosolisation. smeD expression was evaluated, under both conditions, in planktonic and biofilm cells by RT-PCR. The bactericidal effect of levofloxacin was decreased, in three out of five strains tested, under 'CF-like' conditions (MBC: 2-4 vs 8-16 μg mL(-1), under 'standard' and 'CF-like' conditions, respectively). Biofilm was intrinsically resistant to levofloxacin, regardless of conditions tested (MBECs ≥ 100 μg mL(-1) for all strains). Only under 'CF-like' conditions, smeD expression increased during planktonic-to-biofilm transition, and in biofilm cells compared to stationary planktonic cells. Our findings confirmed that S. maltophilia biofilm is intrinsically resistant to therapeutic concentrations of levofloxacin. Under conditions relevant to CF, smeD overexpression could contribute to levofloxacin resistance. Further studies are warranted to define the clinical relevance of our findings.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Via dei Vestini 31, 66100 Italy Laboratory of Clinical Microbiology, Center of Excellence on Aging and Translational Medicine (CeSI-MeT), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi, 66100 Chieti, Italy
| | - Valentina Crocetta
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Via dei Vestini 31, 66100 Italy Laboratory of Clinical Microbiology, Center of Excellence on Aging and Translational Medicine (CeSI-MeT), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi, 66100 Chieti, Italy
| | - Fabio Verginelli
- Laboratory of Clinical Microbiology, Center of Excellence on Aging and Translational Medicine (CeSI-MeT), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi, 66100 Chieti, Italy Department of Pharmacy, 'G. d'Annunzio' University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Via dei Vestini 31, 66100 Italy Laboratory of Clinical Microbiology, Center of Excellence on Aging and Translational Medicine (CeSI-MeT), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi, 66100 Chieti, Italy
| |
Collapse
|
27
|
Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum. Proc Natl Acad Sci U S A 2015; 113:E110-6. [PMID: 26715741 DOI: 10.1073/pnas.1512057112] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Effective treatment for chronic infections is undermined by a significant gap in understanding of the physiological state of pathogens at the site of infection. Chronic pulmonary infections are responsible for the morbidity and mortality of millions of immunocompromised individuals worldwide, yet drugs that are successful in laboratory culture are far less effective against pathogen populations persisting in vivo. Laboratory models, upon which preclinical development of new drugs is based, can only replicate host conditions when we understand the metabolic state of the pathogens and the degree of heterogeneity within the population. In this study, we measured the anabolic activity of the pathogen Staphylococcus aureus directly in the sputum of pediatric patients with cystic fibrosis (CF), by combining the high sensitivity of isotope ratio mass spectrometry with a heavy water labeling approach to capture the full range of in situ growth rates. Our results reveal S. aureus generation times with a median of 2.1 d, with extensive growth rate heterogeneity at the single-cell level. These growth rates are far below the detection limit of previous estimates of CF pathogen growth rates, and the rates are slowest in acutely sick patients undergoing pulmonary exacerbations; nevertheless, they are accessible to experimental replication within laboratory models. Treatment regimens that include specific antibiotics (vancomycin, piperacillin/tazobactam, tobramycin) further appear to correlate with slow growth of S. aureus on average, but follow-up longitudinal studies must be performed to determine whether this effect holds for individual patients.
Collapse
|
28
|
Qvist T, Eickhardt S, Kragh KN, Andersen CB, Iversen M, Høiby N, Bjarnsholt T. Chronic pulmonary disease with Mycobacterium abscessus complex is a biofilm infection. Eur Respir J 2015; 46:1823-6. [DOI: 10.1183/13993003.01102-2015] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/19/2015] [Indexed: 11/05/2022]
|
29
|
Pediatric Cystic Fibrosis Sputum Can Be Chemically Dynamic, Anoxic, and Extremely Reduced Due to Hydrogen Sulfide Formation. mBio 2015. [PMID: 26220964 PMCID: PMC4551978 DOI: 10.1128/mbio.00767-15] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Severe and persistent bacterial lung infections characterize cystic fibrosis (CF). While several studies have documented the microbial diversity within CF lung mucus, we know much less about the inorganic chemistry that constrains microbial metabolic processes and their distribution. We hypothesized that sputum is chemically heterogeneous both within and between patients. To test this, we measured microprofiles of oxygen and sulfide concentrations as well as pH and oxidation-reduction potentials in 48 sputum samples from 22 pediatric patients with CF. Inorganic ions were measured in 20 samples from 12 patients. In all cases, oxygen was depleted within the first few millimeters below the sputum-air interface. Apart from this steep oxycline, anoxia dominated the sputum environment. Different sputum samples exhibited a broad range of redox conditions, with either oxidizing (16 mV to 355 mV) or reducing (-300 to -107 mV) potentials. The majority of reduced samples contained hydrogen sulfide and had a low pH (2.9 to 6.5). Sulfide concentrations increased at a rate of 0.30 µM H2S/min. Nitrous oxide was detected in only one sample that also contained sulfide. Microenvironmental variability was observed both within a single patient over time and between patients. Modeling oxygen dynamics within CF mucus plugs indicates that anoxic zones vary as a function of bacterial load and mucus thickness and can occupy a significant portion of the mucus volume. Thus, aerobic respiration accounts only partially for pathogen survival in CF sputum, motivating research to identify mechanisms of survival under conditions that span fluctuating redox states, including sulfidic environments. IMPORTANCE Microbial infections are the major cause of morbidity and mortality in people living with CF, and yet microbial growth and survival in CF airways are not well understood. Insufficient information about the chemistry of the in vivo environment contributes to this knowledge gap. Our documentation of variable redox states corresponding to the presence or absence of sulfide begins to fill this void and motivates understanding of how different opportunistic pathogens adapt in these dynamic environments. Given the changing chemical state of CF sputum over time, it is important to consider a spectrum of aerobic and anaerobic lifestyles when studying CF pathogens in the laboratory. This work not only provides relevant constraints that can shape the design of laboratory experiments, it also suggests that sulfide might be a useful proxy for assessing the redox state of sputum in the clinic.
Collapse
|
30
|
Line L, Alhede M, Kolpen M, Kühl M, Ciofu O, Bjarnsholt T, Moser C, Toyofuku M, Nomura N, Høiby N, Jensen PØ. Physiological levels of nitrate support anoxic growth by denitrification of Pseudomonas aeruginosa at growth rates reported in cystic fibrosis lungs and sputum. Front Microbiol 2014; 5:554. [PMID: 25386171 PMCID: PMC4208399 DOI: 10.3389/fmicb.2014.00554] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022] Open
Abstract
Chronic Pseudomonas aeruginosa lung infection is the most severe complication in patients with cystic fibrosis (CF). The infection is characterized by the formation of biofilm surrounded by numerous polymorphonuclear leukocytes (PMNs) and strong O2 depletion in the endobronchial mucus. We have reported that O2 is mainly consumed by the activated PMNs, while O2 consumption by aerobic respiration is diminutive and nitrous oxide (N2O) is produced in infected CF sputum. This suggests that the reported growth rates of P. aeruginosa in lungs and sputum may result from anaerobic respiration using denitrification. The growth rate of P. aeruginosa achieved by denitrification at physiological levels (~400 μM) of nitrate (NO(-) 3) is however, not known. Therefore, we have measured growth rates of anoxic cultures of PAO1 and clinical isolates (n = 12) in LB media supplemented with NO(-) 3 and found a significant increase of growth when supplementing PAO1 and clinical isolates with ≥150 μM NO(-) 3 and 100 μM NO(-) 3, respectively. An essential contribution to growth by denitrification was demonstrated by the inability to establish a significantly increased growth rate by a denitrification deficient ΔnirS-N mutant at <1 mM of NO(-) 3. Activation of denitrification could be achieved by supplementation with as little as 62.5 μM of NO(-) 3 according to the significant production of N2O by the nitrous oxide reductase deficient ΔnosZ mutant. Studies of the promoter activity, gene transcripts, and enzyme activity of the four N-oxide reductases in PAO1 (Nar, Nir, Nor, Nos) further verified the engagement of denitrification, showing a transient increase in activation and expression and rapid consumption of NO(-) 3 followed by a transient increase of NO(-) 2. Growth rates obtained by denitrification in this study were comparable to our reported growth rates in the majority of P. aeruginosa cells in CF lungs and sputum. Thus, we have demonstrated that denitrification is required for P. aeruginosa growth in infected endobronchial CF mucus.
Collapse
Affiliation(s)
- Laura Line
- Department of Clinical Microbiology Rigshospitalet, Copenhagen, Denmark ; Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen Copenhagen, Denmark
| | - Morten Alhede
- Department of Clinical Microbiology Rigshospitalet, Copenhagen, Denmark ; Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology Rigshospitalet, Copenhagen, Denmark ; Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen Copenhagen, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen Copenhagen, Denmark ; Plant Functional Biology and Climate Change Cluster, University of Technology Sydney Sydney, NSW, Australia ; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University Singapore, Singapore
| | - Oana Ciofu
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology Rigshospitalet, Copenhagen, Denmark ; Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology Rigshospitalet, Copenhagen, Denmark
| | - Masanori Toyofuku
- Graduate School of Life and Environmental Sciences, University of Tsukuba Tsukuba, Japan
| | - Nobuhiko Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba Tsukuba, Japan
| | - Niels Høiby
- Department of Clinical Microbiology Rigshospitalet, Copenhagen, Denmark ; Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen Copenhagen, Denmark
| | - Peter Ø Jensen
- Department of Clinical Microbiology Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|