1
|
Berkowitz N, MacMillan A, Simmons MB, Shinde U, Purdy GE. Structural modeling and characterization of the Mycobacterium tuberculosis MmpL3 C-terminal domain. FEBS Lett 2024. [PMID: 39198717 DOI: 10.1002/1873-3468.15007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
The Mycobacterium tuberculosis (Mtb) cell envelope provides a protective barrier against the immune response and antibiotics. The mycobacterial membrane protein large (MmpL) family of proteins export cell envelope lipids and siderophores; therefore, these proteins are important for the basic biology and pathogenicity of Mtb. In particular, MmpL3 is essential and a known drug target. Despite interest in MmpL3, the structural data in the field are incomplete. Utilizing homology modeling, AlphaFold, and biophysical techniques, we characterized the cytoplasmic C-terminal domain (CTD) of MmpL3 to better understand its structure and function. Our in silico models of the MmpL11TB and MmpL3TB CTD reveal notable features including a long unstructured linker that connects the globular domain to the last transmembrane (TM) in each transporter, charged lysine and arginine residues facing the membrane, and a C-terminal alpha helix. Our predicted overall structure enables a better understanding of these transporters.
Collapse
Affiliation(s)
- Naomi Berkowitz
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Allison MacMillan
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Marit B Simmons
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Ujwal Shinde
- Biophysics Core Facility, Oregon Health & Science University, Portland, OR, USA
| | - Georgiana E Purdy
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Williams JT, Abramovitch RB. Molecular Mechanisms of MmpL3 Function and Inhibition. Microb Drug Resist 2023; 29:190-212. [PMID: 36809064 PMCID: PMC10171966 DOI: 10.1089/mdr.2021.0424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Mycobacteria species include a large number of pathogenic organisms such as Mycobacterium tuberculosis, Mycobacterium leprae, and various non-tuberculous mycobacteria. Mycobacterial membrane protein large 3 (MmpL3) is an essential mycolic acid and lipid transporter required for growth and cell viability. In the last decade, numerous studies have characterized MmpL3 with respect to protein function, localization, regulation, and substrate/inhibitor interactions. This review summarizes new findings in the field and seeks to assess future areas of research in our rapidly expanding understanding of MmpL3 as a drug target. An atlas of known MmpL3 mutations that provide resistance to inhibitors is presented, which maps amino acid substitutions to specific structural domains of MmpL3. In addition, chemical features of distinct classes of Mmpl3 inhibitors are compared to provide insights into shared and unique features of varied MmpL3 inhibitors.
Collapse
Affiliation(s)
- John T Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Li G, Zhang L, Xue P. Codon usage divergence of important functional genes in Mycobacterium tuberculosis. Int J Biol Macromol 2022; 209:1197-1204. [PMID: 35460756 DOI: 10.1016/j.ijbiomac.2022.04.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/31/2022]
Abstract
Sequence characteristics are usually used to explain the adaptive ability to hosts, metabolism, genetic diversity, drug resistance, and infectivity of Mycobacterium tuberculosis. Exploring the codon usage pattern of coding sequences in Mycobacterium tuberculosis is of great significance. In the present study, two hundred random complete genomes of Mycobacterium tuberculosis were downloaded from the National Center for Biotechnology Information database. The important codon usage pattern, such as the codon bias index, the effective number of codons, the relative synonymous codon usage as well as the base component, of twenty one specific functional genes were counted or calculated. The differences of the relative synonymous codon usage values among those functional genes, and the summation of the standard deviations of codon usage parameters were used to evaluate the divergence degree of the concerned genes. The results show that among the concerned genes, 1) all genes are high GC sequences, the codon usage frequency corresponding to each amino acid of these functional genes had a significant bias; 2) the genes of those with high effective number of codons, such as the coding sequences of Myco-bacterial membrane protein large family, usually have higher divergences; and 3) genes with lower divergences, such as the ag85A and the sigH, are usually highly conserved and are often used as drug target genes. The findings of the present work would improve new understandings on the evolution of Mycobacterium tuberculosis and on the measures to prevent and control tuberculosis from the gene engineering.
Collapse
Affiliation(s)
- Gun Li
- Laboratory for Biodiversity Science, Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, China.
| | - Liang Zhang
- Laboratory for Biodiversity Science, Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, China
| | - Pei Xue
- Laboratory for Biodiversity Science, Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, China
| |
Collapse
|
4
|
Ma R, Farrell D, Gonzalez G, Browne JA, Nakajima C, Suzuki Y, Gordon SV. The TbD1 Locus Mediates a Hypoxia-Induced Copper Response in Mycobacterium bovis. Front Microbiol 2022; 13:817952. [PMID: 35495699 PMCID: PMC9048740 DOI: 10.3389/fmicb.2022.817952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) contains the causative agents of tuberculosis (TB) in mammals. The archetypal members of the MTBC, Mycobacterium tuberculosis and Mycobacterium bovis, cause human tuberculosis and bovine tuberculosis, respectively. Although M. tuberculosis and M. bovis share over 99.9% genome identity, they show distinct host adaptation for humans and animals; hence, while the molecular basis of host adaptation is encoded in their genomes, the mechanistic basis of host tropism is still unclear. Exploration of the in vitro phenotypic consequences of known genetic difference between M. bovis and M. tuberculosis offers one route to explore genotype–phenotype links that may play a role in host adaptation. The TbD1 (“Mycobacterium tuberculosis deletion 1 region”) locus encompasses the mmpS6 and mmpL6 genes. TbD1 is absent in M. tuberculosis “modern” lineages (Lineages 2, 3, and 4) but present in “ancestral” M. tuberculosis (Lineages 1 and 7), Mycobacterium africanum lineages (Lineages 5 and 6), newly identified M. tuberculosis lineages (Lineages 8 and 9), and animal adapted strains, such as M. bovis. The function of TbD1 has previously been investigated in M. tuberculosis, where conflicting data has emerged on the role of TbD1 in sensitivity to oxidative stress, while the underlying mechanistic basis of such a phenotype is unclear. In this study, we aimed to shed further light on the role of the TbD1 locus by exploring its function in M. bovis. Toward this, we constructed an M. bovis TbD1 knockout (ΔTbD1) strain and conducted comparative transcriptomics to define global gene expression profiles of M. bovis wild-type (WT) and the ΔTbD1 strains under in vitro culture conditions (rolling and standing cultures). This analysis revealed differential induction of a hypoxia-driven copper response in WT and ΔTbD1 strains. In vitro phenotypic assays demonstrated that the deletion of TbD1 sensitized M. bovis to H2O2 and hypoxia-specific copper toxicity. Our study provides new information on the function of the TbD1 locus in M. bovis and its role in stress responses in the MTBC.
Collapse
Affiliation(s)
- Ruoyao Ma
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Damien Farrell
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Gabriel Gonzalez
- Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - John A. Browne
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Chie Nakajima
- Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Stephen V. Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- *Correspondence: Stephen V. Gordon,
| |
Collapse
|
5
|
Sundararajan S, Muniyan R. Latent tuberculosis: interaction of virulence factors in Mycobacterium tuberculosis. Mol Biol Rep 2021; 48:6181-6196. [PMID: 34351540 DOI: 10.1007/s11033-021-06611-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/29/2021] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) remains a prominent health concern worldwide. Besides extensive research and vaccinations available, attempts to control the pandemic are cumbersome due to the complex physiology of Mycobacterium tuberculosis (Mtb). Alongside the emergence of drug-resistant TB, latent TB has worsened the condition. The tubercle bacilli are unusually behaved and successful with its strategies to modulate genes to evade host immune system and persist within macrophages. Under latent/unfavorable conditions, Mtb conceals itself from immune system and modulates its genes. Among many intracellular modulated genes, important are those involved in cell entry, fatty acid degradation, mycolic acid synthesis, phagosome acidification inhibition, inhibition of phagosome-lysosome complex and chaperon protein modulation. Though the study on these genes date back to early times of TB, an insight on their inter-relation within and to newly evolved genes are still required. This review focuses on the findings and discussions on these genes, possible mechanism, credibility as target for novel drugs and repurposed drugs and their interaction that enables Mtb in survival, pathogenesis, resistance and latency.
Collapse
Affiliation(s)
- Sadhana Sundararajan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Rajiniraja Muniyan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Ma S, Huang Y, Xie F, Gong Z, Zhang Y, Stojkoska A, Xie J. Transport mechanism of Mycobacterium tuberculosis MmpL/S family proteins and implications in pharmaceutical targeting. Biol Chem 2020; 401:331-348. [DOI: 10.1515/hsz-2019-0326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
Abstract
AbstractTuberculosis caused by Mycobacterium tuberculosis remains a serious threat to public health. The M. tuberculosis cell envelope is closely related to its virulence and drug resistance. Mycobacterial membrane large proteins (MmpL) are lipid-transporting proteins of the efflux pump resistance nodulation cell division (RND) superfamily with lipid substrate specificity and non-transport lipid function. Mycobacterial membrane small proteins (MmpS) are small regulatory proteins, and they are also responsible for some virulence-related effects as accessory proteins of MmpL. The MmpL transporters are the candidate targets for the development of anti-tuberculosis drugs. This article summarizes the structure, function, phylogenetics of M. tuberculosis MmpL/S proteins and their roles in host immune response, inhibitors and regulatory system.
Collapse
Affiliation(s)
- Shuang Ma
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Yu Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Fuling Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Yuan Zhang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Andrea Stojkoska
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| |
Collapse
|
7
|
Zhang B, Li J, Yang X, Wu L, Zhang J, Yang Y, Zhao Y, Zhang L, Yang X, Yang X, Cheng X, Liu Z, Jiang B, Jiang H, Guddat LW, Yang H, Rao Z. Crystal Structures of Membrane Transporter MmpL3, an Anti-TB Drug Target. Cell 2019; 176:636-648.e13. [PMID: 30682372 DOI: 10.1016/j.cell.2019.01.003] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/22/2018] [Accepted: 12/31/2018] [Indexed: 01/01/2023]
Abstract
Despite intensive efforts to discover highly effective treatments to eradicate tuberculosis (TB), it remains as a major threat to global human health. For this reason, new TB drugs directed toward new targets are highly coveted. MmpLs (Mycobacterial membrane proteins Large), which play crucial roles in transporting lipids, polymers and immunomodulators and which also extrude therapeutic drugs, are among the most important therapeutic drug targets to emerge in recent times. Here, crystal structures of mycobacterial MmpL3 alone and in complex with four TB drug candidates, including SQ109 (in Phase 2b-3 clinical trials), are reported. MmpL3 consists of a periplasmic pore domain and a twelve-helix transmembrane domain. Two Asp-Tyr pairs centrally located in this domain appear to be key facilitators of proton-translocation. SQ109, AU1235, ICA38, and rimonabant bind inside the transmembrane region and disrupt these Asp-Tyr pairs. This structural data will greatly advance the development of MmpL3 inhibitors as new TB drugs.
Collapse
Affiliation(s)
- Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiaolin Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Jia Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yang Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaobao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xi Cheng
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhijie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Laboratory of Structural Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Willson BJ, Chapman LNM, Thomas GH. Evolutionary dynamics of membrane transporters and channels: enhancing function through fusion. Curr Opin Genet Dev 2019; 58-59:76-86. [DOI: 10.1016/j.gde.2019.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
|
9
|
Vijayaraj M, Abhinand PA, Ragunath PK. Virtual screening of a MDR-TB WhiB6 target identified by gene expression profiling. Bioinformation 2019; 15:557-567. [PMID: 31719765 PMCID: PMC6822516 DOI: 10.6026/97320630015557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/14/2019] [Indexed: 11/23/2022] Open
Abstract
Multidrug resistance in M. tb has become a huge global problem due to drug resistance. Hence, the treatment remains a challenge, even though short term chemotherapy is available. Therefore, it is of interest to identify novel drug targets in M.tb through gene expression profiling complimented by a subtractive proteome model. WhiB6 is a transcriptional regulator protein and a known drug resistant marker that is critical in the secretion dependent regulation of ESX-1, which is specialized for the deployment of host membrane-targeting proteins. The WhiB6 protein structure was modelled ab initio and was docked with a library of 173 phytochemicals with potential antituberculosis activity to the identified drug marker to find novel lead molecules. UDP-galactopyranose and GDP-L-galactose were identified to be potential lead molecules to inhibit the target WhiB6. The results were compared with the first line drugs for MDR-TB by docking with WhiB6. Data showed that Ethambutol showed better binding ability to WhiB6 but the afore mentioned top ranked phytochemicals were found to be better candidate molecules. The chosen candidate lead molecules should be further validated by suitable in vitro or in vivo investigation.
Collapse
Affiliation(s)
- Mahalakshmi Vijayaraj
- Department of Bioinformatics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University) Porur, Chennai-600116
| | - PA Abhinand
- Department of Bioinformatics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University) Porur, Chennai-600116
| | - PK Ragunath
- Department of Bioinformatics, Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University) Porur, Chennai-600116
| |
Collapse
|
10
|
Ghajavand H, Kargarpour Kamakoli M, Khanipour S, Pourazar Dizaji S, Masoumi M, Rahimi Jamnani F, Fateh A, Yaseri M, Siadat SD, Vaziri F. Scrutinizing the drug resistance mechanism of multi- and extensively-drug resistant Mycobacterium tuberculosis: mutations versus efflux pumps. Antimicrob Resist Infect Control 2019; 8:70. [PMID: 31073401 PMCID: PMC6498538 DOI: 10.1186/s13756-019-0516-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/29/2019] [Indexed: 02/03/2023] Open
Abstract
Background In order to shorten the course of treatment and its effectiveness, it is essential to gain an in-depth insight into the drug resistance mechanisms of Mycobacterium tuberculosis (M. tuberculosis). Methods In this study, we evaluated the contribution of 26 drug efflux pumps plus target gene mutations to the drug resistance levels in multi-drug resistant (MDR)/pre-extensively drug-resistant (pre-XDR)/extensively drug-resistant (XDR) and mono-drug resistant clinical isolates of M. tuberculosis. The panels of 25 M. tuberculosis clinical strains were characterized for drug resistance-associated mutations with whole-genome sequencing and antibiotic profiles in the presence and absence of efflux inhibitor verapamil (VP). Results Different MICs were observed for the same target gene mutations. Out of the 16 MDR/pre-XDR/XDR isolates, 6 (37.5%) and 3 (18.8%) isolates demonstrated a significant decrease in rifampicin (RIF) MIC and isoniazid (INH) MIC due to the VP exposure (64 μg/mL), respectively. Susceptibility to RIF was fully restored in two isolates after VP exposure. Moreover, the efflux pump genes of Rv2938, Rv2936, Rv1145, Rv1146, Rv933, Rv1250, Rv876, Rv2333, Rv2459, Rv849, and Rv1819 were overexpressed in the presence of anti-TB drugs, showing the contribution of these efflux pumps to the overall resistance phenotype. Conclusions Our results clearly showed that efflux systems, besides spontaneous mutations, play a role in the development of INH/RIF resistance. In addition, although VP was effective in reducing the expression of some efflux pumps, it was not very successful at the phenotypic level.
Collapse
Affiliation(s)
- Hasan Ghajavand
- 1Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,2Microbiology Research Center (MRC), Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhoori St, Tehran, 1316943551 Iran
| | - Mansour Kargarpour Kamakoli
- 1Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,2Microbiology Research Center (MRC), Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhoori St, Tehran, 1316943551 Iran
| | - Sharareh Khanipour
- 1Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,2Microbiology Research Center (MRC), Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhoori St, Tehran, 1316943551 Iran
| | - Shahin Pourazar Dizaji
- 1Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,2Microbiology Research Center (MRC), Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhoori St, Tehran, 1316943551 Iran
| | - Morteza Masoumi
- 1Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,2Microbiology Research Center (MRC), Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhoori St, Tehran, 1316943551 Iran
| | - Fatemeh Rahimi Jamnani
- 1Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,2Microbiology Research Center (MRC), Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhoori St, Tehran, 1316943551 Iran
| | - Abolfazl Fateh
- 1Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,2Microbiology Research Center (MRC), Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhoori St, Tehran, 1316943551 Iran
| | - Mehdi Yaseri
- 3Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- 1Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,2Microbiology Research Center (MRC), Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhoori St, Tehran, 1316943551 Iran
| | - Farzam Vaziri
- 1Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,2Microbiology Research Center (MRC), Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhoori St, Tehran, 1316943551 Iran
| |
Collapse
|
11
|
Melly G, Purdy GE. MmpL Proteins in Physiology and Pathogenesis of M. tuberculosis. Microorganisms 2019; 7:microorganisms7030070. [PMID: 30841535 PMCID: PMC6463170 DOI: 10.3390/microorganisms7030070] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/14/2019] [Accepted: 03/03/2019] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) remains an important human pathogen. The Mtb cell envelope is a critical bacterial structure that contributes to virulence and pathogenicity. Mycobacterial membrane protein large (MmpL) proteins export bulky, hydrophobic substrates that are essential for the unique structure of the cell envelope and directly support the ability of Mtb to infect and persist in the host. This review summarizes recent investigations that have enabled insight into the molecular mechanisms underlying MmpL substrate export and the role that these substrates play during Mtb infection.
Collapse
Affiliation(s)
- Geoff Melly
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Georgiana E Purdy
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
12
|
Mechanism and resistance for antimycobacterial activity of a fluoroquinophenoxazine compound. PLoS One 2019; 14:e0207733. [PMID: 30794538 PMCID: PMC6386362 DOI: 10.1371/journal.pone.0207733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/07/2019] [Indexed: 01/28/2023] Open
Abstract
We have previously reported the inhibition of bacterial topoisomerase I activity by a fluoroquinophenoxazine compound (FP-11g) with a 6-bipiperidinyl lipophilic side chain that exhibited promising antituberculosis activity (MIC = 2.5 μM against Mycobacterium tuberculosis, SI = 9.8). Here, we found that the compound is bactericidal towards Mycobacterium smegmatis, resulting in greater than 5 Log10 reduction in colony-forming units [cfu]/mL following a 10 h incubation at 1.25 μM (4X MIC) concentration. Growth inhibition (MIC = 50 μM) and reduction in cfu could also be observed against a clinical isolate of Mycobacterium abscessus. Stepwise isolation of resistant mutants of M. smegmatis was conducted to explore the mechanism of resistance. Mutations in the resistant isolates were identified by direct comparison of whole-genome sequencing data from mutant and wild-type isolates. These include mutations in genes likely to affect the entry and retention of the compound. FP-11g inhibits Mtb topoisomerase I and Mtb gyrase with IC50 of 0.24 and 27 μM, respectively. Biophysical analysis showed that FP-11g binds DNA as an intercalator but the IC50 for inhibition of Mtb topoisomerase I activity is >10 fold lower than the compound concentrations required for producing negatively supercoiled DNA during ligation of nicked circular DNA. Thus, the DNA-binding property of FP-11g may contribute to its antimycobacterial mechanism, but that alone cannot account for the observed inhibition of Mtb topoisomerase I.
Collapse
|
13
|
Haynes MK, Garcia M, Peters R, Waller A, Tedesco P, Ursu O, Bologa CG, Santos RG, Pinilla C, Wu TH, Lovchik JA, Oprea TI, Sklar LA, Tegos GP. High-Throughput Flow Cytometry Screening of Multidrug Efflux Systems. Methods Mol Biol 2018; 1700:293-318. [PMID: 29177837 DOI: 10.1007/978-1-4939-7454-2_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The resistance nodulation cell division (RND) family of proteins are inner membrane transporters that associate with periplasmic adaptor proteins and outer membrane porins to affect substrate transport from the cytosol and periplasm in Gram-negative bacteria. Various structurally diverse compounds are substrates of RND transporters. Along with their notable role in antibiotic resistance, these transporters are essential for niche colonization, quorum sensing, and virulence as well as for the removal of fatty acids and bile salts. As such, RNDs are an attractive target for antimicrobial development. However, while enhancing the utility of antibiotics with an RND inhibitor is an appealing concept, only a small core of chemotypes has been identified as efflux pump inhibitors (EPIs). Thus, our key objective is the development and validation of an efflux profiling and discovery strategy for RND model systems. Here we describe a flow cytometric dye accumulation assay that uses fluorescein diacetate (FDA) to interrogate the model Gram-negative pathogens Escherichia coli, Franscisella tularensis, and Burkholderia pseudomallei. Fluorochrome retention is increased in the presence of known efflux inhibitors and in RND deletion strains. The assay can be used in a high-throughput format to evaluate efflux of dye-substrate candidates and to screen chemical libraries for novel EPIs. Triaged compounds that inhibit efflux in pathogenic strains are tested for growth inhibition and antibiotic potentiation using microdilution culture plates in a select agent Biosafety Level-3 (BSL3) environment. This combined approach demonstrates the utility of flow cytometric analysis for efflux activity and provides a useful platform in which to characterize efflux in pathogenic Gram-negative bacteria. Screening small molecule libraries for novel EPI candidates offers the potential for the discovery of new classes of antibacterial compounds.
Collapse
Affiliation(s)
- Mark K Haynes
- Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA.
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| | - Matthew Garcia
- Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Ryan Peters
- Center for Infectious Disease and Immunity, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Anna Waller
- Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Pietro Tedesco
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
- Department of Chemical Sciences and School of Biotechnological Sciences, University of Naples, Naples, Italy
| | - Oleg Ursu
- Division of Translational Informatics, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Cristian G Bologa
- Division of Translational Informatics, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Radleigh G Santos
- Torrey Pines Institute for Molecular Studies, Port St Lucie, FL, USA
| | | | - Terry H Wu
- Center for Infectious Disease and Immunity, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Julie A Lovchik
- Center for Infectious Disease and Immunity, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Tudor I Oprea
- Division of Translational Informatics, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Larry A Sklar
- Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - George P Tegos
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
14
|
Briffotaux J, Huang W, Wang X, Gicquel B. MmpS5/MmpL5 as an efflux pump in Mycobacterium species. Tuberculosis (Edinb) 2017; 107:13-19. [DOI: 10.1016/j.tube.2017.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
|
15
|
Sandhu P, Akhter Y. Evolution of structural fitness and multifunctional aspects of mycobacterial RND family transporters. Arch Microbiol 2017; 200:19-31. [PMID: 28951954 DOI: 10.1007/s00203-017-1434-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/07/2017] [Accepted: 09/20/2017] [Indexed: 12/11/2022]
Abstract
Drug resistance is a major concern due to the evolution and emergence of pathogenic bacterial strains with novel strategies to resist the antibiotics in use. Mycobacterium tuberculosis (Mtb) is one of such pathogens with reported strains, which are not treatable with any of the available anti-TB drugs. This scenario has led to the need to look for some novel drug targets in Mtb, which may be exploited to design effective treatment strategies against the infection. The goal of this review is to discuss one such class of emerging drug targets in Mtb. MmpL (mycobacterial membrane protein large) proteins from Mtb are reported to be involved in multi-substrate transport including drug efflux and considered as one of the contributing factors for the emergence of multidrug-resistant strains. MmpL proteins belong to resistance nodulation division permeases superfamily of membrane transporters, which are viably and pathogenetically important and their inhibition could be lethal for the bacteria.
Collapse
Affiliation(s)
- Padmani Sandhu
- Structural Bioinformatics Group, Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Shahpur District, Kangra, Himachal Pradesh, 176206, India
| | - Yusuf Akhter
- Structural Bioinformatics Group, Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Shahpur District, Kangra, Himachal Pradesh, 176206, India.
| |
Collapse
|
16
|
Sharma S, Kumari I, Hussain R, Ahmed M, Akhter Y. Species specific substrates and products choices of 4- O -acetyltransferase from Trichoderma brevicompactum. Enzyme Microb Technol 2017. [DOI: 10.1016/j.enzmictec.2017.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Sandhu P, Akhter Y. Siderophore transport by MmpL5-MmpS5 protein complex in Mycobacterium tuberculosis. J Inorg Biochem 2017; 170:75-84. [DOI: 10.1016/j.jinorgbio.2017.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/27/2016] [Accepted: 02/10/2017] [Indexed: 12/17/2022]
|
18
|
Perkowski EF, Zulauf KE, Weerakoon D, Hayden JD, Ioerger TR, Oreper D, Gomez SM, Sacchettini JC, Braunstein M. The EXIT Strategy: an Approach for Identifying Bacterial Proteins Exported during Host Infection. mBio 2017; 8:e00333-17. [PMID: 28442606 PMCID: PMC5405230 DOI: 10.1128/mbio.00333-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022] Open
Abstract
Exported proteins of bacterial pathogens function both in essential physiological processes and in virulence. Past efforts to identify exported proteins were limited by the use of bacteria growing under laboratory (in vitro) conditions. Thus, exported proteins that are exported only or preferentially in the context of infection may be overlooked. To solve this problem, we developed a genome-wide method, named EXIT (exported in vivotechnology), to identify proteins that are exported by bacteria during infection and applied it to Mycobacterium tuberculosis during murine infection. Our studies validate the power of EXIT to identify proteins exported during infection on an unprecedented scale (593 proteins) and to reveal in vivo induced exported proteins (i.e., proteins exported significantly more during in vivo infection than in vitro). Our EXIT data also provide an unmatched resource for mapping the topology of M. tuberculosis membrane proteins. As a new approach for identifying exported proteins, EXIT has potential applicability to other pathogens and experimental conditions.IMPORTANCE There is long-standing interest in identifying exported proteins of bacteria as they play critical roles in physiology and virulence and are commonly immunogenic antigens and targets of antibiotics. While significant effort has been made to identify the bacterial proteins that are exported beyond the cytoplasm to the membrane, cell wall, or host environment, current methods to identify exported proteins are limited by their use of bacteria growing under laboratory (in vitro) conditions. Because in vitro conditions do not mimic the complexity of the host environment, critical exported proteins that are preferentially exported in the context of infection may be overlooked. We developed a novel method to identify proteins that are exported by bacteria during host infection and applied it to identify Mycobacterium tuberculosis proteins exported in a mouse model of tuberculosis.
Collapse
Affiliation(s)
- E F Perkowski
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - K E Zulauf
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - D Weerakoon
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - J D Hayden
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - T R Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - D Oreper
- Joint Department of Biomedical Engineering at UNC-Chapel Hill and NC State University, Chapel Hill, North Carolina, USA
| | - S M Gomez
- Joint Department of Biomedical Engineering at UNC-Chapel Hill and NC State University, Chapel Hill, North Carolina, USA
| | - J C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - M Braunstein
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
Viljoen A, Dubois V, Girard-Misguich F, Blaise M, Herrmann JL, Kremer L. The diverse family of MmpL transporters in mycobacteria: from regulation to antimicrobial developments. Mol Microbiol 2017; 104:889-904. [DOI: 10.1111/mmi.13675] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Albertus Viljoen
- Institut de Recherche en Infectiologie de Montpellier (IRIM); CNRS, UMR 9004, Université de Montpellier, France
| | - Violaine Dubois
- INSERM, UMR1173; Université de Versailles Saint-Quentin-en-Yvelines; Montigny-le-Bretonneux 78180 France
| | - Fabienne Girard-Misguich
- INSERM, UMR1173; Université de Versailles Saint-Quentin-en-Yvelines; Montigny-le-Bretonneux 78180 France
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM); CNRS, UMR 9004, Université de Montpellier, France
| | - Jean-Louis Herrmann
- INSERM, UMR1173; Université de Versailles Saint-Quentin-en-Yvelines; Montigny-le-Bretonneux 78180 France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM); CNRS, UMR 9004, Université de Montpellier, France
- IRIM; INSERM; 34293 Montpellier France
| |
Collapse
|
20
|
Genome scale identification, structural analysis, and classification of periplasmic binding proteins from Mycobacterium tuberculosis. Curr Genet 2016; 63:553-576. [DOI: 10.1007/s00294-016-0664-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 01/26/2023]
|
21
|
Belardinelli JM, Yazidi A, Yang L, Fabre L, Li W, Jacques B, Angala SK, Rouiller I, Zgurskaya HI, Sygusch J, Jackson M. Structure-Function Profile of MmpL3, the Essential Mycolic Acid Transporter from Mycobacterium tuberculosis. ACS Infect Dis 2016; 2:702-713. [PMID: 27737557 DOI: 10.1021/acsinfecdis.6b00095] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The MmpL family of proteins translocates complex (glyco)lipids and siderophores across the cell envelope of mycobacteria and closely related Corynebacteriaceae and plays important roles in the biogenesis of the outer membrane of these organisms. Despite their significance in the physiology and virulence of Mycobacterium tuberculosis, and from the perspective of developing novel antituberculosis agents, little is known about their structure and mechanism of translocation. In this study, the essential mycobacterial mycolic acid transporter, MmpL3, and its orthologue in Corynebacterium glutamicum, CmpL1, were investigated as prototypical MmpL proteins to gain insight into the transmembrane topology, tertiary and quaternary structures, and functional regions of this transporter family. The combined genetic, biochemical, and biophysical studies indicate that MmpL3 and CmpL1 are structurally similar to Gram-negative resistance-nodulation and division efflux pumps. They harbor 12 transmembrane segments interrupted by two large soluble periplasmic domains and function as homotrimers to export long-chain (C22-C90) mycolic acids, possibly in their acetylated form, esterified to trehalose. The mapping of a number of functional residues within the middle region of the transmembrane domain of MmpL3 shows a striking overlap with mutations associated with resistance to MmpL3 inhibitors. The results suggest that structurally diverse inhibitors of MmpL3 all target the proton translocation path of the transporter and that multiresistance to these inhibitors is enabled by conformational changes in MmpL3.
Collapse
Affiliation(s)
- Juan Manuel Belardinelli
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology and
Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Amira Yazidi
- Biochimie et Médecine Moléculaire, Université de Montréal, CP 6128, Station Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Groupe d’Étude des Protéines Membranaires
(GÉPROM), Université de Montréal, CP 6128, Station Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Liang Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Lucien Fabre
- Groupe d’Étude des Protéines Membranaires
(GÉPROM), Université de Montréal, CP 6128, Station Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, Quebec H3A 2B2, Canada
| | - Wei Li
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology and
Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Benoit Jacques
- Biochimie et Médecine Moléculaire, Université de Montréal, CP 6128, Station Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Shiva kumar Angala
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology and
Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Isabelle Rouiller
- Groupe d’Étude des Protéines Membranaires
(GÉPROM), Université de Montréal, CP 6128, Station Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, Quebec H3A 2B2, Canada
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Jurgen Sygusch
- Biochimie et Médecine Moléculaire, Université de Montréal, CP 6128, Station Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Groupe d’Étude des Protéines Membranaires
(GÉPROM), Université de Montréal, CP 6128, Station Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Mary Jackson
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology and
Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| |
Collapse
|
22
|
Kumari I, Ahmed M, Akhter Y. Deciphering the protein translation inhibition and coping mechanism of trichothecene toxin in resistant fungi. Int J Biochem Cell Biol 2016; 78:370-376. [DOI: 10.1016/j.biocel.2016.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 01/16/2023]
|
23
|
Dupont C, Viljoen A, Dubar F, Blaise M, Bernut A, Pawlik A, Bouchier C, Brosch R, Guérardel Y, Lelièvre J, Ballell L, Herrmann JL, Biot C, Kremer L. A new piperidinol derivative targeting mycolic acid transport inMycobacterium abscessus. Mol Microbiol 2016; 101:515-29. [DOI: 10.1111/mmi.13406] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Christian Dupont
- Centre National de la Recherche Scientifique FRE 3689, Centre d’études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier; 1919 route de Mende Montpellier 34293 France
- UMR1173, INSERM, Université de Versailles St Quentin; 2 avenue de la Source de la Bièvre 78180 Montigny le Bretonneux France
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique FRE 3689, Centre d’études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier; 1919 route de Mende Montpellier 34293 France
| | - Faustine Dubar
- Université Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle; Lille F 59000 France
| | - Mickaël Blaise
- Centre National de la Recherche Scientifique FRE 3689, Centre d’études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier; 1919 route de Mende Montpellier 34293 France
| | - Audrey Bernut
- Centre National de la Recherche Scientifique FRE 3689, Centre d’études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier; 1919 route de Mende Montpellier 34293 France
| | - Alexandre Pawlik
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée; 25 rue du Dr. Roux Paris 75724 France
| | | | - Roland Brosch
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée; 25 rue du Dr. Roux Paris 75724 France
| | - Yann Guérardel
- Université Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle; Lille F 59000 France
| | - Joël Lelièvre
- Diseases of the Developing World, GlaxoSmithKline Tres Cantos; Madrid 28760 Spain
| | - Lluis Ballell
- Diseases of the Developing World, GlaxoSmithKline Tres Cantos; Madrid 28760 Spain
| | - Jean-Louis Herrmann
- UMR1173, INSERM, Université de Versailles St Quentin; 2 avenue de la Source de la Bièvre 78180 Montigny le Bretonneux France
| | - Christophe Biot
- Université Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle; Lille F 59000 France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE 3689, Centre d’études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier; 1919 route de Mende Montpellier 34293 France
- INSERM, CPBS; Montpellier 34293 France
| |
Collapse
|
24
|
Kumari I, Ahmed M, Akhter Y. Multifaceted impact of trichothecene metabolites on plant-microbe interactions and human health. Appl Microbiol Biotechnol 2016; 100:5759-71. [PMID: 27198722 DOI: 10.1007/s00253-016-7599-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/04/2016] [Accepted: 04/29/2016] [Indexed: 12/29/2022]
Abstract
Fungi present in rhizosphere produce trichothecene metabolites which are small in size and amphipathic in nature and some of them may cross cell membranes passively. Hypocreaceae family of rhizosphere fungi produce trichothecene molecules, however it is not a mandatory characteristic of all genera. Some of these molecules are also reported as growth adjuvant, while others are reported as deleterious for the plant growth. In this review, we are exploring the roles of these compounds during plant-microbe interactions. The three-way interaction among the plants, symbiotic microbial agents (fungi and bacteria), and the pathogenic microbes (bacteria, fungi) or multicellular pathogens like nematodes involving these compounds may only help us to understand better the complex processes happening in the microcosm of rhizosphere. These metabolites may further modulate the activity of different proteins involved in the cell signalling events of defence-related response in plants. That may induce the defence system against pathogens and growth promoting gene expression in plants, while in animal cells, these molecules have reported biochemical and pharmacological effects such as inducing oxidative stress, cell-cycle arrest and apoptosis, and may be involved in maintenance of membrane integrity. The biochemistry, chemical structures and specific functional group-mediated activity of these compounds have not been studied in details yet. Few of these molecules are also recently reported as novel anti-cancer agent against human chondrosarcoma cells.
Collapse
Affiliation(s)
- Indu Kumari
- School of Earth and Environmental Sciences, Central University of Himachal Pradesh, Shahpur, Kangra District, Himachal Pradesh, 176206, India
| | - Mushtaq Ahmed
- School of Earth and Environmental Sciences, Central University of Himachal Pradesh, Shahpur, Kangra District, Himachal Pradesh, 176206, India
| | - Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, Kangra District, Himachal Pradesh, 176206, India.
| |
Collapse
|
25
|
Proteome scale census of major facilitator superfamily transporters in Trichoderma reesei using protein sequence and structure based classification enhanced ranking. Gene 2016; 585:166-176. [PMID: 27041239 DOI: 10.1016/j.gene.2016.03.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 03/16/2016] [Accepted: 03/25/2016] [Indexed: 01/11/2023]
Abstract
Trichoderma spp. have been acknowledged as potent bio-control agents against microbial pathogens and also as plant growth promoters. Various secondary metabolites are attributed for these beneficial activities. Major facilitator superfamily (MFS) includes the large proportion of efflux-pumps which are linked with membrane transport of these secondary metabolites. We have carried out a proteome-wide identification of MFS transporters using protein sequence and structure based hierarchical method in Trichoderma reesei. 448 proteins out of 9115 were detected to carry transmembrane helices. MFS specific intragenic gene duplication and its context with transport function have been presented. Finally, using homology based techniques, domains and motifs of MFS families have been identified and utilized to classify them. From query dataset of 448 transmembrane proteins, 148 proteins are identified as potential MFS transporters. Sugar porter, drug: H(+) antiporter-1, monocarboxylate porter and anion: cation symporter emerged as major MFS families with 51, 35, 17 and 11 members respectively. Representative protein tertiary structures of these families are homology modeled for structure-function analysis. This study may help to understand the molecular basis of secretion and transport of agriculturally valuable secondary metabolites produced by these bio-control fungal agents which may be exploited in future for enhancing its biotechnological applications in eco-friendly sustainable development.
Collapse
|
26
|
Sandhu P, Akhter Y. The drug binding sites and transport mechanism of the RND pumps from Mycobacterium tuberculosis: Insights from molecular dynamics simulations. Arch Biochem Biophys 2016; 592:38-49. [PMID: 26792538 DOI: 10.1016/j.abb.2016.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/30/2022]
Abstract
RND permease superfamily drug efflux pumps are involved in multidrug transport and are attractive to study them for therapeutic purpose. In previous work we have classified 14 members of MmpL proteins belong to RND superfamily from Mycobacterium tuberculosis (Mtb) within its families [Sandhu P. and Akhter Y., 2015. Int. J. Med. Microbiol., 305:413-423]. In this study, structures of these proteins are homology modelled. The drug binding sites and channels are identified using local micro-stereochemistry and charge densities. Potential transport mechanism based on differential structural behaviour in the absence and on the binding of drug molecules is explained using the molecular dynamics simulation results. Our studies show two potential drug binding sites positioned at opposite ends of the transport tunnel leading from cytoplasmic to the periplasmic space across MmpL5 trimer. The drug binding have effects on the structural conformation of the protein leading to molecular-scale peristaltic movements. The free binding energy calculations reveal that the subsequent binding events are interdependent and may have implications on transport mechanism. Two drug binding sites and a continuous channel in the RND pump have been reported. The proposed ligand binding mechanism shows peristaltic movements in the channel leading to the drug efflux. This study would be helpful in understanding the molecular basis of drugs resistance in Mtb.
Collapse
Affiliation(s)
- Padmani Sandhu
- School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India.
| |
Collapse
|
27
|
Bernut A, Viljoen A, Dupont C, Sapriel G, Blaise M, Bouchier C, Brosch R, de Chastellier C, Herrmann JL, Kremer L. Insights into the smooth-to-rough transitioning inMycobacterium bolletiiunravels a functional Tyr residue conserved in all mycobacterial MmpL family members. Mol Microbiol 2015; 99:866-83. [DOI: 10.1111/mmi.13283] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Audrey Bernut
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280; 13288 Marseille France
| | - Christian Dupont
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
| | - Guillaume Sapriel
- UMR1173; INSERM; Université de Versailles St Quentin; 2 avenue de la Source de la Bièvre 78180 Montigny le Bretonneux France
| | - Mickaël Blaise
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
| | | | - Roland Brosch
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée; 25 rue du Dr. Roux 75724 Paris France
| | - Chantal de Chastellier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280; 13288 Marseille France
| | - Jean-Louis Herrmann
- UMR1173; INSERM; Université de Versailles St Quentin; 2 avenue de la Source de la Bièvre 78180 Montigny le Bretonneux France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE3689; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé; Université de Montpellier; 1919 route de Mende 34293 Montpellier France
- INSERM; CPBS; 34293 Montpellier France
| |
Collapse
|
28
|
Nunes-Costa D, Alarico S, Dalcolmo MP, Correia-Neves M, Empadinhas N. The looming tide of nontuberculous mycobacterial infections in Portugal and Brazil. Tuberculosis (Edinb) 2015; 96:107-19. [PMID: 26560840 DOI: 10.1016/j.tube.2015.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/27/2015] [Accepted: 09/16/2015] [Indexed: 01/15/2023]
Abstract
Nontuberculous mycobacteria (NTM) are widely disseminated in the environment and an emerging cause of infectious diseases worldwide. Their remarkable natural resistance to disinfectants and antibiotics and an ability to survive under low-nutrient conditions allows NTM to colonize and persist in man-made environments such as household and hospital water distribution systems. This overlap between human and NTM environments afforded new opportunities for human exposure, and for expression of their often neglected and underestimated pathogenic potential. Some risk factors predisposing to NTM disease have been identified and are mainly associated with immune fragilities of the human host. However, infections in apparently immunocompetent persons are also increasingly reported. The purpose of this review is to bring attention to this emerging health problem in Portugal and Brazil and to emphasize the urgent need for increased surveillance and more comprehensive epidemiological data in both countries, where such information is scarce and seriously thwarts the adoption of proper preventive strategies and therapeutic options.
Collapse
Affiliation(s)
- Daniela Nunes-Costa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Susana Alarico
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | - Margarida Correia-Neves
- ICVS - Health and Life Sciences Research Institute, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Empadinhas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
29
|
Kumari I, Chaudhary N, Sandhu P, Ahmed M, Akhter Y. Structural and mechanistic analysis of engineered trichodiene synthase enzymes from Trichoderma harzianum: towards higher catalytic activities empowering sustainable agriculture. J Biomol Struct Dyn 2015. [PMID: 26207800 DOI: 10.1080/07391102.2015.1073632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Trichoderma spp. are well-known bioagents for the plant growth promotion and pathogen suppression. The beneficial activities of the fungus Trichoderma spp. are attributed to their ability to produce and secrete certain secondary metabolites such as trichodermin that belongs to trichothecene family of molecules. The initial steps of trichodermin biosynthetic pathway in Trichoderma are similar to the trichothecenes from Fusarium sporotrichioides. Trichodiene synthase (TS) encoded by tri5 gene in Trichoderma catalyses the conversion of farnesyl pyrophosphate to trichodiene as reported earlier. In this study, we have carried out a comprehensive comparative sequence and structural analysis of the TS, which revealed the conserved residues involved in catalytic activity of the protein. In silico, modelled tertiary structure of TS protein showed stable structural behaviour during simulations. Two single-substitution mutants, i.e. D109E, D248Y and one double-substitution mutant (D109E and D248Y) of TS with potentially higher activities are screened out. The mutant proteins showed more stability than the wild type, an increased number of electrostatic interactions and better binding energies with the ligand, which further elucidates the amino acid residues involved in the reaction mechanism. These results will lead to devise strategies for higher TS activity to ultimately enhance the trichodermin production by Trichoderma spp. for its better exploitation in the sustainable agricultural practices.
Collapse
Affiliation(s)
- Indu Kumari
- a School of Earth and Environmental Sciences, Central University of Himachal Pradesh , District-Kangra, Shahpur , Himachal Pradesh 176206 , India
| | - Nitika Chaudhary
- a School of Earth and Environmental Sciences, Central University of Himachal Pradesh , District-Kangra, Shahpur , Himachal Pradesh 176206 , India
| | - Padmani Sandhu
- b School of Life Sciences, Central University of Himachal Pradesh , District-Kangra, Shahpur , Himachal Pradesh 176206 , India
| | - Mushtaq Ahmed
- a School of Earth and Environmental Sciences, Central University of Himachal Pradesh , District-Kangra, Shahpur , Himachal Pradesh 176206 , India
| | - Yusuf Akhter
- b School of Life Sciences, Central University of Himachal Pradesh , District-Kangra, Shahpur , Himachal Pradesh 176206 , India
| |
Collapse
|
30
|
Rana A, Ahmed M, Rub A, Akhter Y. A tug-of-war between the host and the pathogen generates strategic hotspots for the development of novel therapeutic interventions against infectious diseases. Virulence 2015; 6:566-80. [PMID: 26107578 PMCID: PMC4720223 DOI: 10.1080/21505594.2015.1062211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 12/30/2022] Open
Abstract
Microbial pathogens are known to express an array of specific signaling molecules referred as Pathogen Associated Molecular Patterns (PAMPs), which are recognized by Pattern Recognition Receptors (PRRs), present on the surface of the host cells. Interactions between PAMPs and PRRs on the surface of the host cells lead to signaling events which could culminate into either successful infection or clearance of the pathogens. Here, we summarize how these events may generate novel host based as well as pathogen based molecular targets for designing effective therapeutic strategies against infections.
Collapse
Affiliation(s)
- Aarti Rana
- School of Life Sciences; Central University of Himachal Pradesh; Shahpur, District-Kangra, Himachal Pradesh, India
| | - Mushtaq Ahmed
- School of Earth and Environmental Sciences; Central University of Himachal Pradesh; Shahpur, District-Kangra, Himachal Pradesh, India
| | - Abdur Rub
- Infection and Immunity Lab; Department of Biotechnology; Jamia Millia Islamia (A Central University); New Delhi, India
| | - Yusuf Akhter
- School of Life Sciences; Central University of Himachal Pradesh; Shahpur, District-Kangra, Himachal Pradesh, India
| |
Collapse
|