1
|
Harris EB, Ewool KKK, Bowden LC, Fierro J, Johnson D, Meinzer M, Tayler S, Grose JH. Genomic and Proteomic Analysis of Six Vi01-like Phages Reveals Wide Host Range and Multiple Tail Spike Proteins. Viruses 2024; 16:289. [PMID: 38400064 PMCID: PMC10892097 DOI: 10.3390/v16020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Enterobacteriaceae is a large family of Gram-negative bacteria composed of many pathogens, including Salmonella and Shigella. Here, we characterize six bacteriophages that infect Enterobacteriaceae, which were isolated from wastewater plants in the Wasatch front (Utah, United States). These phages are highly similar to the Kuttervirus vB_SenM_Vi01 (Vi01), which was isolated using wastewater from Kiel, Germany. The phages vary little in genome size and are between 157 kb and 164 kb, which is consistent with the sizes of other phages in the Vi01-like phage family. These six phages were characterized through genomic and proteomic comparison, mass spectrometry, and both laboratory and clinical host range studies. While their proteomes are largely unstudied, mass spectrometry analysis confirmed the production of five hypothetical proteins, several of which unveiled a potential operon that suggests a ferritin-mediated entry system on the Vi01-like phage family tail. However, no dependence on this pathway was observed for the single host tested herein. While unable to infect every genus of Enterobacteriaceae tested, these phages are extraordinarily broad ranged, with several demonstrating the ability to infect Salmonella enterica and Citrobacter freundii strains with generally high efficiency, as well as several clinical Salmonella enterica isolates, most likely due to their multiple tail fibers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Julianne H. Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84604, USA; (E.B.H.); (K.K.K.E.)
| |
Collapse
|
2
|
Spiga L, Fansler RT, Perera YR, Shealy NG, Munneke MJ, David HE, Torres TP, Lemoff A, Ran X, Richardson KL, Pudlo N, Martens EC, Folta-Stogniew E, Yang ZJ, Skaar EP, Byndloss MX, Chazin WJ, Zhu W. Iron acquisition by a commensal bacterium modifies host nutritional immunity during Salmonella infection. Cell Host Microbe 2023; 31:1639-1654.e10. [PMID: 37776864 PMCID: PMC10599249 DOI: 10.1016/j.chom.2023.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/06/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
During intestinal inflammation, host nutritional immunity starves microbes of essential micronutrients, such as iron. Pathogens scavenge iron using siderophores, including enterobactin; however, this strategy is counteracted by host protein lipocalin-2, which sequesters iron-laden enterobactin. Although this iron competition occurs in the presence of gut bacteria, the roles of commensals in nutritional immunity involving iron remain unexplored. Here, we report that the gut commensal Bacteroides thetaiotaomicron acquires iron and sustains its resilience in the inflamed gut by utilizing siderophores produced by other bacteria, including Salmonella, via a secreted siderophore-binding lipoprotein XusB. Notably, XusB-bound enterobactin is less accessible to host sequestration by lipocalin-2 but can be "re-acquired" by Salmonella, allowing the pathogen to evade nutritional immunity. Because the host and pathogen have been the focus of studies of nutritional immunity, this work adds commensal iron metabolism as a previously unrecognized mechanism modulating the host-pathogen interactions and nutritional immunity.
Collapse
Affiliation(s)
- Luisella Spiga
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan T Fansler
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yasiru R Perera
- Departments of Biochemistry and Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Nicolas G Shealy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew J Munneke
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Holly E David
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Teresa P Torres
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew Lemoff
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xinchun Ran
- Departments of Chemistry, Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Katrina L Richardson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicholas Pudlo
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eric C Martens
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ewa Folta-Stogniew
- Keck Foundation Biotechnology Resource Laboratory, Yale University, 300 George Street, New Haven, CT 06511, USA
| | - Zhongyue J Yang
- Departments of Chemistry, Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mariana X Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Wenhan Zhu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
3
|
Spiga L, Fansler RT, Perera YR, Shealy NG, Munneke MJ, Torres TP, David HE, Lemoff A, Ran X, Richardson KL, Pudlo N, Martens EC, Yang ZJ, Skaar EP, Byndloss MX, Chazin WJ, Zhu W. Iron acquisition by a commensal bacterium modifies host nutritional immunity during Salmonella infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.546471. [PMID: 37425782 PMCID: PMC10326984 DOI: 10.1101/2023.06.25.546471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
During intestinal inflammation, host nutritional immunity starves microbes of essential micronutrients such as iron. Pathogens scavenge iron using siderophores, which is counteracted by the host using lipocalin-2, a protein that sequesters iron-laden siderophores, including enterobactin. Although the host and pathogens compete for iron in the presence of gut commensal bacteria, the roles of commensals in nutritional immunity involving iron remain unexplored. Here, we report that the gut commensal Bacteroides thetaiotaomicron acquires iron in the inflamed gut by utilizing siderophores produced by other bacteria including Salmonella, via a secreted siderophore-binding lipoprotein termed XusB. Notably, XusB-bound siderophores are less accessible to host sequestration by lipocalin-2 but can be "re-acquired" by Salmonella , allowing the pathogen to evade nutritional immunity. As the host and pathogen have been the focus of studies of nutritional immunity, this work adds commensal iron metabolism as a previously unrecognized mechanism modulating the interactions between pathogen and host nutritional immunity.
Collapse
|
4
|
Murdoch CC, Skaar EP. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat Rev Microbiol 2022; 20:657-670. [PMID: 35641670 PMCID: PMC9153222 DOI: 10.1038/s41579-022-00745-6] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
Abstract
Trace metals are essential micronutrients required for survival across all kingdoms of life. From bacteria to animals, metals have critical roles as both structural and catalytic cofactors for an estimated third of the proteome, representing a major contributor to the maintenance of cellular homeostasis. The reactivity of metal ions engenders them with the ability to promote enzyme catalysis and stabilize reaction intermediates. However, these properties render metals toxic at high concentrations and, therefore, metal levels must be tightly regulated. Having evolved in close association with bacteria, vertebrate hosts have developed numerous strategies of metal limitation and intoxication that prevent bacterial proliferation, a process termed nutritional immunity. In turn, bacterial pathogens have evolved adaptive mechanisms to survive in conditions of metal depletion or excess. In this Review, we discuss mechanisms by which nutrient metals shape the interactions between bacterial pathogens and animal hosts. We explore the cell-specific and tissue-specific roles of distinct trace metals in shaping bacterial infections, as well as implications for future research and new therapeutic development.
Collapse
Affiliation(s)
- Caitlin C Murdoch
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Iron deficient diets modify the gut microbiome and reduce the severity of enteric infection in a mouse model of S. Typhimurium-induced enterocolitis. J Nutr Biochem 2022; 107:109065. [DOI: 10.1016/j.jnutbio.2022.109065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 01/04/2023]
|
6
|
Mallick S, Mishra N, Barik BK, Negi VD. Salmonella Typhimurium fepB negatively regulates C. elegans behavioral plasticity. J Infect 2022; 84:518-530. [PMID: 34990707 DOI: 10.1016/j.jinf.2021.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Dauer is an alternative developmental stage of Caenorhabditis elegans (C. elegans) that gives survival benefits under unfavorable environmental conditions. Our study aims to decipher C. elegans dauer larvae development upon Salmonella Typhimurium infection and how the bacterial gene regulating the worm's behavioural plasticity for better survival. METHODS Age-synchronized L4 C. elegans worms were infected with Salmonella Typhimurium 14028s (WT-STM) strain and mutant strains to check the dauer larvae development using 1% SDS. Besides, bacterial load in animals' gut, pharyngeal pumping rate and viability were checked. Worm's immune genes (e.g., ilys-3, lys-7, pmk-1, abf-2, clec-60) and dauer regulatory genes (e.g., daf-7, daf-11, daf-12, daf-16, daf-3) were checked by performing qRT-PCR under infection conditions. RESULTS We found that deletion of the fepB gene in S. Typhimurium strain became less pathogenic with reduced flagellar motility and biofilm-forming ability. Besides, there was decreased bacterial burden in the worm's gut with no damage to their pharynx. The fepB mutant strain was also able to enhance the immune responses for better survival of worms. Infection with mutant strain could activate dauer signaling via the TGF-β pathway leading to a significant increase in dauer formation than WT-STM infection. CONCLUSION Our study indicated that the bacteria act as a food source for the growth of C. elegans and development and can act as a signal that might be playing an essential role in regulating the host physiology for their survival. Such a study can help us in understanding the complex host-pathogen interaction benefiting pathogen in host dissemination.
Collapse
Affiliation(s)
- Swarupa Mallick
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| | - Neha Mishra
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| | - Bedanta Kumar Barik
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| | - Vidya Devi Negi
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
7
|
Guillén S, Marcén M, Fau E, Mañas P, Cebrián G. Relationship between growth ability, virulence, and resistance to food-processing related stresses in non-typhoidal Salmonellae. Int J Food Microbiol 2022; 361:109462. [PMID: 34749188 DOI: 10.1016/j.ijfoodmicro.2021.109462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/01/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
The ability of Salmonella to resist and adapt to harsh conditions is one of the major features that have made this microorganism such a relevant health hazard. However, the impact of these resistance responses on other aspects of Salmonella physiology, such as virulence and growth ability, is still not fully understood. The objective of this study was to determine the maximum growth rates (in three different media), virulence (adhesion and invasion of Caco-2 cells), and other phenotypic characteristics (biofilm-forming ability and antimicrobial resistance) of 23 Salmonella strains belonging to different serovars, and to compare them with their previously determined stress resistance parameters. Significant differences (p < 0.05) in growth rates, virulence, and biofilm-forming ability were found among the 23 strains studied. Nevertheless, whereas less than 3-fold change between the lowest and the highest growth rate was observed, the percentage of cells capable of invading Caco-2 cells varied more than 100-fold, that to form biofilms more than 30-fold, and the antibiotic MICs varied up to 512-fold, among the different strains. Results indicate that those strains with the highest cell adhesion ability were not always the most invasive ones and suggest that, in general terms, a higher stress resistance did not imply a reduced growth ability (rate). Similarly, no association between stress resistance and biofilm formation ability (except for acid stress) or antibiotic resistance (with minor exceptions) was found. Our data also suggest that, in Salmonella, acid stress resistance would be associated with virulence, since a positive correlation of that trait with adhesion and a negative correlation with invasion was found. This study contributes to a better understanding of the physiology of Salmonella and the relationship between bacterial stress resistance, growth ability, and virulence. It also provides new data regarding intra-specific variability of a series of phenotypic characteristics of Salmonella that are relevant from the food safety perspective.
Collapse
Affiliation(s)
- Silvia Guillén
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - María Marcén
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Ester Fau
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Pilar Mañas
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Guillermo Cebrián
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| |
Collapse
|
8
|
Chowdhury R, Pavinski Bitar PD, Adams MC, Chappie JS, Altier C. AraC-type regulators HilC and RtsA are directly controlled by an intestinal fatty acid to regulate Salmonella invasion. Mol Microbiol 2021; 116:1464-1475. [PMID: 34687258 DOI: 10.1111/mmi.14835] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 01/30/2023]
Abstract
Invasion of the intestinal epithelium is an essential but energetically expensive survival strategy and is, therefore, tightly regulated by using specific cues from the environment. The enteric pathogen Salmonella controls its invasion machinery through the elegant coordination of three AraC-type transcription activators, HilD, HilC, and RtsA. Most environmental signals target HilD to control invasion, whereas HilC and RtsA are known only to augment these effects on HilD. Here we show that a fatty acid found in the murine colon, cis-2-hexadecenoic acid (c2-HDA), represses Salmonella invasion by directly targeting HilC and RtsA, in addition to HilD. c2-HDA directly binds each of these regulators and inhibits their attachment to DNA targets, repressing invasion even in the absence of HilD. Fatty acid binding, however, does not affect HilC and RtsA protein stability, unlike HilD. Importantly, we show that HilC and RtsA are highly effective in restoring HilD production and invasion gene expression after elimination of the repressive fatty acid c2-HDA. Together, these results illuminate a precise mechanism by which HilC and RtsA may modulate invasion as Salmonella navigates through different regions of the intestine, contributing to our understanding of how this enteric pathogen senses and adapts to a diverse intestinal environment while maintaining its virulence.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Paulina D Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Myfanwy C Adams
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
Analysis of six tonB gene homologs in Bacteroides fragilis revealed that tonB3 is essential for survival in experimental intestinal colonization and intra-abdominal infection. Infect Immun 2021; 90:e0046921. [PMID: 34662212 DOI: 10.1128/iai.00469-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic, anaerobic pathogen and commensal of the human large intestinal tract, Bacteroides fragilis strain 638R, contains six predicted TonB proteins, termed TonB1-6, four ExbBs orthologs, ExbB1-4, and five ExbDs orthologs, ExbD1-5. The inner membrane TonB/ExbB/ExbD complex harvests energy from the proton motive force (Δp) and the TonB C-terminal domain interacts with and transduces energy to outer membrane TonB-dependent transporters (TBDTs). However, TonB's role in activating nearly one hundred TBDTs for nutrient acquisition in B. fragilis during intestinal colonization and extraintestinal infection has not been established. In this study, we show that growth was abolished in the ΔtonB3 mutant when heme, vitamin B12, Fe(III)-ferrichrome, starch, mucin-glycans, or N-linked glycans were used as a substrate for growth in vitro. Genetic complementation of the ΔtonB3 mutant with the tonB3 gene restored growth on these substrates. The ΔtonB1, ΔtonB2, ΔtonB4, ΔtonB5, and ΔtonB6 single mutants did not show a growth defect. This indicates that there was no functional compensation for the lack of TonB3, and it demonstrates that TonB3, alone, drives the TBDTs involved in the transport of essential nutrients. The ΔtonB3 mutant had a severe growth defect in a mouse model of intestinal colonization compared to the parent strain. This intestinal growth defect was enhanced in the ΔtonB3 ΔtonB6 double mutant strain which completely lost its ability to colonize the mouse intestinal tract compared to the parent strain. The ΔtonB1, ΔtonB2, ΔtonB4, and ΔtonB5 mutants did not significantly affect intestinal colonization. Moreover, the survival of the ΔtonB3 mutant strain was completely eradicated in a rat model of intra-abdominal infection. Taken together, these findings show that TonB3 was essential for survival in vivo. The genetic organization of tonB1, tonB2, tonB4, tonB5, and tonB6 gene orthologs indicates that they may interact with periplasmic and nonreceptor outer membrane proteins, but the physiological relevance of this has not been defined. Because anaerobic fermentation metabolism yields a lower Δp than aerobic respiration and B. fragilis has a reduced redox state in its periplasmic space - in contrast to an oxidative environment in aerobes - it remains to be determined if the diverse system of TonB/ExbB/ExbD orthologs encoded by B. fragilis have an increased sensitivity to PMF (relative to aerobic bacteria) to allow for the harvesting of energy under anaerobic conditions.
Collapse
|
10
|
Consentino L, Rejasse A, Crapart N, Bevilacqua C, Nielsen-LeRoux C. Laser capture microdissection to study Bacillus cereus iron homeostasis gene expression during Galleria mellonella in vivo gut colonization. Virulence 2021; 12:2104-2121. [PMID: 34374318 PMCID: PMC8366545 DOI: 10.1080/21505594.2021.1959790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacillus cereus is a Gram-positive opportunistic pathogen closely related to the entomopathogen, Bacillus thuringiensis, both of which are involved in intestinal infections. Iron is an essential micronutrient for full growth and virulence of pathogens during infection. However, little is known about iron homeostasis during gut infection. Therefore, we aimed to assess the expression of B. cereus genes related to bacterial iron homeostasis, virulence and oxidative stress. The hypothesis is that the expression of such genes would vary between early and later stage colonization in correlation to gut cell damage. To perform the study, a germ-free Galleria mellonella model was set up in order to adapt the use of Laser-capture microdissection (LCM), to select precise areas in the gut lumen from frozen whole larval cryo-sections. Analyses were performed from alive larvae and the expression of targeted genes was assessed byspecific pre-amplification of mRNA followed by quantitative PCR. Firstly, the results reinforce the reliability of LCM, despite a low amount of bacterial RNA recovered. Secondly, bacterial genes involved in iron homeostasis are expressed in the lumen at both 3 and 16 hours post force-feeding. Thirdly, iron gene expression is slightly modulated during gut infection, and lastly, the mRNA of G. mellonella encoding for ferritin and transferrin iron storage and transport are recovered too. Therefore, iron homeostasis should play a role in B. cereus gut colonization. Furthermore, we demonstrate for the first time the value of using LCM for specific in situ gene expression analysis of extracellular bacteria in a whole animal.
Collapse
Affiliation(s)
- Laurent Consentino
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Agnès Rejasse
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Nicolas Crapart
- Université Paris Saclay, INRAE, AgroParisTech, UMR GABI, Abridge, Jouy En Josas, France.,Exilone, Elancourt, France
| | - Claudia Bevilacqua
- Université Paris Saclay, INRAE, AgroParisTech, UMR GABI, Abridge, Jouy En Josas, France
| | | |
Collapse
|
11
|
Gene knockout revealed the role of gene feoA in cell growth and division of Lactobacillus delbrueckii subsp. bulgaricus. Arch Microbiol 2021; 203:3541-3549. [PMID: 33942158 DOI: 10.1007/s00203-021-02345-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Gene feoA plays an important role in cell growth because of its function of transport Fe2+ which is a necessary element for cells. In this study, the recombinant plasmid pUC19-feoA-Tet was successfully constructed using the inserted gene inactivation method. Using the homologous recombination technique, the tet gene was used as a resistance screening marker to knock out the feoA gene of Lactobacillus delbrueckii subsp. bulgaricus 34.5 (strain 34.5). Comparative analysis of growth curves revealed the growth changes in the absence of feoA gene in strain 34.5. The results showed that the growth of the bacteria was prolonged by 2 h and could be restored in the stationary phase. To further study whether feoA is related to the cell division of strain 34.5, the qPCR experiment was carried out. The results showed that, compared with the wild-type strain, the expression of genes related to cell division in the mutant strain was up-regulated in the pre-log phase, down-regulated in the late-log phase, and returned to the original level in the stationary phase. These findings provide ideas for Lactobacillus delbrueckii subsp. bulgaricus to control division and cell cycle.
Collapse
|
12
|
Cunrath O, Palmer JD. An overview of Salmonella enterica metal homeostasis pathways during infection. ACTA ACUST UNITED AC 2021; 2:uqab001. [PMID: 34250489 PMCID: PMC8264917 DOI: 10.1093/femsml/uqab001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Nutritional immunity is a powerful strategy at the core of the battlefield between host survival and pathogen proliferation. A host can prevent pathogens from accessing biological metals such as Mg, Fe, Zn, Mn, Cu, Co or Ni, or actively intoxicate them with metal overload. While the importance of metal homeostasis for the enteric pathogen Salmonella enterica Typhimurium was demonstrated many decades ago, inconsistent results across various mouse models, diverse Salmonella genotypes, and differing infection routes challenge aspects of our understanding of this phenomenon. With expanding access to CRISPR-Cas9 for host genome manipulation, it is now pertinent to re-visit past results in the context of specific mouse models, identify gaps and incongruities in current knowledge landscape of Salmonella homeostasis, and recommend a straight path forward towards a more universal understanding of this historic host-microbe relationship.
Collapse
Affiliation(s)
- Olivier Cunrath
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Rd, Oxford, UK OX1 3SZ
| | - Jacob D Palmer
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Rd, Oxford, UK OX1 3SZ
| |
Collapse
|
13
|
Chowdhury R, Pavinski Bitar PD, Keresztes I, Condo AM, Altier C. A diffusible signal factor of the intestine dictates Salmonella invasion through its direct control of the virulence activator HilD. PLoS Pathog 2021; 17:e1009357. [PMID: 33617591 PMCID: PMC7932555 DOI: 10.1371/journal.ppat.1009357] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/04/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Successful intestinal infection by Salmonella requires optimized invasion of the gut epithelium, a function that is energetically costly. Salmonella have therefore evolved to intricately regulate the expression of their virulence determinants by utilizing specific environmental cues. Here we show that a powerful repressor of Salmonella invasion, a cis-2 unsaturated long chain fatty acid, is present in the murine large intestine. Originally identified in Xylella fastidiosa as a diffusible signal factor for quorum sensing, this fatty acid directly interacts with HilD, the master transcriptional regulator of Salmonella, and prevents hilA activation, thus inhibiting Salmonella invasion. We further identify the fatty acid binding region of HilD and show it to be selective and biased in favour of signal factors with a cis-2 unsaturation over other intestinal fatty acids. Single mutation of specific HilD amino acids to alanine prevented fatty acid binding, thereby alleviating their repressive effect on invasion. Together, these results highlight an exceedingly sensitive mechanism used by Salmonella to colonize its host by detecting and exploiting specific molecules present within the complex intestinal environment.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail: (RC); (CA)
| | - Paulina D. Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ivan Keresztes
- Chemistry NMR Facility, Cornell University, Ithaca, New York, United States of America
| | - Anthony M. Condo
- Chemistry NMR Facility, Cornell University, Ithaca, New York, United States of America
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail: (RC); (CA)
| |
Collapse
|
14
|
Abstract
A balanced gut microbiota contributes to health, but the mechanisms maintaining homeostasis remain elusive. Microbiota assembly during infancy is governed by competition between species and by environmental factors, termed habitat filters, that determine the range of successful traits within the microbial community. These habitat filters include the diet, host-derived resources, and microbiota-derived metabolites, such as short-chain fatty acids. Once the microbiota has matured, competition and habitat filtering prevent engraftment of new microbes, thereby providing protection against opportunistic infections. Competition with endogenous Enterobacterales, habitat filtering by short-chain fatty acids, and a host-derived habitat filter, epithelial hypoxia, also contribute to colonization resistance against Salmonella serovars. However, at a high challenge dose, these frank pathogens can overcome colonization resistance by using their virulence factors to trigger intestinal inflammation. In turn, inflammation increases the luminal availability of host-derived resources, such as oxygen, nitrate, tetrathionate, and lactate, thereby creating a state of abnormal habitat filtering that enables the pathogen to overcome growth inhibition by short-chain fatty acids. Thus, studying the process of ecosystem invasion by Salmonella serovars clarifies that colonization resistance can become weakened by disrupting host-mediated habitat filtering. This insight is relevant for understanding how inflammation triggers dysbiosis linked to noncommunicable diseases, conditions in which endogenous Enterobacterales expand in the fecal microbiota using some of the same growth-limiting resources required by Salmonella serovars for ecosystem invasion. In essence, ecosystem invasion by Salmonella serovars suggests that homeostasis and dysbiosis simply represent states where competition and habitat filtering are normal or abnormal, respectively.
Collapse
|
15
|
Panwar H, Rokana N, Aparna SV, Kaur J, Singh A, Singh J, Singh KS, Chaudhary V, Puniya AK. Gastrointestinal stress as innate defence against microbial attack. J Appl Microbiol 2020; 130:1035-1061. [PMID: 32869386 DOI: 10.1111/jam.14836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/09/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
The human gastrointestinal (GI) tract has been bestowed with the most difficult task of protecting the underlying biological compartments from the resident commensal flora and the potential pathogens in transit through the GI tract. It has a unique environment in which several defence tactics are at play while maintaining homeostasis and health. The GI tract shows myriad number of environmental extremes, which includes pH variations, anaerobic conditions, nutrient limitations, elevated osmolarity etc., which puts a check to colonization and growth of nonfriendly microbial strains. The GI tract acts as a highly selective barrier/platform for ingested food and is the primary playground for balance between the resident and uninvited organisms. This review focuses on antimicrobial defense mechanisms of different sections of human GI tract. In addition, the protective mechanisms used by microbes to combat the human GI defence systems are also discussed. The ability to survive this innate defence mechanism determines the capability of probiotic or pathogen strains to confer health benefits or induce clinical events respectively.
Collapse
Affiliation(s)
- H Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - N Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - S V Aparna
- Department of Dairy Microbiology, College of Dairy Science and Technology, Kerala Veterinary and Animal Science University, Mannuthy, Thrissur, India
| | - J Kaur
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - A Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - J Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - K S Singh
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - V Chaudhary
- Department of Microbiology, Punjab Agriculture University, Ludhiana, Punjab, India
| | - A K Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
16
|
Wellawa DH, Allan B, White AP, Köster W. Iron-Uptake Systems of Chicken-Associated Salmonella Serovars and Their Role in Colonizing the Avian Host. Microorganisms 2020; 8:E1203. [PMID: 32784620 PMCID: PMC7465098 DOI: 10.3390/microorganisms8081203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023] Open
Abstract
Iron is an essential micronutrient for most bacteria. Salmonella enterica strains, representing human and animal pathogens, have adopted several mechanisms to sequester iron from the environment depending on availability and source. Chickens act as a major reservoir for Salmonella enterica strains which can lead to outbreaks of human salmonellosis. In this review article we summarize the current understanding of the contribution of iron-uptake systems to the virulence of non-typhoidal S. enterica strains in colonizing chickens. We aim to address the gap in knowledge in this field, to help understand and define the interactions between S. enterica and these important hosts, in comparison to mammalian models.
Collapse
Affiliation(s)
- Dinesh H. Wellawa
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Brenda Allan
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
| | - Aaron P. White
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Wolfgang Köster
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
17
|
Tsolis RM, Bäumler AJ. Gastrointestinal host-pathogen interaction in the age of microbiome research. Curr Opin Microbiol 2020; 53:78-89. [PMID: 32344325 DOI: 10.1016/j.mib.2020.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
The microbiota is linked to human health by governing susceptibility to infection. However, the interplay between enteric pathogens, the host, and its microbiota is complex, encompassing host cell manipulation by virulence factors, immune responses, and a diverse gut ecosystem. The host represents a foundation species that uses its immune system as a habitat filter to shape the gut microbiota. In turn, the gut microbiota protects against ecosystem invasion by opportunistic pathogens through priority effects that are based on niche modification or niche preemption. Frank pathogens can overcome these priority effects by using their virulence factors to manipulate host-derived habitat filters, thereby constructing new nutrient-niches in the intestinal lumen that support ecosystem invasion. The emerging picture identifies pathogens as ecosystem engineers and suggests that virulence factors are useful tools for identifying host-derived habitat filters that balance the microbiota.
Collapse
Affiliation(s)
- Renée M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
18
|
Fu Q, Tang H, Zhang P, Que K, Liu Z, Zhou Y. [Anti-CD206 antibody-conjugated Fe 3O 4-based PLGA nanoparticles selectively promotes M1 polarization of tumorassociated macrophages in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:246-254. [PMID: 32376536 DOI: 10.12122/j.issn.1673-4254.2020.02.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To enhance the anti-tumor immunity of macrophages by increasing iron concentration in the macrophages using nanospheres. METHODS Anti-CD206 antibody-conjugated Fe3O4-based polylactic acid glycolic acid (CD206- Fe3O4-PLGA) nanoparticles were prepared with the W/O/W method. The particle diameter was measured using Malvern particle size detector, the Zeta potential was determined using Zeta potentiometry, and the encapsulation efficiency of Fe3O4 was determined using an iron determination kit. The macrophage-binding and targeting abilities of the conjugated nanoparticles were evaluated using immunofluorescence assay, and the polarization index of macrophages was determined with Western blotting and qRT-PCR. BALB/C-57 mouse models bearing subcutaneous tumors were used to verify the efficacy of the nanoparticles to promote polarization of the tumor-associated macrophages (TAMs). RESULTS The conjugated nanoparticles had a mean diameter of 260-295 nm with Zeta potential values ranging from -19 mV to -33 mV, encapsulation efficiency of Fe3O4 ranging from 65% to 75%, and anti-CD206 conjunction efficiency of 65%-70%. Immunofluorescence assay verified the targeted binding ability of the nanoparticles with M2 macrophages. Western blotting and qRT-PCR confirmed that both CD206-Fe3O4-PLGA and Fe3O4-PLGA nanoparticles promoted the expression of TNF-α, iNOS and IL-1β (P < 0.05). In the tumor-bearing mouse models, CD206-Fe3O4-PLGA nanoparticles were confirmed to promote CD86 expression in the TAMs. CONCLUSIONS CD206-Fe3O4-PLGA nanoparticles are capable of targeted binding to M2 macrophages and reversing the M2 macrophages to M1 phenotype by releasing coated iron oxide particles.
Collapse
Affiliation(s)
- Qianmei Fu
- Oncology Department, Kaizhou District People's Hospital, Chongqing 405400, China
| | - Huaming Tang
- Department of Hepatobiliary Cardiothoracic Surgery, Kaizhou District People's Hospital, Chongqing 405400
| | - Peng Zhang
- Department of Hepatobiliary Cardiothoracic Surgery, Kaizhou District People's Hospital, Chongqing 405400
| | - Keting Que
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zuojin Liu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yun Zhou
- Department of Hepatobiliary Cardiothoracic Surgery, Kaizhou District People's Hospital, Chongqing 405400
| |
Collapse
|
19
|
Zhu W, Winter MG, Spiga L, Hughes ER, Chanin R, Mulgaonkar A, Pennington J, Maas M, Behrendt CL, Kim J, Sun X, Beiting DP, Hooper LV, Winter SE. Xenosiderophore Utilization Promotes Bacteroides thetaiotaomicron Resilience during Colitis. Cell Host Microbe 2020; 27:376-388.e8. [PMID: 32075741 DOI: 10.1016/j.chom.2020.01.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/02/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
During short-lived perturbations, such as inflammation, the gut microbiota exhibits resilience and reverts to its original configuration. Although microbial access to the micronutrient iron is decreased during colitis, pathogens can scavenge iron by using siderophores. How commensal bacteria acquire iron during gut inflammation is incompletely understood. Curiously, the human commensal Bacteroides thetaiotaomicron does not produce siderophores but grows under iron-limiting conditions using enterobacterial siderophores. Using RNA-seq, we identify B. thetaiotaomicron genes that were upregulated during Salmonella-induced gut inflammation and were predicted to be involved in iron uptake. Mutants in the xusABC locus (BT2063-2065) were defective for xenosiderophore-mediated iron uptake in vitro. In the normal mouse gut, the XusABC system was dispensable, while a xusA mutant colonized poorly during colitis. This work identifies xenosiderophore utilization as a critical mechanism for B. thetaiotaomicron to sustain colonization during inflammation and suggests a mechanism of how interphylum iron metabolism contributes to gut microbiota resilience.
Collapse
Affiliation(s)
- Wenhan Zhu
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria G Winter
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luisella Spiga
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth R Hughes
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rachael Chanin
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aditi Mulgaonkar
- Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenelle Pennington
- Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michelle Maas
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cassie L Behrendt
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiankai Sun
- Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lora V Hooper
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sebastian E Winter
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Hung CC, Eade CR, Betteken MI, Pavinski Bitar PD, Handley EM, Nugent SL, Chowdhury R, Altier C. Salmonella invasion is controlled through the secondary structure of the hilD transcript. PLoS Pathog 2019; 15:e1007700. [PMID: 31017982 PMCID: PMC6502421 DOI: 10.1371/journal.ppat.1007700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/06/2019] [Accepted: 03/12/2019] [Indexed: 11/19/2022] Open
Abstract
Virulence functions of bacterial pathogens are often energetically costly and thus are subjected to intricate regulatory mechanisms. In Salmonella, invasion of the intestinal epithelium, an essential early step in virulence, requires the production of a multi-protein type III secretion apparatus. The pathogen mitigates the overall cost of invasion by inducing it in only a fraction of its population. This constitutes a successful virulence strategy as invasion by a small number is sufficient to promote the proliferation of the non-invading majority. Such a system suggests the existence of a sensitive triggering mechanism that permits only a minority of Salmonella to reach a threshold of invasion-gene induction. We show here that the secondary structure of the invasion regulator hilD message provides such a trigger. The 5' end of the hilD mRNA is predicted to contain two mutually exclusive stem-loop structures, the first of which (SL1) overlaps the ribosome-binding site and the ORF start codon. Changes that reduce its stability enhance invasion gene expression, while those that increase stability reduce invasion. Conversely, disrupting the second stem-loop (SL2) represses invasion genes. Although SL2 is the energetically more favorable, repression through SL1 is enhanced by binding of the global regulator CsrA. This system thus alters the levels of hilD mRNA and is so sensitive that changing a single base pair within SL1, predicted to augment its stability, eliminates expression of invasion genes and significantly reduces Salmonella virulence in mice. This system thus provides a possible means to rapidly and finely tune an essential virulence function.
Collapse
Affiliation(s)
- Chien-Che Hung
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Colleen R. Eade
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Michael I. Betteken
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Paulina D. Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Elaine M. Handley
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Staci L. Nugent
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
21
|
Dong Y, Geng J, Liu J, Pang M, Awan F, Lu C, Liu Y. Roles of three TonB systems in the iron utilization and virulence of the Aeromonas hydrophila Chinese epidemic strain NJ-35. Appl Microbiol Biotechnol 2019; 103:4203-4215. [PMID: 30972460 DOI: 10.1007/s00253-019-09757-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
The TonB system functions in iron transport and has been identified in certain Gram-negative bacteria. Recently, we reported three TonB systems in the Aeromonas hydrophila Chinese epidemic strain NJ-35, but the functions of these systems have not been thoroughly elucidated to date. In this study, we investigated the role of these TonB systems in A. hydrophila iron utilization and virulence. We found that tonB1 and tonB2 were preferentially transcribed in iron-chelated conditions, where gene expression levels were approximately 8- and 68-fold higher compared with iron-rich conditions, respectively; tonB3 was consistently transcribed at a low level under iron-repleted and iron-depleted conditions. Only the TonB2 system was required to utilize iron-binding proteins. The tonB123 mutant showed increased susceptibility to erythromycin and roxithromycin. In addition, all three tonB genes were involved in A. hydrophila virulence in zebrafish, and various phenotypes associated with environmental survival were changed with varying degrees in each tonB mutant. TonB2 plays a relatively major role in adhesion, motility, and biofilm formation, while TonB3 is more involved in the anti-phagocytosis of A. hydrophila. In each observed phenotype, no significant difference was found between the single- and double-deletion mutants, whereas the triple-deletion mutant exhibited the most serious defects, indicating that all three TonB systems of A. hydrophila coordinately complement one another. In conclusion, this study elucidates the importance of TonB in iron acquisition and virulence of A. hydrophila, which lays the foundation for future studies regarding the survival mechanisms of this bacterium in iron-restricted environments.
Collapse
Affiliation(s)
- Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jinzhu Geng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Maoda Pang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Furqan Awan
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
22
|
Chekabab SM, Rehman MA, Yin X, Carrillo C, Mondor M, Diarra MS. Growth of Salmonella enterica Serovars Typhimurium and Enteritidis in Iron-Poor Media and in Meat: Role of Catecholate and Hydroxamate Siderophore Transporters. J Food Prot 2019; 82:548-560. [PMID: 30901525 DOI: 10.4315/0362-028x.jfp-18-371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enteritidis and Typhimurium are among the top Salmonella enterica serovars implicated in human salmonellosis worldwide. This study examined the individual and combined roles of catecholate-iron and hydroxamate-iron transporters in the survival in meat of Salmonella Enteritidis and Typhimurium. Catecholate-iron-III (Fe3+) and hydroxamate-Fe3+ transporter genes fepA, iroN, and fhuACDB were deleted in isolates of these serovars to generate single, double, and triple mutants. Growth rate in high- and low-iron media was compared among mutants, complements, and their wild-type parents. Susceptibility to 14 antibiotics, the ability to produce and utilize siderophores, and survival on cooked chicken breast were evaluated. In iron-poor liquid media, differences were observed between the growth characteristics of mutant Salmonella Enteritidis and Typhimurium. The double Δ iroNΔ fepA and the triple Δ fhuΔ iroNΔ fepA mutants of Salmonella Enteritidis exhibited prolonged lag phases (λ = 9.72 and 9.53 h) and a slow growth rate (μmax = 0.35 and 0.25 h-1) similar to that of its Δ tonB mutant (λ = 10.12 h and μmax = 0.30 h-1). In Salmonella Typhimurium, double Δ iroNΔ fepA and triple Δ fhuΔ iroNΔ fepA mutations induced a similar growth pattern as its Δ tonB mutant. Double deletions of fepA and iroN reduced the siderophore production and the use of enterobactin as an iron source. In the Δ iroNΔ fepA mutant, but not in Δ fhuΔ iroNΔ fepA, the ferrichrome or deferrioxamine promoted growth for both serovars, confirming the specific role of the FhuACDB system in the uptake and transport of hydroxamate Fe3+. Survival of the mutants was also evaluated in a meat assay, and no difference in survival was observed among the mutants compared with wild type. This study showed differences between serovars in the importance of catecholate-iron and hydroxamate-iron uptake on Salmonella growth in iron-restricted media. Data also confirmed that both Salmonella Enteritidis and Typhimurium are well equipped to survive on cooked chicken meat, offering a rich iron condition.
Collapse
Affiliation(s)
- Samuel Mohammed Chekabab
- 1 Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9
| | - Muhammad Attiq Rehman
- 1 Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9
| | - Xianhua Yin
- 1 Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9
| | - Catherine Carrillo
- 2 Canadian Food Inspection Agency, 960 Carling Avenue, Building 22, Ottawa, Ontario, Canada K1A 0Y9
| | - Martin Mondor
- 3 Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Québec, Canada J2S 8E3
| | - Moussa S Diarra
- 1 Guelph Research and Development Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9
| |
Collapse
|
23
|
Transition metals and host-microbe interactions in the inflamed intestine. Biometals 2019; 32:369-384. [PMID: 30788645 DOI: 10.1007/s10534-019-00182-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 12/12/2022]
Abstract
Host-associated microbial communities provide critical functions for their hosts. Transition metals are essential for both the mammalian host and the majority of commensal bacteria. As such, access to transition metals is an important component of host-microbe interactions in the gastrointestinal tract. In mammals, transition metal ions are often sequestered by metal binding proteins to limit microbial access under homeostatic conditions. In response to invading pathogens, the mammalian host further decreases availability of these micronutrients by regulating their trafficking or releasing high-affinity metal chelating proteins, a process termed nutritional immunity. Bacterial pathogens have evolved several mechanisms to subvert nutritional immunity. Here, we provide an overview on how metal ion availability shapes host-microbe interactions in the gut with a particular focus on intestinal inflammatory diseases.
Collapse
|
24
|
Aulicino A, Rue-Albrecht KC, Preciado-Llanes L, Napolitani G, Ashley N, Cribbs A, Koth J, Lagerholm BC, Ambrose T, Gordon MA, Sims D, Simmons A. Invasive Salmonella exploits divergent immune evasion strategies in infected and bystander dendritic cell subsets. Nat Commun 2018; 9:4883. [PMID: 30451854 PMCID: PMC6242960 DOI: 10.1038/s41467-018-07329-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/25/2018] [Indexed: 01/06/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) are highly prevalent food-borne pathogens. Recently, a highly invasive, multi-drug resistant S. Typhimurium, ST313, emerged as a major cause of bacteraemia in children and immunosuppressed adults, however the pathogenic mechanisms remain unclear. Here, we utilize invasive and non-invasive Salmonella strains combined with single-cell RNA-sequencing to study the transcriptome of individual infected and bystander monocyte-derived dendritic cells (MoDCs) implicated in disseminating invasive ST313. Compared with non-invasive Salmonella, ST313 directs a highly heterogeneous innate immune response. Bystander MoDCs exhibit a hyper-activated profile potentially diverting adaptive immunity away from infected cells. MoDCs harbouring invasive Salmonella display higher expression of IL10 and MARCH1 concomitant with lower expression of CD83 to evade adaptive immune detection. Finally, we demonstrate how these mechanisms conjointly restrain MoDC-mediated activation of Salmonella-specific CD4+ T cell clones. Here, we show how invasive ST313 exploits discrete evasion strategies within infected and bystander MoDCs to mediate its dissemination in vivo.
Collapse
Affiliation(s)
- Anna Aulicino
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Kevin C Rue-Albrecht
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford, OX3 7FY, UK
| | - Lorena Preciado-Llanes
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Giorgio Napolitani
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Neil Ashley
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, OX3 9DS, UK
| | - Adam Cribbs
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jana Koth
- MRC Human Immunology Unit and Wolfson Imaging Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - B Christoffer Lagerholm
- MRC Human Immunology Unit and Wolfson Imaging Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Tim Ambrose
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Melita A Gordon
- Institute of Infection and Global Health, University of Liverpool, 8 W Derby St, Liverpool, L7 3EA, UK
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - David Sims
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Alison Simmons
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
- Translational Gastroenterology Unit, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.
| |
Collapse
|
25
|
Herrero-Fresno A, Olsen JE. Salmonella Typhimurium metabolism affects virulence in the host - A mini-review. Food Microbiol 2017; 71:98-110. [PMID: 29366476 DOI: 10.1016/j.fm.2017.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 12/22/2022]
Abstract
Salmonella enterica remains an important food borne pathogen in all regions of the world with S. Typhimurium as one of the most frequent serovars causing food borne disease. Since the majority of human cases are caused by food of animal origin, there has been a high interest in understanding how S. Typhimurium interacts with the animal host, mostly focusing on factors that allow it to breach host barriers and to manipulate host cells to the benefit of itself. Up to recently, such studies have ignored the metabolic factors that allow the bacteria to multiply in the host, but this is changing rapidly, and we are now beginning to understand that virulence and metabolism in the host are closely linked. The current review highlights which metabolic factors that are essential for Salmonella Typhimurium growth in the intestine, in cultured epithelial and macrophage-like cell lines, at systemic sites during invasive salmonellosis, and during long term asymptomatic colonization of the host. It also points to the limitations in our current knowledge, most notably that most studies have been carried out with few well-characterized laboratory strains, that we do not know how much the in vivo metabolism differs between serotypes, and that most results are based on challenges in the mouse model of infection. It will be very important to realize whether the current understanding of Salmonella metabolism in the host is true for all serotypes and all possible hosts.
Collapse
Affiliation(s)
- Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C., Denmark
| | - John Elmerdhahl Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C., Denmark.
| |
Collapse
|