1
|
Jain A, Anand PK, Kaur J. Site-directed mutagenesis of nattokinase: Unveiling structure-function relationship for enhanced functionality. Biochimie 2024:S0300-9084(24)00224-4. [PMID: 39341330 DOI: 10.1016/j.biochi.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Site-directed mutagenesis was employed to investigate the structure-function relationship of nattokinase (NK) and its effect on the enzymatic activity, thermostability, pH tolerance, and fibrinolytic properties of NK. Specific mutations (T270S, V271I, E262D, and A259T) were introduced within the nk gene, targeting regions predicted to be involved in substrate binding. The NK(E262D) mutant exhibited a significant increase in enzymatic activity (2-fold) and catalytic efficiency (2.2-fold) as assessed by N-Succinyl-Ala-Ala-Pro-Phe p-nitroanilide (Suc-AAPF-pNA) hydrolysis, compared to the wild type. In silico analysis supported these findings, demonstrating lower binding energy for the NK(E262D) mutant, suggesting stronger fibrin affinity. Thermostability assays revealed that NK(E262D) and NK(A259T) displayed exceptional stability, retaining enzyme activity at 60 °C. All mutants exhibited a broader pH tolerance range (pH 5.0-10.0) compared to the wild-type NK. The fibrinolytic activity assay revealed that the E262D mutant possessed the highest fibrinolytic activity (2414 U/mg), surpassing the wild-type. This study reported an NK variant with improved enzymatic activity, thermostability, and fibrinolytic properties.
Collapse
Affiliation(s)
- Ankush Jain
- Department of Biotechnology, BMS Block-1, Panjab University, Sector 25, Chandigarh, India.
| | - Pradeep Kumar Anand
- Department of Biotechnology, BMS Block-1, Panjab University, Sector 25, Chandigarh, India.
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, Panjab University, Sector 25, Chandigarh, India.
| |
Collapse
|
2
|
Singh P, Kaur J. MSMEG_5850, a global TetR family member supports Mycobacterium smegmatis to survive environmental stress. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01186-9. [PMID: 39017913 DOI: 10.1007/s12223-024-01186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
A Mycobacterium smegmatis transcriptional regulator, MSMEG_5850, and its ortholog in M. tuberculosis, rv0775 were annotated as putative TetR Family Transcriptional Regulators. Our previous study revealed MSMEG_5850 is involved in global transcriptional regulation in M. smegmatis and the presence of gene product supported the survival of bacteria during nutritional starvation. Phylogenetic analysis showed that MSMEG_5850 diverged early in comparison to its counterparts in virulent strains. Therefore, the expression pattern of MSMEG_5850 and its counterpart, rv0775, was compared during various in-vitro growth and stress conditions. Expression of MSMEG_5850 was induced under different environmental stresses while no change in expression was observed under mid-exponential and stationary phases. No expression of rv0775 was observed under any stress condition tested, while the gene was expressed during the mid-exponential phase that declined in the stationary phase. The effect of MSMEG_5850 on the survival of M. smegmatis under stress conditions and growth pattern was studied using wild type, knockout, and supplemented strain. Deletion of MSMEG_5850 resulted in altered colony morphology, biofilm/pellicle formation, and growth pattern of M. smegmatis. The survival rate of wild-type MSMEG_5850 was higher in comparison to knockout under different environmental stresses. Overall, this study suggested the role of MSMEG_5850 in the growth and adaptation/survival of M. smegmatis under stress conditions.
Collapse
Affiliation(s)
- Parul Singh
- Department of Biotechnology, Panjab University, BMS Block-1, Sector-25, Chandigarh, India, 160014
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, BMS Block-1, Sector-25, Chandigarh, India, 160014.
| |
Collapse
|
3
|
Jain A, Sondhi N, Singh K, Kaur J. Heterologous expression of nattokinase in E. coli: Biochemical characterization and functional analysis of fibrin binding residues. Arch Biochem Biophys 2024; 757:110026. [PMID: 38718957 DOI: 10.1016/j.abb.2024.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
Heterologous expression of nattokinase, a potent fibrinolytic enzyme, has been successfully carried out in various microorganisms. However, the successful expression of this enzyme as a soluble protein was not achieved in E. coli. This study delves into the expression of nattokinase in E. coli as a soluble protein followed by its biochemical characterization and functional analysis for fibrinolytic activity. E. coli BL21C41 and pET32a vector host strain with pGro7 protein chaperone induced with IPTG at 16 °C 180 rpm for 16 h enabled the production of recombinant nattokinase in soluble fraction. Enzymatic assays demonstrated its protease activity, while characterization revealed optimal catalytic conditions at 37 °C and pH 8.0, with remarkable stability over a broad pH range (6.0-10.0) and up to 50 °C. The kinetic constants were determined as follows: Km = 25.83 ± 3.43 μM, Vmax = 62.91 ± 1.68 μM/s, kcat = 38.45 ± 1.06 s-1, and kcat/Km = 1.49 × 106 M-1 s-1. In addition, the fibrinolytic activity of NK, quantified by the fibrin plate hydrolysis assay was 1038 ± 156 U/ml, with a corresponding specific activity of 1730 ± 260 U/mg and the assessment of clot lysis time on an artificial clot (1 mg) was found to be 51.5 ± 2.5 min unveiling nattokinase's fibrinolytic potential. Through molecular docking, a substantial binding energy of -6.46 kcal/mol was observed between nattokinase and fibrin, indicative of a high binding affinity. Key fibrin binding residues, including Ser300, Leu302, and Asp303, were identified and confirmed. These mutants affected specifically the fibrin binding and not the proteolytic activity of NK. This comprehensive study provides crucial conditions for the expression of protein in soluble form in E. coli and biochemical properties paving the way for future research and potential applications in medicine and biotechnology.
Collapse
Affiliation(s)
- Ankush Jain
- Department of Biotechnology, BMS Block-1, Panjab University, Sector 25, Chandigarh, India.
| | - Nishi Sondhi
- Department of Biotechnology, BMS Block-1, Panjab University, Sector 25, Chandigarh, India.
| | - Kashmir Singh
- Department of Biotechnology, BMS Block-1, Panjab University, Sector 25, Chandigarh, India.
| | - Jagdeep Kaur
- Department of Biotechnology, Sector-25, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
4
|
Anand PK, Kaur G, Saini V, Kaur J, Kaur J. N-terminal PPE domain plays an integral role in extracellular transportation and stability of the immunomodulatory Rv3539 protein of the Mycobacterium tuberculosis. Biochimie 2023; 213:30-40. [PMID: 37156406 DOI: 10.1016/j.biochi.2023.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Multigene PE/PPE family is exclusively present in mycobacterium species. Only few selected genes of this family have been characterized till date. Rv3539 was annotated as PPE63 with conserved PPE domain at N-terminal and PE-PPE at C-terminal. An α/β hydrolase structural fold, characteristic of lipase/esterase, was present in the PE-PPE domain. To assign the biochemical function to Rv3539, the corresponding gene was cloned in pET-32a (+) as full-length, PPE, and PE-PPE domains individually, followed by expression in E. Coli C41 (DE3). All three proteins demonstrated esterase activity. However, the enzyme activity in the N-terminal PPE domain was very low. The enzyme activity of Rv3539 and PE-PPE proteins was approximately same with the pNP-C4 as optimum substrate at 40 °C and pH 8.0. The loss of enzyme activity after mutating the predicted catalytic triad (Ser296Ala, Asp369Ala, and His395Ala) found only in the PE-PPE domain, confirmed the candidature of the bioinformatically predicted active site residue. The optimal activity and thermostability of the Rv3539 protein was altered by removing the PPE domain. CD-spectroscopy analysis confirmed the role of PPE domain to the thermostability of Rv3539 by maintaining the structural integrity at higher temperatures. The presence of the N-terminal PPE domain directed the Rv3539 protein to the cell membrane/wall and the extracellular compartment. The Rv3539 protein could generate humoral response in TB patients. Therefore, results demonstrated that Rv3539 demonstrated esterase activity. PE-PPE domain of Rv3539 is functionally automated, however, N-terminus domain played a role in protein stabilization and its transportation. Both domains participated in immunomodulation.
Collapse
Affiliation(s)
- Pradeep Kumar Anand
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| | - Gagandeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| | - Varinder Saini
- Department of Pulmonary Medicine, Government Medical College and Hospital, Chandigarh, India.
| | - Jasbinder Kaur
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, India.
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
5
|
Anand PK, Saini V, Kaur J, Kumar A, Kaur J. Cell wall and immune modulation by Rv1800 (PPE28) helps M. smegmatis to evade intracellular killing. Int J Biol Macromol 2023; 247:125837. [PMID: 37455004 DOI: 10.1016/j.ijbiomac.2023.125837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Rv1800 is predicted as PPE family protein found in pathogenic mycobacteria only. Under acidic stress, the rv1800 gene was expressed in M. tuberculosis H37Ra. In-silico study showed lipase/esterase activity in C-terminus PE-PPE domain having pentapeptide motif with catalytic Ser-Asp-His residue. Full-length Rv1800 and C-terminus PE-PPE domain proteins showed esterase activity with pNP-C4 at the optimum temperature of 40 °C and pH 8.0. However, the N-terminus PPE domain showed no esterase activity, but involved in thermostability of Rv1800 full-length protein. M. smegmatis expressing rv1800 (MS_Rv1800) showed altered colony morphology and a significant resistance to numerous environmental stresses, antibiotics and higher lipid content. In extracellular and membrane fraction, Rv1800 protein was detected, while C terminus PE-PPE was present in cytoplasm, suggesting the role of N-terminus PPE domain in transportation of protein. MS_Rv1800 infected macrophage showed higher intracellular survival and low production of ROS, NO and expression levels of iNOS and pro-inflammatory cytokines, while induced expression of the anti-inflammatory cytokines. The Rv1800, PPE and PE-PPE showed antibody-mediated immunity in MDR-TB and PTB patients. Overall, these results confirmed the esterase activity in the C-terminus and function of N-terminus in thermostabilization and transportation; predicting the role of Rv1800 in immune/lipid modulation to support intracellular mycobacterium survival.
Collapse
Affiliation(s)
- Pradeep Kumar Anand
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India
| | - Varinder Saini
- Department of Pulmonary Medicine, Government Medical College and Hospital, Chandigarh, India
| | - Jasbinder Kaur
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, India
| | - Arbind Kumar
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Anand PK, Kaur J. Rv3539 (PPE63) of Mycobacterium Tuberculosis Promotes Survival of Mycobacterium Smegmatis in Human Macrophages Cell Line via Cell Wall Modulation of Bacteria and Altering Host's Immune Response. Curr Microbiol 2023; 80:267. [PMID: 37401981 DOI: 10.1007/s00284-023-03360-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/31/2023] [Indexed: 07/05/2023]
Abstract
The modulation of host's immune response plays an important role in the intracellular survival of Mycobacterium tuberculosis. The intracellular pathogen counteracts environmental stresses with help of the expression of several genes. The M. tuberculosis genome encodes several immune-modulatory proteins including PE (proline-glutamic acid)/PPE (proline-proline-glutamic acid) superfamily proteins. It is unclear how the unique PE/PPE proteins superfamily contributes to survival under different stress and pathophysiology conditions. Previously, we showed that PPE63 (Rv3539) has C-terminal esterase extension and was localized as a membrane attached and in extracellular compartment. Therefore, the probability of these proteins interacting with the host to modulate the host immune response cannot be ruled out. The physiological role of PPE63 was characterized by expressing the PPE63 in the M. smegmatis, a non-pathogenic strain intrinsically deficient of PPE63. The recombinant M. smegmatis expressing PPE63 altered the colony morphology, lipid composition, and integrity of the cell wall. It provided resistance to multiple hostile environmental stress conditions and several antibiotics. MS_Rv3539 demonstrated higher infection and intracellular survival in comparison to the MS_Vec in the PMA-differentiated THP-1 cells. The decreased intracellular level of ROS, NO, and expression of iNOS was observed in THP-1 cells upon infection with MS_Rv3539 in comparison to MS_Vec. Further, the decrease in expression of pro-inflammatory cytokines like IL-6, TNF-α, and IL-1β and enhanced anti-inflammatory cytokines like IL-10, pointed toward its role in immune modulation. Overall this study suggested the role of Rv3539 in enhanced intracellular survival of M. smegmatis via cell wall modulation and altered immune response of host.
Collapse
Affiliation(s)
- Pradeep K Anand
- Department of Biotechnology, Panjab University, BMS Block-1, South Campus, Chandigarh, 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, BMS Block-1, South Campus, Chandigarh, 160014, India.
| |
Collapse
|
7
|
Pattanaik KP, Sengupta S, Jit BP, Kotak R, Sonawane A. Host-Mycobacteria conflict: Immune responses of the host vs. the mycobacteria TLR2 and TLR4 ligands and concomitant host-directed therapy. Microbiol Res 2022; 264:127153. [DOI: 10.1016/j.micres.2022.127153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 12/15/2022]
|
8
|
Environment dependent expression of mycobacterium hormone sensitive lipases: expression pattern under ex-vivo and individual in-vitro stress conditions in M. tuberculosis H37Ra. Mol Biol Rep 2022; 49:4583-4593. [PMID: 35301657 DOI: 10.1007/s11033-022-07305-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/27/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Hormone-sensitive lipase (HSL) is a neutral lipase capable of hydrolysing various kinds of lipids. In comparison to single human Hormone Sensitive Lipase (hHSL), that is induced under nutritional stress, twelve serine hydrolases are annotated as HSL in Mycobacterium tuberculosis (mHSL). Mycobacterium is exposed to multiple stresses inside the host. Therefore, the present study was carried out to investigate if mHSL are also expressed under stress condition and if there is any correlation between various stress conditions and expression pattern of mHSL. METHODS AND RESULTS The expression pattern of mHSL under different environmental conditions (in-vitro and ex-vivo) were studied using qRT-PCR in M. tuberculosis H37Ra strain with 16 S rRNA as internal control. Out of 12, only two genes (lipU and lipY) were expressed at very low level in mid log phase culture under aerobic conditions, while 9 genes were expressed at stationary phase of growth. Ten mHSLs were expressed post-infection under ex-vivo conditions in time dependent manner. LipH and lipQ did not express at any time point under ex-vivo condition. The relative expression of most of the genes under individual stress was much higher than observed in ex-vivo conditions. The expression pattern of genes varied with change in stress condition. CONCLUSIONS Different sets of mHSL genes were expressed under different individual stress conditions pointing towards the requirement of different mHSL to combat different stress conditions. Overall, most of the mHSLs have demonstrated stress dependent expression pointing towards their role in intracellular survival of mycobacteria.
Collapse
|
9
|
Sharma A, Kumar A, Rashid M, Amnekar RV, Gupta S, Kaur J. A Phagosomally Expressed Gene, rv0428c, of Mycobacterium tuberculosis Demonstrates Acetyl Transferase Activity and Plays a Protective Role Under Stress Conditions. Protein J 2022; 41:260-273. [PMID: 35175508 PMCID: PMC8853125 DOI: 10.1007/s10930-022-10044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/04/2022]
Abstract
Mycobacterium tuberculosis genome is composed of several hypothetical gene products that need to be characterized for understanding the physiology of bacteria. Rv0428c was one of the 11 proteins exclusively identified within the phagosomal compartment of macrophages infected with mycobacteria and marked as hypothetical. The expression of rv0428c gene was upregulated under acidic and nutritive stress conditions in M. tuberculosis H37Ra, which was supported by potential sigma factor binding sites in the region upstream to the rv0428c gene. The bioinformatics analysis predicted it to be a GCN5- acetyl transferase, belonging to the Histone acetyl transferase (HAT) family. The docking analysis predicted formation of hydrogen bonds and hydrophobic interactions between donor acetyl-co-A and histone H3 tail region. rv0428c gene was cloned and expressed in E. coli. The protein was purified to homogeneity and was fairly stable over a wide range of pH 5.0–9.0 and temperature up to 40 °C. The HAT activity of purified Rv0428c was confirmed by in vitro acetylation assay using recombinant H3 histone expressed in bacteria as substrate, which increased in time dependent manner. The results suggested that it is the second confirmed acetyl transferase in M. tuberculosis H37Rv. Furthermore, rv0428c was over expressed in surrogate host M. smegmatis, which led to enhanced growth rate and altered colony morphology. The expression of rv0428c in M. smegmatis promoted the survival of bacteria under acidic and nutritive stress conditions. In conclusion, Rv0428c, a phagosomal acetyl transferase of M. tuberculosis, might be involved in survival under stress conditions.
Collapse
Affiliation(s)
- Aashish Sharma
- Department of Biotechnology, Panjab University, BMS Block-1, South Campus, Chandigarh, 160014, India.,COVID-19 Testing Facility, CSIR-IHBT, Palampur, 176061, India
| | - Arbind Kumar
- Department of Biotechnology, Panjab University, BMS Block-1, South Campus, Chandigarh, 160014, India.,COVID-19 Testing Facility, CSIR-IHBT, Palampur, 176061, India
| | - Mudasir Rashid
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
| | | | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, BMS Block-1, South Campus, Chandigarh, 160014, India.
| |
Collapse
|
10
|
Kumari B, Kaur J. Correlation of over-expression of rv1900c with enhanced survival of M. smegmatis under stress conditions: Modulation of cell surface properties. Gene 2021; 791:145720. [PMID: 34019937 DOI: 10.1016/j.gene.2021.145720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/21/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Mycobacterium tuberculosis has distinct cell wall composition that helps in intracellular survival of bacteria. Rv1900c, a two domain protein, has been grouped in lip gene family. The expression of rv1900c was upregulated under acidic, nutritive and iron stress conditions in M. tuberculosis H37Ra. To investigate the biological effect of Rv1900c in mycobacterium physiology, rv1900c gene was cloned in M. smegmatis, a surrogate host. Its counterpart MSMEG_4477 in M. smegmatis demonstrated 38% protein similarity with Rv1900c. MSMEG_4477 gene was knocked out in M. smegmatis by homologous recombination. rv1900c and MSMEG_4477 genes, cloned in pVV16, were expressed in the M. smegmatis knockout strain (M. smegmatis ΔMSMEG_4477). Gene knockout significantly altered colony morphology and growth kinetics of M. smegmatis. M. smegmatis ΔMSMEG_1900 (pVV16::rv1900c) colonies were less wrinkled and had smooth surface as compared to M. smegmatis ΔMSMEG_4477. The changes were reverted back to normal upon expression of MSMEG_4477 in knockout strain M. smegmatis ΔMSMEG_4477 (pVV16::MSMEG_4477). The expression of rv1900c enhanced the biofilm formation and survival of bacteria under various in vitro stresses like acidic, nutritive stress, including lysozyme, SDS and multiple antibiotics treatment in comparison to control. On the other hand the expression of rv1900c decreased the cell wall permeability. The resistance provided by M. smegmatis ΔMSMEG_4477 (pVV16::MSMEG_4477) was comparable to M. smegmatis having vector alone (MS_vec). The lipid content of M. smegmatis ΔMSMEG_1900 (pVV16::rv1900c) was observed to be different from M. smegmatis ΔMSMEG_4477 (pVV16::MSMEG_4477). M. smegmatis ΔMSMEG_1900 (pVV16::rv1900c) was more tolerant to stress conditions in comparison to M. smegmatis ΔMSMEG_4477 (pVV16::MSMEG_4477). Expression of rv1900c enhanced the intracellular survival of mycobacteria. Therefore, the present study suggested an association of Rv1900c to the stress tolerance by cell wall modification that might have resulted in enhanced intracellular survival of the mycobacteria.
Collapse
Affiliation(s)
- Bandana Kumari
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
11
|
Kumari B, Kaur J, Maan P, Kumar A, Kaur J. The lipolytic activity of LipJ, a stress-induced enzyme, is regulated by its C-terminal adenylate cyclase domain. Future Microbiol 2021; 16:487-507. [PMID: 33960821 DOI: 10.2217/fmb-2020-0223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The confirmation of lipolytic activity and role of Rv1900c in the Mycobacterium physiology Methods: rv1900c/N-terminus domain (rv1900NT) were cloned in pET28a/Escherichia coli, purified by affinity chromatography and characterized. Results: A zone of clearance on tributyrin-agar and activity with pNP-decanoate confirmed the lipolytic activity of Rv1900c. The Rv1900NT demonstrated higher enzyme specific activity, Vmax and kcat, but Rv1900c was more thermostable. The lipolytic activity of Rv1900c decreased in presence of ATP. Mycobacterium smegmatis expressed rv1900c/rv1900NT-altered colony morphology, growth, cell surface properties and survival under stress conditions. The effect was more prominent with Rv1900NT as compared with Rv1900c. Conclusion: The study confirmed the lipolytic activity of Rv1900c and suggested its regulation by the adenylate cyclase domain and role in the intracellular survival of bacteria.
Collapse
Affiliation(s)
- Bandana Kumari
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India
| | - Jashandeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India
| | - Pratibha Maan
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India.,Department of Experimental Medicine and Biotechnology PGIMER, Chandigarh, India
| | - Arbind Kumar
- COVID Testing Facility, CSIR-Institute of Himalayan Bioresources & Technology, Palampur, Himachal Pradesh, India
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India
| |
Collapse
|
12
|
Rv2037c, a stress induced conserved hypothetical protein of Mycobacterium tuberculosis, is a phospholipase: Role in cell wall modulation and intracellular survival. Int J Biol Macromol 2020; 153:817-835. [DOI: 10.1016/j.ijbiomac.2020.03.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/08/2023]
|
13
|
Maan P, Kaur J. Rv2223c, an acid inducible carboxyl-esterase of Mycobacterium tuberculosis enhanced the growth and survival of Mycobacterium smegmatis. Future Microbiol 2019; 14:1397-1415. [DOI: 10.2217/fmb-2019-0162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To elucidate the role of Rv2223c in Mycobacterium tuberculosis. Methods: Purified recombinant Rv2223c protein was characterized. Expression of rv2223c in the presence of different stress environment and subcellular localization were performed in M. tuberculosis H37Ra and Mycobacterium smegmatis ( MS_2223c). Effect of its overexpression on growth rate, infection and intracellular survival in THP-1/PBMC cells were studied. Results: rRv2223c demonstrated esterase activity with preference for pNP-octanoate and hydrolyzed trioctanoate to di- and mono-octanoate. Expression of rv2223c was upregulated in acidic and nutritive stress conditions. rRv2223c was identified in extracellular and cell wall fractions. MS_2223c exhibited enhanced growth, survival during in vitro stress, infection and intracellular survival. Conclusions: Rv2223c is a secretary, carboxyl-esterase, with enhanced expression under acidic and nutritive stress condition and might help in intracellular survival of bacteria.
Collapse
Affiliation(s)
- Pratibha Maan
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
14
|
Kaur J, Kaur J. Rv0518, a nutritive stress inducible GDSL lipase of Mycobacterium tuberculosis, enhanced intracellular survival of bacteria by cell wall modulation. Int J Biol Macromol 2019; 135:180-195. [DOI: 10.1016/j.ijbiomac.2019.05.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 10/26/2022]
|
15
|
Maan P, Kumar A, Kaur J, Kaur J. Rv1288, a Two Domain, Cell Wall Anchored, Nutrient Stress Inducible Carboxyl-Esterase of Mycobacterium tuberculosis, Modulates Cell Wall Lipid. Front Cell Infect Microbiol 2018; 8:421. [PMID: 30560095 PMCID: PMC6287010 DOI: 10.3389/fcimb.2018.00421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/16/2018] [Indexed: 01/29/2023] Open
Abstract
Rv1288, a conserved hypothetical protein of M. tuberculosis (M.tb), was recently characterized as two-domain esterase enzyme by in silico study. In the present study, Rv1288 and its domains (Est and Lyt) were cloned individually from M.tb into E. coli for expression and purification. The purified rRv1288 and rEst proteins exhibited lipolytic activity with medium chain length esters as optimum substrates, while Lyt domain did not show enzymatic activity. However, presence of Lyt domain resulted in enhanced rate of protein aggregation at higher temperature. Both rRv1288 and rEst followed the similar patterns of substrate specificity, temperature and pH activity. Site directed mutagenesis confirmed the Ser-294, Asp-391 and His-425 as catalytic site residues. Rv1288 was found to be present in cell wall fraction of M.tb H37Ra. Peptidoglycan binding activity of Rv1288 and its domains demonstrated that the Lyt domain is essential for anchoring protein to the cell wall. Expression of rv1288 was up regulated in M.tb under nutrient starved condition. Over expression of rv1288 in surrogate host M. smegmatis led to change in colony morphology, enhanced pellicle and aggregate formation that might be linked with the changed lipid composition of bacterial cell wall. Cell wall of M. smegmatis expressing rv1288 had higher amount of lipids, with a significant increase in trehalose dimycolate content. Rv1288 also leads to increase in drug resistance of M. smegmatis. Rv1288 also enhanced the intracellular survival of M. smegmatis in Raw264.7 cell line. Overall, this study suggested that Rv1288, a cell wall localized carboxyl hydrolase with mycolyl-transferase activity, modulated the cell wall lipids to favor the survival of bacteria under stress condition.
Collapse
Affiliation(s)
- Pratibha Maan
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Arbind Kumar
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jashandeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
16
|
Kaur G, Pandey B, Kumar A, Garewal N, Grover A, Kaur J. Drug targeted virtual screening and molecular dynamics of LipU protein of Mycobacterium tuberculosis and Mycobacterium leprae. J Biomol Struct Dyn 2018; 37:1254-1269. [PMID: 29557724 DOI: 10.1080/07391102.2018.1454852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The lipolytic protein LipU was conserved in mycobacterium sp. including M. tuberculosis (MTB LipU) and M. leprae (MLP LipU). The MTB LipU was identified in extracellular fraction and was reported to be essential for the survival of mycobacterium. Therefore to address the problem of drug resistance in pathogen, LipU was selected as a drug target and the viability of finding out some FDA approved drugs as LipU inhibitors in both the cases was explored. Three-dimensional (3D) model structures of MTB LipU and MLP LipU were generated and stabilized through molecular dynamics (MD). FDA approved drugs were screened against these proteins. The result showed that the top-scoring compounds for MTB LipU were Diosmin, Acarbose and Ouabain with the Glide XP score of -12.8, -11.9 and -11.7 kcal/mol, respectively, whereas for MLP LipU protein, Digoxin (-9.2 kcal/mol), Indinavir (-8.2 kcal/mol) and Travoprost (-8.2 kcal/mol) showed highest affinity. These drugs remained bound in the active site pocket of MTB LipU and MLP LipU structure and interaction grew stronger after dynamics. RMSD, RMSF and Rg were found to be persistent throughout the simulation period. Hydrogen bonds along with large number of hydrophobic interactions stabilized the complex structures. Binding free energies obtained through Prime/MM-GBSA were found in the significant range from -63.85 kcal/mol to -34.57 kcal/mol for MTB LipU and -71.33 kcal/mol to -23.91 kcal/mol for MLP LipU. The report suggested high probability of these drugs to demolish the LipU activity and could be probable drug candidates to combat TB and leprosy disease.
Collapse
Affiliation(s)
- Gurkamaljit Kaur
- a Department of Biotechnology, BMS Block-1, South Campus , Panjab University , Chandigarh , India
| | - Bharati Pandey
- a Department of Biotechnology, BMS Block-1, South Campus , Panjab University , Chandigarh , India
| | - Arbind Kumar
- a Department of Biotechnology, BMS Block-1, South Campus , Panjab University , Chandigarh , India
| | - Naina Garewal
- a Department of Biotechnology, BMS Block-1, South Campus , Panjab University , Chandigarh , India
| | - Abhinav Grover
- b School of Biotechnology , Jawaharlal Nehru University , New Delhi , India
| | - Jagdeep Kaur
- a Department of Biotechnology, BMS Block-1, South Campus , Panjab University , Chandigarh , India
| |
Collapse
|
17
|
Chownk M, Kaur J, Singh K, Kaur J. mbtJ: an iron stress-induced acetyl hydrolase/esterase of Mycobacterium tuberculosis helps bacteria to survive during iron stress. Future Microbiol 2018. [PMID: 29519132 DOI: 10.2217/fmb-2017-0194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM mbtJ from Mycobacterium tuberculosis H37Rv is a member of mbt A-J operon required for mycobactin biogenesis. MATERIALS & METHODS The esterase/acetyl-hydrolase activity of mbtJ was determined by pNP-esters/native-PAGE and expression under iron stress by quantitative-PCR. Effect of gene on growth/survival of Mycobacterium was studied using antisense. Its effect on morphology, growth/infection was studied in Mycobacterium smegmatis. RESULTS It showed acetyl hydrolase/esterase activity at pH 8.0 and 50°C with pNP-butyrate. Its expression was upregulated under iron stress. The antisense inhibited the survival of bacterium during iron stress. Expression of mbtJ changed colony morphology and enhanced the growth/infection in M. smegmatis. CONCLUSION mbtJ, an acetyl-hydrolase/esterase, enhanced the survival of M. tuberculosis under iron stress, affected the growth/infection efficiency in M. smegmatis, suggesting its pivotal role in the intracellular survival of bacterium.
Collapse
Affiliation(s)
- Manisha Chownk
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Jashandeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
18
|
Rastogi R, Kumar A, Kaur J, Saini V, Kaur J, Bhatnagar A. Rv0646c, an esterase from M. tuberculosis, up-regulates the host immune response in THP-1 macrophages cells. Mol Cell Biochem 2018; 447:189-202. [DOI: 10.1007/s11010-018-3303-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022]
|
19
|
Characterization of an extracellular protein, Rv1076 from M. tuberculosis with a potential role in humoral response. Int J Biol Macromol 2017; 101:621-629. [DOI: 10.1016/j.ijbiomac.2017.03.096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 10/19/2022]
|
20
|
Kumar A, Saini V, Kumar A, Kaur J, Kaur J. Modulation of Trehalose Dimycolate and Immune System by Rv0774c Protein Enhanced the Intracellular Survival of Mycobacterium smegmatis in Human Macrophages Cell Line. Front Cell Infect Microbiol 2017; 7:289. [PMID: 28713776 PMCID: PMC5491638 DOI: 10.3389/fcimb.2017.00289] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/14/2017] [Indexed: 01/21/2023] Open
Abstract
Mycobacterium tuberculosis Rv0774c protein was reported previously to express under stress conditions. Therefore, Rv0774c gene was cloned and expressed in Mycobacterium smegmatis, a surrogate host, to determine its role in bacterial persistence and immune modulation in natural environment. The bacterial colonies expressing Rv0774c (Ms_rv0774c) were larger, smoother, more moist, and flatter than the control ones (Ms_ve). Enhanced survival of Ms_rv0774c after treatment with streptomycin was observed when compared with control. The cell envelope of Ms_rv0774c was demonstrated to have more trehalose di-mycolate (TDM) and lesser amount of mycolylmannosylphosphorylheptaprenol (Myc-PL) in comparison to control. Higher intracellular survival rate was observed for Ms_rv0774c as compared to Ms_ve in the THP-1 cells. This could be correlated to the reduction in the levels of reactive NO and iNOS expression. Infection of macrophages with Ms_rv0774c resulted in significantly increased expression of TLR2 receptor and IL-10 cytokines. However, it lowered the production of pro-inflammatory cytokines such as IL-12, TNF-α, IFN-γ, and MCP-1 in Ms_rv0774c infected macrophages in comparison to the control and could be associated with decreased phosphorylation of p38 MAPK. Though, predicted with high antigenicity index bioinformatically, extracellular in nature and accessible to host milieu, Rv0774c was not able to generate humoral response in patient samples. Overall, the present findings indicated that Rv0774c altered the morphology and streptomycin sensitivity by altering the lipid composition of M. smegmatis as well as modulated the immune response in favor of bacterial persistence.
Collapse
Affiliation(s)
- Arbind Kumar
- Department of Biotechnology, Panjab UniversityChandigarh, India
| | - Varinder Saini
- Department of Pulmonary Medicine, Government Medical College and HospitalChandigarh, India
| | - Anjani Kumar
- Department of Biotechnology, Panjab UniversityChandigarh, India
| | - Jasbinder Kaur
- Department of Pulmonary Medicine, Government Medical College and HospitalChandigarh, India.,Department of Biochemistry, Government Medical College and HospitalChandigarh, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab UniversityChandigarh, India
| |
Collapse
|