1
|
Nguyen TTT, Nguyen TTT, Nguyen HD, Nguyen TK, Pham PTV, Tran LTT, Pham HKT, Truong PCH, Tran LT, Tran MH. Anti- Staphylococcus aureus potential of compounds from Ganoderma sp.: A comprehensive molecular docking and simulation approaches. Heliyon 2024; 10:e28118. [PMID: 38596094 PMCID: PMC11002548 DOI: 10.1016/j.heliyon.2024.e28118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
In this study, a series of secondary metabolites from Ganoderma sp. were screened against Staphylococcus aureus protein targets, including as phosphotransacetylase, clumping factor A, and dihydrofolate reductase, using molecular docking simulations. The chemicals that showed the strongest binding energy with the targeted proteins were ganodermanontriol, lucidumol B, ganoderic acid J, ergosterol, ergosterol peroxide, 7-oxoganoderic acid Z, ganoderic acid AM1, ganosinoside A, ganoderic acid D, and 24R-ergosta-7,2E-diene-3β,5α,6β-triol. Interestingly, ganosinoside A showed the greatest affinity for the protein clumping factor A, a result validated by molecular dynamic simulation. Additionally, three natural Ganoderma sp. Strains as Ganoderma lingzhi VNKKK1903, Ganoderma lingzhi VNKK1905A2, and Amauroderma subresinosum VNKKK1904 were collected from Kon Ka Kinh National Park in central land of Vietnam and evaluated for their antibacterial activity against Staphylococcus aureus using an agar well diffusion technique. These results suggest that the fungal extracts and secondary metabolites may serve as valuable sources of antibiotics against Staphylococcus aureus. These findings provided an important scientific groundwork for further exploration of the antibacterial mechanisms of compounds derived from Ganoderma sp. in future research.
Collapse
Affiliation(s)
- Trang Thi Thu Nguyen
- Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, 700000, Viet Nam
- Vietnam National University, Linh Trung, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam
| | - Trinh Thi Tuyet Nguyen
- Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, 700000, Viet Nam
- Vietnam National University, Linh Trung, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam
| | - Hoang Duc Nguyen
- Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, 700000, Viet Nam
- Vietnam National University, Linh Trung, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam
| | - Tan Khanh Nguyen
- Scientific Management Department, Dong A University, 33 Xo Viet Nghe Tinh, Hai Chau District, Da Nang City, 550000, Viet Nam
| | - Phu Tran Vinh Pham
- VN-UK Institute for Research and Executive Education, The University of Danang, 158A Le Loi, Hai Chau District, Danang City, 550000, Viet Nam
| | - Linh Thuy Thi Tran
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue, 530000, Viet Nam
| | - Hong Khuyen Thi Pham
- School of Medicine and Pharmacy, The University of Danang, Hoa Quy, Ngu Hanh Son District, Da Nang City, 550000, Viet Nam
| | - Phu Chi Hieu Truong
- School of Medicine and Pharmacy, The University of Danang, Hoa Quy, Ngu Hanh Son District, Da Nang City, 550000, Viet Nam
| | - Linh Thuoc Tran
- Faculty of Biology and Biotechnology, University of Science, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, 700000, Viet Nam
- Vietnam National University, Linh Trung, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam
| | - Manh Hung Tran
- School of Medicine and Pharmacy, The University of Danang, Hoa Quy, Ngu Hanh Son District, Da Nang City, 550000, Viet Nam
| |
Collapse
|
2
|
Párraga Solórzano PK, Bastille TS, Radin JN, Kehl-Fie TE. A Manganese-independent Aldolase Enables Staphylococcus aureus To Resist Host-imposed Metal Starvation. mBio 2023; 14:e0322322. [PMID: 36598285 PMCID: PMC9973326 DOI: 10.1128/mbio.03223-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
The preferred carbon source of Staphylococcus aureus and many other pathogens is glucose, and its consumption is critical during infection. However, glucose utilization increases the cellular demand for manganese, a nutrient sequestered by the host as a defense against invading pathogens. Therefore, bacteria must balance glucose metabolism with the increasing demand that metal-dependent processes, such as glycolysis, impose upon the cell. A critical regulator that enables S. aureus to resist nutritional immunity is the ArlRS two-component system. This work revealed that ArlRS regulates the expression of FdaB, a metal-independent fructose 1,6-bisphosphate aldolase. Further investigation revealed that when S. aureus is metal-starved by the host, FdaB functionally replaces the metal-dependent isozyme FbaA, thereby allowing S. aureus to resist host-imposed metal starvation in culture. Although metal-dependent aldolases are canonically zinc-dependent, this work uncovered that FbaA requires manganese for activity and that FdaB protects S. aureus from manganese starvation. Both FbaA and FdaB contribute to the ability of S. aureus to cause invasive disease in wild-type mice. However, the virulence defect of a strain lacking FdaB was reversed in calprotectin-deficient mice, which have defects in manganese sequestration, indicating that this isozyme contributes to the ability of this pathogen to overcome manganese limitation during infection. Cumulatively, these observations suggest that the expression of the metal-independent aldolase FdaB allows S. aureus to alleviate the increased demand for manganese that glucose consumption imposes, and highlights the cofactor flexibility of even established metalloenzyme families. IMPORTANCE Staphylococcus aureus and other pathogens consume glucose during infection. Glucose utilization increases the demand for transition metals, such as manganese, a nutrient that the host limits as a defense mechanism against invading pathogens. Therefore, pathogenic bacteria must balance glucose and manganese requirements during infection. The two-component system ArlRS is an important regulator that allows S. aureus to adapt to both glucose and manganese starvation. Among the genes regulated by ArlRS is the metal-independent fructose 1,6-bisphosphate aldolase fdaB, which functionally substitutes for the metal-dependent isoenzyme FbaA and enables S. aureus to survive host-imposed manganese starvation. Unexpectedly, and differing from most characterized metal-dependent aldolases, FbaA requires manganese for activity. Cumulatively, these findings reveal a new mechanism for overcoming nutritional immunity as well as the cofactor plasticity of even well-characterized metalloenzyme families.
Collapse
Affiliation(s)
| | - Talina S. Bastille
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jana N. Radin
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Thomas E. Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Astafyeva Y, Gurschke M, Streit WR, Krohn I. Interplay between the microalgae Micrasterias radians and its symbiont Dyadobacter sp. HH091. Front Microbiol 2022; 13:1006609. [PMID: 36312980 PMCID: PMC9606717 DOI: 10.3389/fmicb.2022.1006609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Based on previous research, related to detailed insight into mutualistic collaboration of microalga and its microbiome, we established an artificial plant-bacteria system of the microalga Micrasterias radians MZCH 672 and the bacterial isolate Dyadobacter sp. HH091. The bacteria, affiliated with the phylum Bacteroidota, strongly stimulated growth of the microalga when it was added to axenic algal cultures. For further advances, we studied the isolate HH091 and its interaction with the microalga M. radians using transcriptome and extensive genome analyses. The genome of HH091 contains predicted polysaccharide utilizing gene clusters co-working with the type IX secretion system (T9SS) and conceivably involved in the algae-bacteria liaison. Here, we focus on characterizing the mechanism of T9SS, implementing the attachment and invasion of microalga by Dyadobacter sp. HH091. Omics analysis exposed T9SS genes: gldK, gldL, gldM, gldN, sprA, sprE, sprF, sprT, porU and porV. Besides, gld genes not considered as the T9SS components but required for gliding motility and protein secretion (gldA, gldB, gldD, gldF, gldG, gldH, gldI, gldJ), were also identified at this analysis. A first model of T9SS apparatus of Dyadobacter was proposed in a course of this research. Using the combination of fluorescence labeling of Dyadobacter sp. HH091, we examined the bacterial colonisation and penetration into the cell wall of the algal host M. radians MZCH 672.
Collapse
|
4
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
5
|
Bonar E, Chlebicka K, Dubin G, Wladyka B. Application of Two-Dimensional Difference Gel Electrophoresis in Identification of Factors Responsible for Virulence of Staphylococcus aureus. Methods Mol Biol 2020; 2069:139-154. [PMID: 31523772 DOI: 10.1007/978-1-4939-9849-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Staphylococcus aureus is a dangerous opportunistic pathogen of humans and animals. Highly virulent and multi-antibiotic-resistant strains are of particular concern due to high invasiveness and limited array of useful treatment options. Proteomics allows identification and investigation of staphylococcal virulence factors to better understand and treat the related disease. Two-dimensional difference gel electrophoresis (2D DIGE) is a powerful method for identification of differences in staphylococcal proteomes, both intracellular and secretory. Not only the presence of particular proteins and their quantities may be determined, but also each modification changing the molecular mass and/or isoelectric point of a protein is trackable. Especially, 2D DIGE allows for detection of posttranslational modifications, including processing and degradation by proteases. For differential analysis, protein samples are labeled with spectrally distinguishable fluorescent dyes, mixed and separated according to their isoelectric point (first dimension), and then electrophoresed in the presence of sodium dodecyl sulfate according to their molecular mass (second dimension). Exceptional resolution of 2D DIGE allows to obtain focused and sharp protein spots, and identify a large number of differentiating proteins. Here we provide protocols for TRI Reagent-based preparation of high-quality samples for 2D DIGE, sample separation, and ways of handling differentiating protein spots which lead to samples ready for protein identification using MS.
Collapse
Affiliation(s)
- Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kinga Chlebicka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
6
|
Aubourg M, Dhalluin A, Gravey F, Pottier M, Thomy N, Bernay B, Goux D, Martineau M, Giard JC. Phenotypic and proteomic approaches of the response to iron-limited condition in Staphylococcus lugdunensis. BMC Microbiol 2020; 20:328. [PMID: 33115407 PMCID: PMC7594282 DOI: 10.1186/s12866-020-02016-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background Staphylococcus lugdunensis is a coagulase-negative Staphylococcus part of the commensal skin flora but emerge as an important opportunistic pathogen. Because iron limitation is a crucial stress during infectious process, we performed phenotypic study and compared proteomic profiles of this species incubated in absence and in presence of the iron chelator 2,2′-dipyridyl (DIP). Results No modification of cell morphology nor cell wall thickness were observed in presence of DIP. However iron-limitation condition promoted biofilm formation and reduced the ability to cope with oxidative stress (1 mM H2O2). In addition, S. lugdunensis N920143 cultured with DIP was significantly less virulent in the larvae of Galleria mellonella model of infection than that grown under standard conditions. We verified that these phenotypes were due to an iron limitation by complementation experiments with FeSO4. By mass spectrometry after trypsin digestion, we characterized the first iron-limitation stress proteome in S. lugdunensis. Among 1426 proteins identified, 349 polypeptides were differentially expressed. 222 were more and 127 less abundant in S. lugdunensis incubated in iron-limitation condition, and by RT-qPCR, some of the corresponding genes have been shown to be transcriptionally regulated. Our data revealed that proteins involved in iron metabolism and carriers were over-expressed, as well as several ABC transporters and polypeptides linked to cell wall metabolism. Conversely, enzymes playing a role in the oxidative stress response (especially catalase) were repressed. Conclusions This phenotypic and global proteomic study allowed characterization of the response of S. lugdunensis to iron-limitation. We showed that iron-limitation promoted biofilm formation, but decrease the oxidative stress resistance that may, at least in part, explained the reduced virulence of S. lugdunensis observed under low iron condition. Supplementary information Supplementary information accompanies this paper at 10.1186/s12866-020-02016-x.
Collapse
Affiliation(s)
- Marion Aubourg
- Université de Caen Normandie, EA4655 U2RM (équipe «Antibio-résistance»), CHU de Caen, Caen, France
| | - Anne Dhalluin
- Université de Caen Normandie, EA4655 U2RM (équipe «Antibio-résistance»), CHU de Caen, Caen, France
| | - François Gravey
- Université de Caen Normandie, GRAM 2.0, CHU de Caen, Service de Microbiologie, Caen, France
| | - Marine Pottier
- Université de Caen Normandie, EA4655 U2RM (équipe «Antibio-résistance»), CHU de Caen, Caen, France.,Université de Caen Normandie, GRAM 2.0, CHU de Caen, Service de Microbiologie, Caen, France
| | - Nicolas Thomy
- Université de Caen Normandie, EA4655 U2RM (équipe «Antibio-résistance»), CHU de Caen, Caen, France
| | - Benoit Bernay
- Plateforme Proteogen SFR ICORE 4206, Université de Caen Normandie, Caen, France
| | - Didier Goux
- Centre de Microscopie Appliquée à la Biologie, Université de Caen Normandie IFR ICORE, Caen, France
| | - Matthieu Martineau
- Université de Caen Normandie, EA4655 U2RM (équipe «Antibio-résistance»), CHU de Caen, Caen, France
| | - Jean-Christophe Giard
- Université de Caen Normandie, EA4655 U2RM (équipe «Antibio-résistance»), CHU de Caen, Caen, France.
| |
Collapse
|
7
|
Silva KCS, Silva LOS, Silva GAA, Borges CL, Novaes E, Paccez JD, Fontes W, Giambiagi-deMarval M, Soares CMDA, Parente-Rocha JA. Staphylococcus saprophyticus Proteomic Analyses Elucidate Differences in the Protein Repertories among Clinical Strains Related to Virulence and Persistence. Pathogens 2020; 9:pathogens9010069. [PMID: 31963821 PMCID: PMC7169411 DOI: 10.3390/pathogens9010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus saprophyticus is a Gram-positive and coagulase negative cocci that composes the skin microbiota and can act as an opportunistic agent causing urinary tract infections, being more frequent in sexually active young women. The ability of a pathogen to cause infection in the host is associated to its ability to adhere to host cells and to survive host immune defenses. In this work, we presented the comparative proteomic profile of three S. saprophyticus strains. It was possible to characterize differences in the proteome content, specially related to expression of virulence factors. We compiled this data and previous data and we detected one strain (9325) possessing higher production and secretion of proteins related to virulence. Our results show that phenotypic, genotypic, and proteomic differences reflect in the ability to survive during interaction with host cells, since the 9325 strain presented a higher survival rate after macrophage interaction. In counterpart, the 7108 strain that possesses lower content of proteins related to virulence presented higher ability to form biofilm suggesting that this strain can be better adapted to persist in the host and in the environment. Our work describes, for the first time, proteomic flexibility among S. saprophyticus strains, reflecting in virulence and persistence.
Collapse
Affiliation(s)
- Karla Christina Sousa Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
| | - Lana O’Hara Souza Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
| | - Guilherme Algusto Alves Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
| | - Evandro Novaes
- Departamento de Biologia, Universidade Federal de Lavras, Lavras 37200-900, Brazil;
| | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
| | - Wagner Fontes
- Laboratório de Química de Proteínas, Instituto de Biologia, Universidade de Brasília, UnB-Brasilia 70910-900, Brazil;
| | - Marcia Giambiagi-deMarval
- Laboratório de Microbiologia Molecular, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil;
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
| | - Juliana Alves Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
- Correspondence:
| |
Collapse
|
8
|
Abdi RD, Dunlap JR, Gillespie BE, Ensermu DB, Almeida RA, Kerro Dego O. Comparison of Staphylococcus aureus surface protein extraction methods and immunogenicity. Heliyon 2019; 5:e02528. [PMID: 31687478 PMCID: PMC6820086 DOI: 10.1016/j.heliyon.2019.e02528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/05/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is the major contagious bovine mastitis pathogen and has no effective vaccine. Strain variation and limited knowledge of common immunogenic antigen/s are among major constraints for developing effective vaccines. S. aureus cell surface proteins that are exposed to the host immune system constitute good vaccine candidates. The objective of this study was to compare two novel S. aureus surface protein extraction methods with biotinylation method and evaluate immune-reactivity of extracted proteins. Surface proteins were extracted from nine genetically distinct S. aureus strains from cases of bovine mastitis. After extraction, bacterial cell integrity was examined by Gram staining and electron microscopy to determine if extraction methods caused damage to cells that may release non-surface proteins. The extracted proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and evaluated for immune-reactivity using western blot. Results showed that all three extraction methods provided multiple protein bands on SDS-PAGE. Western blot result showed several immunoreactive surface proteins, in which some proteins strongly (well-resolved, thick, dark, and intense band) reacted across the nine strains tested. The three methods are valid for the extraction of surface proteins and hexadecane, and cholic acid methods are more feasible than biotinylation since both are easier, cheaper, and have minor effects on the bacterial cell. Strongly immune-reactive surface proteins may serve as potential candidates for a vaccine to control S. aureus mastitis in dairy cows.
Collapse
Affiliation(s)
- Reta Duguma Abdi
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Greenvale, NY11548, United States
| | - John R. Dunlap
- Joint Institute for Advanced Materials (JIAM) Microscopy Center and Advanced Microscopy and Imaging Center, The University of Tennessee, Knoxville, TN, 37996, United States
| | - Barbara E. Gillespie
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
| | - Desta Beyene Ensermu
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
| | - Raul Antonio Almeida
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
- Corresponding author.
| |
Collapse
|
9
|
Frickmann H, Hahn A, Berlec S, Ulrich J, Jansson M, Schwarz NG, Warnke P, Podbielski A. On the Etiological Relevance of Escherichia coli and Staphylococcus aureus in Superficial and Deep Infections - A Hypothesis-Forming, Retrospective Assessment. Eur J Microbiol Immunol (Bp) 2019; 9:124-130. [PMID: 31934364 PMCID: PMC6945993 DOI: 10.1556/1886.2019.00021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/08/2019] [Indexed: 02/07/2023] Open
Abstract
Introduction Escherichia coli and Staphylococcus aureus are important causes of severe diseases like blood stream infections. This study comparatively assessed potential differences in their impact on disease severity in local and systemic infections. Methods Over a 5-year interval, patients in whom either E. coli or S. aureus was detected in superficial or primary sterile compartments were assessed for the primary endpoint death during hospital stay and the secondary endpoints duration of hospital stay and infectious disease as the main diagnosis. Results Significance was achieved for the impacts as follows: Superficial infection with S. aureus was associated with an odds ratio of 0.27 regarding the risk of death and of 1.42 regarding infectious disease as main diagnosis. Superficial infection with E. coli was associated with a reduced duration of hospital stay by –2.46 days and a reduced odds ratio of infectious diseases as main diagnosis of 0.04. The hospital stay of patients with E. coli was increased due to third-generation cephalosporin and ciprofloxacin resistance, and in the case of patients with S. aureus due to tetracycline and fusidic acid resistance. Conclusions Reduced disease severity of superficial infections due to both E. coli and S. aureus and resistance-driven prolonged stays in hospital were confirmed, while other outcome parameters were comparable.
Collapse
Affiliation(s)
- Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany.,Institute for Medical Microbiology, Virology, and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Andreas Hahn
- Institute for Medical Microbiology, Virology, and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Stefan Berlec
- Institute for Medical Microbiology, Virology, and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Johannes Ulrich
- Institute for Medical Microbiology, Virology, and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Moritz Jansson
- Institute for Medical Microbiology, Virology, and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Norbert Georg Schwarz
- Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Hamburg, Germany
| | - Philipp Warnke
- Institute for Medical Microbiology, Virology, and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Andreas Podbielski
- Institute for Medical Microbiology, Virology, and Hygiene, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
10
|
Palma Medina LM, Becker AK, Michalik S, Yedavally H, Raineri EJM, Hildebrandt P, Gesell Salazar M, Surmann K, Pförtner H, Mekonnen SA, Salvati A, Kaderali L, van Dijl JM, Völker U. Metabolic Cross-talk Between Human Bronchial Epithelial Cells and Internalized Staphylococcus aureus as a Driver for Infection. Mol Cell Proteomics 2019; 18:892-908. [PMID: 30808728 PMCID: PMC6495256 DOI: 10.1074/mcp.ra118.001138] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/25/2019] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus is infamous for causing recurrent infections of the human respiratory tract. This is a consequence of its ability to adapt to different niches, including the intracellular milieu of lung epithelial cells. To understand the dynamic interplay between epithelial cells and the intracellular pathogen, we dissected their interactions over 4 days by mass spectrometry. Additionally, we investigated the dynamics of infection through live cell imaging, immunofluorescence and electron microscopy. The results highlight a major role of often overlooked temporal changes in the bacterial and host metabolism, triggered by fierce competition over limited resources. Remarkably, replicating bacteria reside predominantly within membrane-enclosed compartments and induce apoptosis of the host within ∼24 h post infection. Surviving infected host cells carry a subpopulation of non-replicating bacteria in the cytoplasm that persists. Altogether, we conclude that, besides the production of virulence factors by bacteria, it is the way in which intracellular resources are used, and how host and intracellular bacteria subsequently adapt to each other that determines the ultimate outcome of the infectious process.
Collapse
Affiliation(s)
- Laura M Palma Medina
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany;; Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ann-Kristin Becker
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Harita Yedavally
- Division of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Groningen, The Netherlands
| | - Elisa J M Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Kristin Surmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Henrike Pförtner
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Solomon A Mekonnen
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany;; Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anna Salvati
- Division of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Groningen, The Netherlands
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands;.
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany;.
| |
Collapse
|
11
|
Wang J, Sang L, Chen Y, Sun S, Chen D, Xie X. Characterisation of Staphylococcus aureus strain causing severe respiratory disease in rabbits. WORLD RABBIT SCIENCE 2019. [DOI: 10.4995/wrs.2019.10454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
<em>Staphylococcus aureus</em> is acknowledged as one of the important pathogens isolated from humans and animals. However, the <em>S. aureus</em> causing severe respiratory diseases in rabbits have not been well characterised. A <em>S. aureus</em> named FZHW001, isolated from the lungs of dead rabbits with severe respiratory disease, was characterised by artificial infection of rabbits, detection of virulence factors, multi-locus sequencing typing and antimicrobial susceptibility test. The FZHW001 infected rabbits showed identical respiratory symptoms to those of naturally infected ones, and the isolate could spread through directed contact among rabbits. The isolate was typed into clonal complex 121 and carried 7 of 13 tested virulence factors. Furthermore, the isolate was identified to be methicillin-susceptible <em>S. aureus</em> and was susceptible to 7 of 12 tested antibiotics. This study first describes the characteristics of <em>S. aureus</em> isolated from rabbits causing severe respiratory disease, which will help in further understanding the pathogenic mechanisms of <em>S. aureus</em> in rabbits.
Collapse
|
12
|
Junker S, Maaß S, Otto A, Hecker M, Becher D. Toward the Quantitative Characterization of Arginine Phosphorylations in Staphylococcus aureus. J Proteome Res 2018; 18:265-279. [PMID: 30358407 DOI: 10.1021/acs.jproteome.8b00579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Gram-positive bacterium Staphylococcus aureus plays an important role as an opportunistic pathogen and causative agent of nosocomial infections. As pathophysiological research gained insights into host-specific adaptation and a broad range of virulence mechanisms, S. aureus evolved as a model organism for human pathogens. Hence the investigation of staphylococcal proteome expression and regulation supports the understanding of the pathogenicity and relevant physiology of this organism. This study focused on the analysis of protein regulation by reversible protein phosphorylation, in particular, on arginine residues. Therefore, both proteome and phosphoproteome of S. aureus COL wild type were compared with the arginine phosphatase deletion mutant S. aureus COL ΔptpB under control and stress conditions in a quantitative manner. A gel-free approach, adapted to the special challenges of arginine phosphorylations, was applied to analyze the phosphoproteome of exponential growing cells after oxidative stress caused by sublethal concentrations of H2O2. Together with phenotypic characterization of S. aureus COL ΔptpB, this study disclosed first insights into the physiological role of arginine phosphorylations in Gram-positive pathogens. A spectral library based quantification of phosphopeptides finally allowed us to link arginine phosphorylation to staphylococcal oxidative stress response, amino acid metabolism, and virulence.
Collapse
Affiliation(s)
- Sabryna Junker
- Institute for Microbiology , University of Greifswald , Greifswald 17487 , Germany
| | - Sandra Maaß
- Institute for Microbiology , University of Greifswald , Greifswald 17487 , Germany
| | - Andreas Otto
- Institute for Microbiology , University of Greifswald , Greifswald 17487 , Germany
| | - Michael Hecker
- Institute for Microbiology , University of Greifswald , Greifswald 17487 , Germany
| | - Dörte Becher
- Institute for Microbiology , University of Greifswald , Greifswald 17487 , Germany
| |
Collapse
|
13
|
Mekonnen SA, Palma Medina LM, Michalik S, Loreti MG, Gesell Salazar M, van Dijl JM, Völker U. Metabolic niche adaptation of community- and hospital-associated methicillin-resistant Staphylococcus aureus. J Proteomics 2018; 193:154-161. [PMID: 30321607 DOI: 10.1016/j.jprot.2018.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 01/25/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) originally emerged in nosocomial settings and has subsequently spread into the community. In turn, community-associated (CA) MRSA lineages are nowadays introduced from the community into hospitals where they can cause hospital-associated (HA) infections. This raises the question of how the CA-MRSA lineages adapt to the hospital environment. Previous studies implicated particular virulence factors in the CA-behaviour of MRSA. However, we hypothesized that physiological changes may also impact staphylococcal epidemiology. With the aim to identify potential metabolic adaptations, we comparatively profiled the cytosolic proteomes of CA- and HA-isolates from the USA300 lineage that was originally identified as CA-MRSA. Interestingly, enzymes for gluconeogenesis, the tricarboxylic acid cycle and biosynthesis of amino acids are up-regulated in the investigated CA-MRSA isolates, while enzymes for glycolysis and the pentose phosphate pathway are up-regulated in the HA-MRSA isolates. Of note, these data apparently match with the clinical presentation of each group. These observations spark interest in central carbon metabolism as a key driver for adaptations that streamline MRSA for propagation in the community or the hospital.
Collapse
Affiliation(s)
- Solomon A Mekonnen
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald. Felix-Hausdorff-Str. 8, Greifswald 17475, Germany; Department of Medical Microbiology, University of Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9700, the Netherlands
| | - Laura M Palma Medina
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald. Felix-Hausdorff-Str. 8, Greifswald 17475, Germany; Department of Medical Microbiology, University of Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9700, the Netherlands
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald. Felix-Hausdorff-Str. 8, Greifswald 17475, Germany
| | - Marco G Loreti
- Department of Medical Microbiology, University of Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9700, the Netherlands
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald. Felix-Hausdorff-Str. 8, Greifswald 17475, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, Hanzeplein 1, P.O. Box 30001, Groningen 9700, the Netherlands.
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald. Felix-Hausdorff-Str. 8, Greifswald 17475, Germany.
| |
Collapse
|
14
|
Bonar EA, Bukowski M, Hydzik M, Jankowska U, Kedracka-Krok S, Groborz M, Dubin G, Akkerboom V, Miedzobrodzki J, Sabat AJ, Friedrich AW, Wladyka B. Joint Genomic and Proteomic Analysis Identifies Meta-Trait Characteristics of Virulent and Non-virulent Staphylococcus aureus Strains. Front Cell Infect Microbiol 2018; 8:313. [PMID: 30237986 PMCID: PMC6136393 DOI: 10.3389/fcimb.2018.00313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen of humans and warm-blooded animals and presents a growing threat in terms of multi-drug resistance. Despite numerous studies, the basis of staphylococcal virulence and switching between commensal and pathogenic phenotypes is not fully understood. Using genomics, we show here that S. aureus strains exhibiting virulent (VIR) and non-virulent (NVIR) phenotypes in a chicken embryo infection model genetically fall into two separate groups, with the VIR group being much more cohesive than the NVIR group. Significantly, the genes encoding known staphylococcal virulence factors, such as clumping factors, are either found in different allelic variants in the genomes of NVIR strains (compared to VIR strains) or are inactive pseudogenes. Moreover, the pyruvate carboxylase and gamma-aminobutyrate permease genes, which were previously linked with virulence, are pseudogenized in NVIR strain ch22. Further, we use comprehensive proteomics tools to characterize strains that show opposing phenotypes in a chicken embryo virulence model. VIR strain CH21 had an elevated level of diapolycopene oxygenase involved in staphyloxanthin production (protection against free radicals) and expressed a higher level of immunoglobulin-binding protein Sbi on its surface compared to NVIR strain ch22. Furthermore, joint genomic and proteomic approaches linked the elevated production of superoxide dismutase and DNA-binding protein by NVIR strain ch22 with gene duplications.
Collapse
Affiliation(s)
- Emilia A Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marcin Hydzik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Urszula Jankowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Groborz
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Viktoria Akkerboom
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jacek Miedzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Artur J Sabat
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|