1
|
Saberi S, Shans N, Ghaffari S, Esmaeili M, Mohammadi M. The role of CEACAMs versus integrins in Helicobacter pylori CagA translocation: a systematic review. Microbes Infect 2024; 26:105246. [PMID: 37926369 DOI: 10.1016/j.micinf.2023.105246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
The delivery of Helicobacter pylori CagA into host cells was long believed to occur through the integrin cell surface receptors. However, the role of CEACAM receptors has recently been highlighted, instead. Here, we have categorized the existing experimental evidence according to whether deletion, upregulation, downregulation, or inhibition of the target ligands (T4SS or HopQ) or receptors (integrins or CEACAMs), result in alterations in CagA phosphorylation, cell elongation, or IL-8 production. According to our analysis, the statistics favor the essence of most of the T4SS constituents and the involvement of HopQ adhesin in all three functions. Concerning the integrin family, the collected data is controversial, but yielding towards it being dispensable or involved in CagA translocation. Yet, regarding cell elongation, more events are showing β1 integrin being involved, than αvβ4 being inhibitory. Concerning IL-8 secretion, again there are more events showing α5, β1 and β6 integrins to be involved, than those showing inhibitory roles for β1, β4 and β6 integrins. Finally, CEACAM 1, 3, and 5 are identified as mostly essential or involved in CagA phosphorylation, whereasCEACAM 4, 7, and 8 are found dispensable and CEACAM6 is under debate. Conversely, CEACAM1, 5 and 6 appear mostly dispensable for cell elongation. Noteworthy is the choice of cell type, bacterial strain, multiplicity and duration of infection, as well as the sensitivity of the detection methods, all of which can affect the variably obtained results.
Collapse
Affiliation(s)
- Samaneh Saberi
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Nazanin Shans
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Saba Ghaffari
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Esmaeili
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Marjan Mohammadi
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Reyes VE. Helicobacter pylori and Its Role in Gastric Cancer. Microorganisms 2023; 11:1312. [PMID: 37317287 PMCID: PMC10220541 DOI: 10.3390/microorganisms11051312] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Gastric cancer is a challenging public health concern worldwide and remains a leading cause of cancer-related mortality. The primary risk factor implicated in gastric cancer development is infection with Helicobacter pylori. H. pylori induces chronic inflammation affecting the gastric epithelium, which can lead to DNA damage and the promotion of precancerous lesions. Disease manifestations associated with H. pylori are attributed to virulence factors with multiple activities, and its capacity to subvert host immunity. One of the most significant H. pylori virulence determinants is the cagPAI gene cluster, which encodes a type IV secretion system and the CagA toxin. This secretion system allows H. pylori to inject the CagA oncoprotein into host cells, causing multiple cellular perturbations. Despite the high prevalence of H. pylori infection, only a small percentage of affected individuals develop significant clinical outcomes, while most remain asymptomatic. Therefore, understanding how H. pylori triggers carcinogenesis and its immune evasion mechanisms is critical in preventing gastric cancer and mitigating the burden of this life-threatening disease. This review aims to provide an overview of our current understanding of H. pylori infection, its association with gastric cancer and other gastric diseases, and how it subverts the host immune system to establish persistent infection.
Collapse
Affiliation(s)
- Victor E Reyes
- Department of Pediatrics and Microbiology & Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0372, USA
| |
Collapse
|
3
|
Nguyen QA, Schmitt L, Mejías-Luque R, Gerhard M. Effects of Helicobacter pylori adhesin HopQ binding to CEACAM receptors in the human stomach. Front Immunol 2023; 14:1113478. [PMID: 36891299 PMCID: PMC9986547 DOI: 10.3389/fimmu.2023.1113478] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Helicobacter pylori has developed several strategies using its diverse virulence factors to trigger and, at the same time, limit the host's inflammatory responses in order to establish a chronic infection in the human stomach. One of the virulence factors that has recently received more attention is a member of the Helicobacter outer membrane protein family, the adhesin HopQ, which binds to the human Carcinoembryonic Antigen-related Cell Adhesion Molecules (CEACAMs) on the host cell surface. The HopQ-CEACAM interaction facilitates the translocation of the cytotoxin-associated gene A (CagA), an important effector protein of H. pylori, into host cells via the Type IV secretion system (T4SS). Both the T4SS itself and CagA are important virulence factors that are linked to many aberrant host signaling cascades. In the last few years, many studies have emphasized the prerequisite role of the HopQ-CEACAM interaction not only for the adhesion of this pathogen to host cells but also for the regulation of cellular processes. This review summarizes recent findings about the structural characteristics of the HopQ-CEACAM complex and the consequences of this interaction in gastric epithelial cells as well as immune cells. Given that the upregulation of CEACAMs is associated with many H. pylori-induced gastric diseases including gastritis and gastric cancer, these data may enable us to better understand the mechanisms of H. pylori's pathogenicity.
Collapse
Affiliation(s)
- Quynh Anh Nguyen
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Leonard Schmitt
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| |
Collapse
|
4
|
Miri AH, Kamankesh M, Llopis-Lorente A, Liu C, Wacker MG, Haririan I, Asadzadeh Aghdaei H, Hamblin MR, Yadegar A, Rad-Malekshahi M, Zali MR. The Potential Use of Antibiotics Against Helicobacter pylori Infection: Biopharmaceutical Implications. Front Pharmacol 2022; 13:917184. [PMID: 35833028 PMCID: PMC9271669 DOI: 10.3389/fphar.2022.917184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a notorious, recalcitrant and silent germ, which can cause a variety of debilitating stomach diseases, including gastric and duodenal ulcers and gastric cancer. This microbe predominantly colonizes the mucosal layer of the human stomach and survives in the inhospitable gastric microenvironment, by adapting to this hostile milieu. In this review, we first discuss H. pylori colonization and invasion. Thereafter, we provide a survey of current curative options based on polypharmacy, looking at pharmacokinetics, pharmacodynamics and pharmaceutical microbiology concepts, in the battle against H. pylori infection.
Collapse
Affiliation(s)
- Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Kamankesh
- Polymer Chemistry Department, School of Science, University of Tehran, Tehran, Iran
| | - Antoni Llopis-Lorente
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Matthias G. Wacker
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
- *Correspondence: Michael R. Hamblin, ; Abbas Yadegar, ; Mazda Rad-Malekshahi, ; Mohammad Reza Zali,
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Michael R. Hamblin, ; Abbas Yadegar, ; Mazda Rad-Malekshahi, ; Mohammad Reza Zali,
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Michael R. Hamblin, ; Abbas Yadegar, ; Mazda Rad-Malekshahi, ; Mohammad Reza Zali,
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Michael R. Hamblin, ; Abbas Yadegar, ; Mazda Rad-Malekshahi, ; Mohammad Reza Zali,
| |
Collapse
|
5
|
Sharndama HC, Mba IE. Helicobacter pylori: an up-to-date overview on the virulence and pathogenesis mechanisms. Braz J Microbiol 2022; 53:33-50. [PMID: 34988937 PMCID: PMC8731681 DOI: 10.1007/s42770-021-00675-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is an organism associated with ulcer disease and gastric cancer. The latter is one of the most prevalent malignancies and currently the fourth major cause of cancer-related deaths globally. The pathogen infects about 50% of the world population, and currently, no treatment ensures its total elimination. There has been an increase in our understanding of the pathophysiology and pathogenesis mechanisms of H. pylori over the years. H. pylori can induce several genetic alterations, express numerous virulence factors, and trigger diverse adaptive mechanisms during its adherence and colonization. For successful colonization and infection establishment, several effector proteins/toxins are released by the organism. Evidence is also available reporting spiral to coccoid transition as a unique tactic H. pylori uses to survive in the host's gastrointestinal tract (GIT). Thus, the virulence and pathogenicity of H. pylori are under the control of complex interplay between the virulence factors, host, and environmental factors. Expounding the role of the various virulence factors in H. pylori pathogenesis and clinical outcomes is crucial for vaccine development and in providing and developing a more effective therapeutic intervention. Here we critically reflect on H. pylori infection and delineate what is currently known about the virulence and pathogenesis mechanisms of H. pylori.
Collapse
Affiliation(s)
| | - Ifeanyi Elibe Mba
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria.
| |
Collapse
|
6
|
Maubach G, Vieth M, Boccellato F, Naumann M. Helicobacter pylori-induced NF-κB: trailblazer for gastric pathophysiology. Trends Mol Med 2022; 28:210-222. [PMID: 35012886 DOI: 10.1016/j.molmed.2021.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
Abstract
NF-κB signaling pathways, induced by a variety of triggers, play a key role in regulating the expression of genes involved in the immune response and cellular responses to stress. The human pathogen Helicobacter pylori induces classical and alternative NF-κB signaling pathways via its effector ADP-L-glycero-β-D-manno-heptose (ADP-heptose). We review H. pylori- and NF-κB-dependent alterations in cellular processes and associated maladaptation leading to deleterious gastric pathophysiology that have implications for the diagnosis and treatment of gastric diseases. Therapeutic options for gastric cancer (GC) include clinically relevant small molecule inhibitors of NF-κB and epigenetic therapy approaches. In this context, gastric organoid biobanks originated from patient material, represent a valuable platform for translational applications to predict patient responses to chemotherapy, with a view to personalized medicine.
Collapse
Affiliation(s)
- Gunter Maubach
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Friedrich Alexander University, Erlangen-Nuremberg, 95445 Bayreuth, Germany
| | - Francesco Boccellato
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OX37DQ Oxford, UK
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
7
|
Peterson RJ, Koval M. Above the Matrix: Functional Roles for Apically Localized Integrins. Front Cell Dev Biol 2021; 9:699407. [PMID: 34485286 PMCID: PMC8414885 DOI: 10.3389/fcell.2021.699407] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Integrins are transmembrane proteins that are most typically thought of as integrating adhesion to the extracellular matrix with intracellular signaling and cell regulation. Traditionally, integrins are found at basolateral and lateral cell surfaces where they facilitate binding to the ECM and intercellular adhesion through cytosolic binding partners that regulate organization of actin microfilaments. However, evidence is accumulating that integrins also are apically localized, either endogenously or due to an exogenous stimulus. Apically localized integrins have been shown to regulate several processes by interacting with proteins such as connexins, tight junction proteins, and polarity complex proteins. Integrins can also act as receptors to mediate endocytosis. Here we review these newly appreciated roles for integrins localized to the apical cell surface.
Collapse
Affiliation(s)
- Raven J Peterson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
8
|
Taxauer K, Hamway Y, Ralser A, Dietl A, Mink K, Vieth M, Singer BB, Gerhard M, Mejías-Luque R. Engagement of CEACAM1 by Helicobacterpylori HopQ Is Important for the Activation of Non-Canonical NF-κB in Gastric Epithelial Cells. Microorganisms 2021; 9:1748. [PMID: 34442827 PMCID: PMC8400456 DOI: 10.3390/microorganisms9081748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023] Open
Abstract
The gastric pathogen Helicobacter pylori infects half of the world's population and is a major risk factor for gastric cancer development. In order to attach to human gastric epithelial cells and inject the oncoprotein CagA into host cells, H. pylori utilizes the outer membrane protein HopQ that binds to the cell surface protein CEACAM, which can be expressed on the gastric mucosa. Once bound, H. pylori activates a number of signaling pathways, including canonical and non-canonical NF-κB. We investigated whether HopQ-CEACAM interaction is involved in activating the non-canonical NF-κB signaling pathway. Different gastric cancer cells were infected with the H. pylori wild type, or HopQ mutant strains, and the activation of non-canonical NF-κB was related to CEACAM expression levels. The correlation between CEACAM levels and the activation of non-canonical NF-κB was confirmed in human gastric tissue samples. Taken together, our findings show that the HopQ-CEACAM interaction is important for activation of the non-canonical NF-κB pathway in gastric epithelial cells.
Collapse
Affiliation(s)
- Karin Taxauer
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, 81675 Munich, Germany; (K.T.); (Y.H.); (A.R.); (A.D.); (K.M.); (M.G.)
| | - Youssef Hamway
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, 81675 Munich, Germany; (K.T.); (Y.H.); (A.R.); (A.D.); (K.M.); (M.G.)
| | - Anna Ralser
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, 81675 Munich, Germany; (K.T.); (Y.H.); (A.R.); (A.D.); (K.M.); (M.G.)
| | - Alisa Dietl
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, 81675 Munich, Germany; (K.T.); (Y.H.); (A.R.); (A.D.); (K.M.); (M.G.)
| | - Karin Mink
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, 81675 Munich, Germany; (K.T.); (Y.H.); (A.R.); (A.D.); (K.M.); (M.G.)
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nuremberg, Klinikum Bayreuth, 95445 Bayreuth, Germany;
| | - Bernhard B. Singer
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, 81675 Munich, Germany; (K.T.); (Y.H.); (A.R.); (A.D.); (K.M.); (M.G.)
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, 81675 Munich, Germany; (K.T.); (Y.H.); (A.R.); (A.D.); (K.M.); (M.G.)
| |
Collapse
|
9
|
Cui K, Wu X, Gong L, Yao S, Sun S, Liu B, Zhou M, Yin Y, Huang Z. Comprehensive Characterization of Integrin Subunit Genes in Human Cancers. Front Oncol 2021; 11:704067. [PMID: 34222028 PMCID: PMC8242346 DOI: 10.3389/fonc.2021.704067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Although integrin subunit genes (ITGs) have been reported to be associated with some human cancer types, a systematic assessment of ITGs across human cancers is lacking. Hence, we performed comprehensive analyses to investigate mRNA expression, copy number variation (CNV), DNA methylation, mutation, and clinical landscapes of ITGs in more than 8000 cancer patients from The Cancer Genome Atlas (TCGA) dataset. Landscapes of ITGs were established across 20 human cancer types. We observed that ITGs are extensively dysregulated with heterogeneity in different system cancer types, part of which are driven by CNV, DNA hypomethylation or mutation. Furthermore, dysregulated prognosis-related ITGs were systematically identified in each cancer type, including ITGA11 in stomach adenocarcinoma (STAD). The models based on dysregulated ITGs with clinical relevance and TNM staging indexes are good indicators in STAD and head and neck squamous cell carcinoma. Finally, ITGA11 is overexpressed and associated with poor survival in STAD cases from the TCGA and additionally Gene Expression Omnibus cohorts. Functionally, ITGA11 knockdown inhibits malignant phenotypes in STAD cell lines AGS and MKN45, demonstrating the oncogenic role of ITGA11 in STAD. Together, this study highlights the important roles of ITGs in tumorigenesis as potential prognostic biomarkers, and provide an effective resource that identifies cancer-related genes of ITGs in human cancers.
Collapse
Affiliation(s)
- Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaohan Wu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Liang Gong
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shengbai Sun
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Bingxin Liu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Mingyue Zhou
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuan Yin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Baj J, Forma A, Sitarz M, Portincasa P, Garruti G, Krasowska D, Maciejewski R. Helicobacter pylori Virulence Factors-Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells 2020; 10:E27. [PMID: 33375694 PMCID: PMC7824444 DOI: 10.3390/cells10010027] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer constitutes one of the most prevalent malignancies in both sexes; it is currently the fourth major cause of cancer-related deaths worldwide. The pathogenesis of gastric cancer is associated with the interaction between genetic and environmental factors, among which infection by Helicobacter pylori (H. pylori) is of major importance. The invasion, survival, colonization, and stimulation of further inflammation within the gastric mucosa are possible due to several evasive mechanisms induced by the virulence factors that are expressed by the bacterium. The knowledge concerning the mechanisms of H. pylori pathogenicity is crucial to ameliorate eradication strategies preventing the possible induction of carcinogenesis. This review highlights the current state of knowledge and the most recent findings regarding H. pylori virulence factors and their relationship with gastric premalignant lesions and further carcinogenesis.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Danuta Krasowska
- Department of Dermatology, Venerology and Paediatric Dermatology of Medical University of Lublin, 20-081 Lublin, Poland;
| | | |
Collapse
|
11
|
Maubach G, Sokolova O, Täger C, Naumann M. CEACAMs interaction with Helicobacter pylori HopQ supports the type 4 secretion system-dependent activation of non-canonical NF-κB. Int J Med Microbiol 2020; 310:151444. [PMID: 32862837 DOI: 10.1016/j.ijmm.2020.151444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori infection represents a major risk factor for the development of gastric diseases and gastric cancer. The capability of H. pylori to inject the virulence factor cytotoxin-associated gene A (CagA) depends on a type IV secretion system (T4SS) encoded by the cag pathogenicity island (cagPAI). Further, infection by H. pylori activates the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in a T4SS-dependent manner but CagA-independent manner. Here we investigated the role of host cell receptors carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) and the bacterial adhesin HopQ in the activation of non-canonical NF-κB and CagA translocation into gastric epithelial cells. AGS cells express six of twelve CEACAMs found in humans. In HeLa cells, only CEACAM19 is expressed. We showed that deletion of hopQ attenuates the activation of non-canonical NF-κB only in AGS but not in HeLa cells. CagA translocation was in both cell lines affected by HopQ depletion, although to a much lesser extent in HeLa cells. Moreover, we observed a possible redundancy between the three HopQ-binding CEACAMs 1, 5 and 6 and their capacity to support non-canonical NF-κB activation. Our results illustrate that the interaction between HopQ and CEACAMs could promote the efficiency of the T4SS.
Collapse
Affiliation(s)
- Gunter Maubach
- Otto von Guericke University, Institute of Experimental Internal Medicine, Medical Faculty, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Olga Sokolova
- Otto von Guericke University, Institute of Experimental Internal Medicine, Medical Faculty, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Christian Täger
- Otto von Guericke University, Institute of Experimental Internal Medicine, Medical Faculty, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Michael Naumann
- Otto von Guericke University, Institute of Experimental Internal Medicine, Medical Faculty, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
12
|
Tegtmeyer N, Ghete TD, Schmitt V, Remmerbach T, Cortes MCC, Bondoc EM, Graf HL, Singer BB, Hirsch C, Backert S. Type IV secretion of Helicobacter pylori CagA into oral epithelial cells is prevented by the absence of CEACAM receptor expression. Gut Pathog 2020; 12:25. [PMID: 32435278 PMCID: PMC7222478 DOI: 10.1186/s13099-020-00363-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023] Open
Abstract
Background Helicobacter pylori typically colonizes the human stomach, but it can occasionally be detected in the oral cavity of infected persons. Clinical outcome as a result of gastric colonization depends on presence of the pathogenicity island cagPAI that encodes a type-IV secretion system (T4SS) for translocation of the effector protein CagA and ADP-heptose. Upon injection into target cells, CagA is phosphorylated, which can be demonstrated by in vitro infection of the gastric epithelial cell line AGS, resulting in cell elongation. Here we investigated whether H. pylori can exert these responses during interaction with cells from the oral epithelium. To this purpose, three oral epithelial cell lines, HN, CAL-27 and BHY, were infected with various virulent wild-type H. pylori strains, and CagA delivery and ADP-heptose-mediated pro-inflammatory responses were monitored. Results All three oral cell lines were resistant to elongation upon infection, despite similar bacterial binding capabilities. Moreover, T4SS-dependent CagA injection was absent. Resistance to CagA delivery was shown to be due to absence of CEACAM expression in these cell lines, while these surface molecules have recently been recognized as H. pylori T4SS receptors. Lack of CEACAM expression in HN, CAL-27 and BHY cells was overcome by genetic introduction of either CEACAM1, CEACAM5, or CEACAM6, which in each of the cell lines was proven sufficient to facilitate CagA delivery and phosphorylation upon H. pylori infection to levels similar to those observed with the gastric AGS cells. Pro-inflammatory responses, as measured by interleukin-8 ELISA, were induced to high levels in each cell line and CEACAM-independent. Conclusions These results show that lack of CEACAM receptors on the surface of the oral epithelial cells was responsible for resistance to H. pylori CagA-dependent pathogenic activities, and confirms the important role for the T4SS-dependent interaction of these receptors with H. pylori in the gastric epithelium.
Collapse
Affiliation(s)
- Nicole Tegtmeyer
- 1Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Tabita Denisia Ghete
- 1Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Verena Schmitt
- 2Medical Faculty, Institute of Anatomy, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Torsten Remmerbach
- 3Division of Clinical and Experimental Oral Medicine, Department of OMF-Surgery, Leipzig University Hospital, University of Leipzig, Leipzig, Germany
| | - Maria Celeste C Cortes
- 4Center for Basic Science Research (CBSR), Research and Biotechnology (R&B), St. Luke's Medical Center, Quezon City, Philippines
| | - Edgardo M Bondoc
- 5Institute for Digestive and Liver Diseases, St. Luke's Medical Center, Quezon City, Philippines
| | - Hans-Ludwig Graf
- 6Department of Oral, Maxillary, Facial and Reconstructive Plastic Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Bernhard B Singer
- 2Medical Faculty, Institute of Anatomy, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Christian Hirsch
- 7Department of Paediatric Dentistry, University School of Dental Medicine, University of Leipzig, Leipzig, Germany
| | - Steffen Backert
- 1Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen, Staudtstrasse 5, 91058 Erlangen, Germany
| |
Collapse
|
13
|
Ansari S, Yamaoka Y. Helicobacter pylori Virulence Factors Exploiting Gastric Colonization and its Pathogenicity. Toxins (Basel) 2019; 11:E677. [PMID: 31752394 PMCID: PMC6891454 DOI: 10.3390/toxins11110677] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori colonizes the gastric epithelial cells of at least half of the world's population, and it is the strongest risk factor for developing gastric complications like chronic gastritis, ulcer diseases, and gastric cancer. To successfully colonize and establish a persistent infection, the bacteria must overcome harsh gastric conditions. H. pylori has a well-developed mechanism by which it can survive in a very acidic niche. Despite bacterial factors, gastric environmental factors and host genetic constituents together play a co-operative role for gastric pathogenicity. The virulence factors include bacterial colonization factors BabA, SabA, OipA, and HopQ, and the virulence factors necessary for gastric pathogenicity include the effector proteins like CagA, VacA, HtrA, and the outer membrane vesicles. Bacterial factors are considered more important. Here, we summarize the recent information to better understand several bacterial virulence factors and their role in the pathogenic mechanism.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Microbiology, Chitwan Medical College and Teaching Hospital, Bharatpur 44200, Chitwan, Nepal;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
- Global Oita Medical Advanced Research Center for Health, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, 2002 Holcombe Blvd., Houston, TX 77030, USA
- Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabaru, Sabah 88400, Malaysia
| |
Collapse
|
14
|
Lin S, Zhang Y, Hu Y, Yang B, Cui J, Huang J, Wang JM, Xing R, Lu Y. Epigenetic downregulation of MUC17 by H. pylori infection facilitates NF-κB-mediated expression of CEACAM1-3S in human gastric cancer. Gastric Cancer 2019; 22:941-954. [PMID: 30778796 PMCID: PMC8320707 DOI: 10.1007/s10120-019-00932-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Helicobacter pylori invades the mucosal barrier and infects the mucins of gastric epithelial cells. However, whether gastric carcinogenesis caused by H. pylori infection involves the membrane-bound mucins is unclear. This study explored the role of mucin 17 (MUC17) in gastric cancer (GC) associated with H. pylori infection. METHODS The expression of MUC17 and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) was examined in human GC cells and tissues with H. pylori infection. Gain- and loss-of-function assays were performed to assess the role of MUC17 in regulating CEACAM1 in H. pylori-infected GC cells. RESULTS MUC17 was downregulated in H. pylori-infected GC cells and tissues in association with poor survival of GC patients. Downregulation of MUC17 was attributable to MUC17 promoter methylation mediated by DNA methyltransferase 1 (DNMT1) H. pylori-enhanced GC cell proliferation and colony formation associated with MUC17 downregulation. Gain- and loss-of-function assays showed that MUC17 inhibited the H. pylori-enhanced GC cell growth by preventing the translocation of H. pylori CagA into GC cells. Moreover, MUC17 downregulated the expression of CEACAM1 variant 3S (CEACAM1-3S) in GC cells and tissues with H. pylori infection. Additionally, MUC17 downregulated CEACAM1 promoter activity via attenuation of NF-κB activation in GC cells. CONCLUSIONS MUC17 was epigenetically downregulated in GC with H. pylori infection. MUC17 inhibited H. pylori CagA translocation via attenuation of NF-κB-mediated expression of CEACAM1-3S in GC cells. Thus, MUC17 may serve as a valuable prognostic biomarker for H. pylori-associated GC.
Collapse
Affiliation(s)
- Shuye Lin
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, People’s Republic of China
| | - Yaping Zhang
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, People’s Republic of China
| | - Yingqi Hu
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, People’s Republic of China
| | - Bing Yang
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, People’s Republic of China
| | - Jiantao Cui
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, People’s Republic of China
| | - Jiaqiang Huang
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, 3 Shangyuancun, Haidian District, Beijing 100044, People’s Republic of China,Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Rui Xing
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, People’s Republic of China
| | - Youyong Lu
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, People’s Republic of China
| |
Collapse
|
15
|
Gur C, Maalouf N, Gerhard M, Singer BB, Emgård J, Temper V, Neuman T, Mandelboim O, Bachrach G. The Helicobacter pylori HopQ outermembrane protein inhibits immune cell activities. Oncoimmunology 2019; 8:e1553487. [PMID: 30906650 DOI: 10.1080/2162402x.2018.1553487] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/30/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
We previously showed that the colorectal cancer colonizing bacterium Fusobacterium nucleatum protects tumors from immune cell attack via binding of the fusbacterial Fap2 outer-membrane protein to TIGIT, a checkpoint inhibitory receptor expressed on T cells and NK cells. Helicobacter pylori, the causative agent for peptic ulcer disease, is associated with the development of gastric adenocarcinoma and MALT lymphoma. The HopQ outer-membrane adhesin of H. pylori was recently shown to bind carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) including CEACAM1, an inhibitory receptor expressed mainly by activated T and NK cells. Here we investigated the possibility that similar to Fap2, HopQ can also inhibit immune cell activities by interacting with CEACAM1. We used several approaches to confirm that HopQ indeed interacts with CEACAM1, and show that CEACAM1-mediated activation by HopQ, may inhibit NK and T cell functions.
Collapse
Affiliation(s)
- Chamutal Gur
- The Lautenberg center for immunology and cancer research, The Hebrew University Hadassah Medical School, Institute for Medical Research Israel-Canada (IMRIC), Jerusalem, Israel
| | - Naseem Maalouf
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Markus Gerhard
- Immunology and Hygiene, Institute for Medical Microbiology, Technische Universität München, Munich, Germany
| | | | - Johanna Emgård
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Violeta Temper
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tzahi Neuman
- Pathology department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg center for immunology and cancer research, The Hebrew University Hadassah Medical School, Institute for Medical Research Israel-Canada (IMRIC), Jerusalem, Israel
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
16
|
Tegtmeyer N, Harrer A, Schmitt V, Singer BB, Backert S. Expression of CEACAM1 or CEACAM5 in AZ-521 cells restores the type IV secretion deficiency for translocation of CagA byHelicobacter pylori. Cell Microbiol 2018; 21:e12965. [DOI: 10.1111/cmi.12965] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Nicole Tegtmeyer
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen; Erlangen Germany
| | - Aileen Harrer
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen; Erlangen Germany
| | - Verena Schmitt
- Medical Faculty, Institute of Anatomy; University of Duisburg-Essen; Essen Germany
| | - Bernhard B. Singer
- Medical Faculty, Institute of Anatomy; University of Duisburg-Essen; Essen Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen; Erlangen Germany
| |
Collapse
|
17
|
Zhao Q, Busch B, Jiménez-Soto LF, Ishikawa-Ankerhold H, Massberg S, Terradot L, Fischer W, Haas R. Integrin but not CEACAM receptors are dispensable for Helicobacter pylori CagA translocation. PLoS Pathog 2018; 14:e1007359. [PMID: 30365569 PMCID: PMC6231679 DOI: 10.1371/journal.ppat.1007359] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/12/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023] Open
Abstract
Translocation of the Helicobacter pylori (Hp) cytotoxin-associated gene A (CagA) effector protein via the cag-Type IV Secretion System (cag-T4SS) into host cells is a hallmark of infection with Hp and a major risk factor for severe gastric diseases, including gastric cancer. To mediate the injection of CagA, Hp uses a membrane-embedded syringe-like molecular apparatus extended by an external pilus-like rod structure that binds host cell surface integrin heterodimers. It is still largely unclear how the interaction of the cag-T4SS finally mediates translocation of the CagA protein into the cell cytoplasm. Recently certain carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), acting as receptor for the Hp outer membrane adhesin HopQ, have been identified to be involved in the process of CagA host cell injection. Here, we applied the CRISPR/Cas9-knockout technology to generate defined human gastric AGS and KatoIII integrin knockout cell lines. Although confocal laser scanning microscopy revealed a co-localization of Hp and β1 integrin heterodimers on gastric epithelial cells, Hp infection studies using the quantitative and highly sensitive Hp β-lactamase reporter system clearly show that neither β1 integrin heterodimers (α1β1, α2β1 or α5β1), nor any other αβ integrin heterodimers on the cell surface are essential for CagA translocation. In contrast, deletion of the HopQ adhesin in Hp, or the simultaneous knockout of the receptors CEACAM1, CEACAM5 and CEACAM6 in KatoIII cells abolished CagA injection nearly completely, although bacterial binding was only reduced to 50%. These data provide genetic evidence that the cag-T4SS-mediated interaction of Hp with cell surface integrins on human gastric epithelial cells is not essential for CagA translocation, but interaction of Hp with CEACAM receptors is facilitating CagA translocation by the cag-T4SS of this important microbe.
Collapse
Affiliation(s)
- Qing Zhao
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Benjamin Busch
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Luisa Fernanda Jiménez-Soto
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | | | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
| | - Laurent Terradot
- UMR 5086 Molecular Microbiology and Structural Biochemistry, Institut de Biologie et Chimie des Protéines, CNRS-Université de Lyon, France
| | - Wolfgang Fischer
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Rainer Haas
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
- German Center for Infection Research (DZIF), Munich Site, Munich, Germany
| |
Collapse
|