1
|
Tian X, Ma W, Yusuf B, Su B, Hu J, Zhang T. Assessment of the Efficacy of the Antihistamine Drug Rupatadine Used Alone or in Combination against Mycobacteria. Pharmaceutics 2024; 16:1049. [PMID: 39204394 PMCID: PMC11359651 DOI: 10.3390/pharmaceutics16081049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The emergence of drug-resistant mycobacteria has rendered many clinical drugs and regimens ineffective, imposing significant economic and healthcare burden on individuals and society. Repurposing drugs intended for treating other diseases is a time-saving, cost-effective, and efficient approach for identifying excellent antimycobacterial candidates or lead compounds. This study is the first to demonstrate that rupatadine (RTD), a drug used to treat allergic rhinitis, possesses excellent activity against mycobacteria without detectable resistance, particularly Mycobacterium tuberculosis and Mycobacterium marinum, with a minimal inhibitory concentration as low as 3.13 µg/mL. Furthermore, RTD exhibited moderate activity against nonreplicating M. tuberculosis with minimal inhibitory concentrations lower than drugs targeting the cell wall, suggesting that RTD has great potential to be modified and used for the treatment of nonreplicating M. tuberculosis. Additionally, RTD exhibits partial synergistic effects when combined with clofazimine, pretomanid, and TB47 against M. tuberculosis, providing the theoretical foundation for the development of treatment regimens. Transcriptomic profiling leads us to speculate that eight essential genes may be the targets of RTD or may be closely associated with mycobacterial resistance to RTD. In summary, RTD may be a promising hit for further antimycobacterial drug or regimen optimization, especially in the case of nonreplicating mycobacteria.
Collapse
Affiliation(s)
- Xirong Tian
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (X.T.); (W.M.); (B.Y.)
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Wanli Ma
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (X.T.); (W.M.); (B.Y.)
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Buhari Yusuf
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (X.T.); (W.M.); (B.Y.)
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Biyi Su
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China;
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China;
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (X.T.); (W.M.); (B.Y.)
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China;
| |
Collapse
|
2
|
Ranaweera CB, Shiva S, Madesh S, Chauhan D, Ganta RR, Zolkiewski M. Biochemical characterization of ClpB and DnaK from Anaplasma phagocytophilum. Cell Stress Chaperones 2024; 29:540-551. [PMID: 38908470 PMCID: PMC11268196 DOI: 10.1016/j.cstres.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Anaplasma phagocytophilum is an intracellular tick-transmitted bacterial pathogen that infects neutrophils in mammals and causes granulocytic anaplasmosis. In this study, we investigated the molecular chaperones ClpB and DnaK from A. phagocytophilum. In Escherichia coli, ClpB cooperates with DnaK and its co-chaperones DnaJ and GrpE in ATP-dependent reactivation of aggregated proteins. Since ClpB is not produced in metazoans, it is a promising target for developing antimicrobial therapies, which generates interest in studies on that chaperone's role in pathogenic bacteria. We found that ClpB and DnaK are transcriptionally upregulated in A. phagocytophilum 3-5 days after infection of human HL-60 and tick ISE6 cells, which suggests an essential role of the chaperones in supporting the pathogen's intracellular life cycle. Multiple sequence alignments show that A. phagocytophilum ClpB and DnaK contain all structural domains that were identified in their previously studied orthologs from other bacteria. Both A. phagocytophilum ClpB and DnaK display ATPase activity, which is consistent with their participation in the ATP-dependent protein disaggregation system. However, despite a significant sequence similarity between the chaperones from A. phagocytophilum and those from E. coli, the former were not as effective as their E. coli orthologs during reactivation of aggregated proteins in vitro and in supporting the survival of E. coli cells under heat stress. We conclude that the A. phagocytophilum chaperones might have evolved with distinct biochemical properties to maintain the integrity of pathogenic proteins under unique stress conditions of an intracellular environment of host cells.
Collapse
Affiliation(s)
- Chathurange B Ranaweera
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Sunitha Shiva
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Swetha Madesh
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Deepika Chauhan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Roman R Ganta
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
3
|
Singh D, Tripathi P, Sharma R, Grover S, Batra JK. Role of a substrate binding pocket in the amino terminal domain of Mycobacterium tuberculosis caseinolytic protease B (ClpB) in its function. J Biomol Struct Dyn 2024; 42:6189-6199. [PMID: 37418201 DOI: 10.1080/07391102.2023.2232032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis when infects the host encounters several stresses within the host, resulting in aggregation of its proteins. To resolve this problem Mtb uses chaperones to either repair the damage or degrade the aggregated proteins. Mtb caseinolytic protein B (ClpB) helps in the prevention of aggregation and also resolubilization of aggregated proteins in bacteria, which is important for the survival of Mtb in the host. To function optimally, ClpB associates with its co-partners DnaK, DnaJ, and GrpE. The role of N-terminal domain (NTD) of Mtb ClpB in its function is not well understood. In this context, we investigated the interaction of three substrate mimicking peptides with the NTD of Mtb ClpB in silico. A substrate binding pocket, within the NTD of ClpB comprising of residues L136, R137, E138, K142, R144, R148, V149, Y158, and Y162 forming an ɑ-helix was thus identified. The residues L136 and R137 of the ɑ-helix were found to be important for the interaction of DnaK to ClpB. Further, nine single alanine recombinant variants of the identified residues were generated. As compared to the wild-type Mtb ClpB all the Mtb ClpB variants generated in this study were found to have reduced ATPase and protein refolding activity indicating the importance of the substrate binding pocket in ClpB function. The study demonstrates that the NTD of Mtb ClpB is important for its substrate interaction activity, and the substrate binding pocket identified in this study plays a crucial role in this interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Digvijay Singh
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | | | - Rahul Sharma
- Department of Molecular Medicine, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Sonam Grover
- Department of Molecular Medicine, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Janendra K Batra
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- ICMR-National Institute of Pathology, Safdarjung Hospital Complex, New Delhi, India
| |
Collapse
|
4
|
Bohl V, Mogk A. When the going gets tough, the tough get going-Novel bacterial AAA+ disaggregases provide extreme heat resistance. Environ Microbiol 2024; 26:e16677. [PMID: 39039821 DOI: 10.1111/1462-2920.16677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Heat stress can lead to protein misfolding and aggregation, potentially causing cell death due to the loss of essential proteins. Bacteria, being particularly exposed to environmental stress, are equipped with disaggregases that rescue these aggregated proteins. The bacterial Hsp70 chaperone DnaK and the ATPase associated with diverse cellular activities protein ClpB form the canonical disaggregase in bacteria. While this combination operates effectively during physiological heat stress, it is ineffective against massive aggregation caused by temperature-based sterilization protocols used in the food industry and clinics. This leaves bacteria unprotected against these thermal processes. However, bacteria that can withstand extreme, man-made stress conditions have emerged. These bacteria possess novel ATPase associated with diverse cellular activities disaggregases, ClpG and ClpL, which are key players in extreme heat resistance. These disaggregases, present in selected Gram-negative or Gram-positive bacteria, respectively, function superiorly by exhibiting increased thermal stability and enhanced threading power compared to DnaK/ClpB. This enables ClpG and ClpL to operate at extreme temperatures and process large and tight protein aggregates, thereby contributing to heat resistance. The genes for ClpG and ClpL are often encoded on mobile genomic islands or conjugative plasmids, allowing for their rapid spread among bacteria via horizontal gene transfer. This threatens the efficiency of sterilization protocols. In this review, we describe the various bacterial disaggregases identified to date, characterizing their commonalities and the specific features that enable these novel disaggregases to provide stress protection against extreme stress conditions.
Collapse
Affiliation(s)
- Valentin Bohl
- Faculty of Biosciences, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Axel Mogk
- Faculty of Biosciences, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| |
Collapse
|
5
|
Luo G, Ming T, Yang L, He L, Tao T, Wang Y. Modulators targeting protein-protein interactions in Mycobacterium tuberculosis. Microbiol Res 2024; 284:127675. [PMID: 38636239 DOI: 10.1016/j.micres.2024.127675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), mainly transmitted through droplets to infect the lungs, and seriously affecting patients' health and quality of life. Clinically, anti-TB drugs often entail side effects and lack efficacy against resistant strains. Thus, the exploration and development of novel targeted anti-TB medications are imperative. Currently, protein-protein interactions (PPIs) offer novel avenues for anti-TB drug development, and the study of targeted modulators of PPIs in M. tuberculosis has become a prominent research focus. Furthermore, a comprehensive PPI network has been constructed using computational methods and bioinformatics tools. This network allows for a more in-depth analysis of the structural biology of PPIs and furnishes essential insights for the development of targeted small-molecule modulators. Furthermore, this article provides a detailed overview of the research progress and regulatory mechanisms of PPI modulators in M. tuberculosis, the causative agent of TB. Additionally, it summarizes potential targets for anti-TB drugs and discusses the prospects of existing PPI modulators.
Collapse
Affiliation(s)
- Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luchuan Yang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Lei He
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Tao Tao
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Yanmei Wang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China.
| |
Collapse
|
6
|
Yang L, Wu Z, Ma TY, Zeng H, Chen M, Zhang YA, Zhou Y. Identification of ClpB, a molecular chaperone involved in the stress tolerance and virulence of Streptococcus agalactiae. Vet Res 2024; 55:60. [PMID: 38750480 PMCID: PMC11094935 DOI: 10.1186/s13567-024-01318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/06/2024] [Indexed: 05/19/2024] Open
Abstract
Bacterial ClpB is an ATP-dependent disaggregate that belongs to the Hsp100/Clp family and facilitates bacterial survival under hostile environmental conditions. Streptococcus agalactiae, which is regarded as the major bacterial pathogen of farmed Nile tilapia (Oreochromis niloticus), is known to cause high mortality and large economic losses. Here, we report a ClpB homologue of S. agalactiae and explore its functionality. S. agalactiae with a clpB deletion mutant (∆clpB) exhibited defective tolerance against heat and acidic stress, without affecting growth or morphology under optimal conditions. Moreover, the ΔclpB mutant exhibited reduced intracellular survival in RAW264.7 cells, diminished adherence to the brain cells of tilapia, increased sensitivity to leukocytes from the head kidney of tilapia and whole blood killing, and reduced mortality and bacterial loads in a tilapia infection assay. Furthermore, the reduced virulence of the ∆clpB mutant was investigated by transcriptome analysis, which revealed that deletion of clpB altered the expression levels of multiple genes that contribute to the stress response as well as certain metabolic pathways. Collectively, our findings demonstrated that ClpB, a molecular chaperone, plays critical roles in heat and acid stress resistance and virulence in S. agalactiae. This finding provides an enhanced understanding of the functionality of this ClpB homologue in gram-positive bacteria and the survival strategy of S. agalactiae against immune clearance during infection.
Collapse
Affiliation(s)
- Lan Yang
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Zhihao Wu
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Tian-Yu Ma
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Hui Zeng
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Ming Chen
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510000, China.
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510000, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture,, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
| |
Collapse
|
7
|
Singh D, Sharma R, Jamal S, Agarwal M, Grover S, Batra JK. Identification and characterization of repurposed small molecule inhibitors of Mycobacterium tuberculosis caseinolytic protease B (ClpB) as anti-mycobacterials. Int J Biol Macromol 2024; 264:130614. [PMID: 38447849 DOI: 10.1016/j.ijbiomac.2024.130614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Mycobacterium tuberculosis (Mtb) caseinolytic protease B (ClpB) is a chaperone possessing a unique ability to resolubilize the aggregated proteins in vivo. ClpB has been shown to be important for the survival of Mtb within the host. Thus, it appears to be a promising target to develop new therapeutic molecules against tuberculosis. In this study, we have screened FDA approved compounds in silico to identify inhibitors against Mtb ClpB. In our screen, several compounds interacted with ClpB. The top four compounds, namely framycetin, gentamicin, ribostamycin and tobramycin showing the highest binding energy were selected for further investigation. MD simulations and tryptophan-based quenching of ClpB-drug complexes established that the selected inhibitors stably interacted with the target protein. The inhibitor and protein complexes were found to be stabilized by hydrogen bonding, and hydrophobic interactions. Although, the compounds did not affect the ATPase activity of ClpB significantly, the protein resolubilization activity of ClpB was remarkably reduced in their presence. All four compounds potently inhibited the growth of Mtb H37Ra. The antimycobacterial activity of the compounds appears to be due the inhibition of functional ClpB oligomer formation, in turn affecting its chaperonic activity.
Collapse
Affiliation(s)
- Digvijay Singh
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rahul Sharma
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Salma Jamal
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Meetu Agarwal
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Sonam Grover
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Janendra K Batra
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India; ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India.
| |
Collapse
|
8
|
Song D, Qi X, Huang Y, Jia A, Liang Y, Man C, Yang X, Jiang Y. Comparative proteomics reveals the antibiotic resistance and virulence of Cronobacter isolated from powdered infant formula and its processing environment. Int J Food Microbiol 2023; 407:110374. [PMID: 37678039 DOI: 10.1016/j.ijfoodmicro.2023.110374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/31/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Cronobacter species are opportunistic foodborne pathogens that can cause neonatal meningitis, sepsis, and necrotizing enterocolitis. In this genus, certain level strains have high mortality to infant (Cronobacter sakazakii and Cronobacter malonaticus) and antibiotic tolerance. Cronobacter has strong environmental tolerance (acid resistance, high temperature resistance, UV resistance, antibiotic resistance, etc.) and can survive in a variety of environments. It has been isolated in various production environments and products in several countries. However, the relationships between Cronobacter antibiotic tolerance and virulence remain unclear, especially at the molecular level. In this study, 96 strains of Cronobacter were isolated from powdered infant formula and its processing environment and screened for antibiotic tolerance, and proteomic maps of the representative strains of Cronobacter with antibiotic tolerance were generated by analyzing proteomics data using multiple techniques to identify protein that are implicated in Cronobacter virulence and antibiotic resistance. The increase in antibiotic tolerance of Cronobacter had a certain increase in the production of enterotoxin and hemolysin. Only triple tolerated Cronobacter sakazakii decreased the utilization of sialic acid. A total of 16,131 intracellular proteins were detected in eight representative strains, and different proteomes were present in strains with different antibiotic tolerance, including 56 virulence-related proteins. Multiple virulence proteins regulated by unknown genes were also found in the eight isolated representative strains.
Collapse
Affiliation(s)
- Danliangmin Song
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Xuehe Qi
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China.
| | - Yan Huang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Ai Jia
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Yaqi Liang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China.
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China.
| | - Yujun Jiang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China.
| |
Collapse
|
9
|
Skoog EJ, Fournier GP, Bosak T. Assessing the Influence of HGT on the Evolution of Stress Responses in Microbial Communities from Shark Bay, Western Australia. Genes (Basel) 2023; 14:2168. [PMID: 38136990 PMCID: PMC10742547 DOI: 10.3390/genes14122168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pustular microbial mats in Shark Bay, Western Australia, are modern analogs of microbial systems that colonized peritidal environments before the evolution of complex life. To understand how these microbial communities evolved to grow and metabolize in the presence of various environmental stresses, the horizontal gene transfer (HGT) detection tool, MetaCHIP, was used to identify the horizontal transfer of genes related to stress response in 83 metagenome-assembled genomes from a Shark Bay pustular mat. Subsequently, maximum-likelihood phylogenies were constructed using these genes and their most closely related homologs from other environments in order to determine the likelihood of these HGT events occurring within the pustular mat. Phylogenies of several stress-related genes-including those involved in response to osmotic stress, oxidative stress and arsenic toxicity-indicate a potentially long history of HGT events and are consistent with these transfers occurring outside of modern pustular mats. The phylogeny of a particular osmoprotectant transport gene reveals relatively recent adaptations and suggests interactions between Planctomycetota and Myxococcota within these pustular mats. Overall, HGT phylogenies support a potentially broad distribution in the relative timing of the HGT events of stress-related genes and demonstrate ongoing microbial adaptations and evolution in these pustular mat communities.
Collapse
Affiliation(s)
- Emilie J. Skoog
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Gregory P. Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
| |
Collapse
|
10
|
Yu F, Dong C, Zhang Y, Che R, Xie C, Liu Y, Zhang Z, Li L, Chen X, Cai X, Wang G, Li Y. GrpE and ComD contribute to the adherence, biofilm formation, and pathogenicity of Streptococcus suis. Arch Microbiol 2023; 205:159. [PMID: 37005968 DOI: 10.1007/s00203-023-03503-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023]
Abstract
Streptococcus suis is a major bacterial pathogen of swine and an emerging zoonotic agent that has to date resulted in substantial economic losses to the swine industry worldwide, and can cause persistent infection by forming biofilms. GrpE and histidine protein kinase ComD are important proteins implicated in the pathogenicity of S. suis, although whether they play roles in adhesion and biofilm formation has yet to be sufficiently clarified. In this study, we constructed grpE and comD deletion strains of S. suis by homologous recombination, and examined their cell adhesion and biofilm formation capacities compared with those of the wild-type strain. The pathogenicity of the grpE and comD deletion strains was evaluated using a mouse infection model, which revealed that compared with the wild-type, these deletion strains induced milder symptoms and lower bacteremia, as well as comparatively minor organ (brain, spleen, liver, and lung) lesions, in the infected mice. Moreover, the deletion of grpE and comD significantly reduced the pro-inflammatory cytokine (IL-6, IL-1β, and TNF-α) induction capacity of S. suis. Collectively, the findings of this study indicate that the GrpE and ComD proteins of Streptococcus suis play key roles in the adherence to PK-15 cells and the formation of biofilms, thereby contributing to the virulence of this pathogen.
Collapse
Affiliation(s)
- Fei Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chunliu Dong
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yuefeng Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ruixiang Che
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163000, China
| | - Chunmei Xie
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanyan Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhiyun Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Lu Li
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Xueying Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150030, China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150030, China.
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271000, China.
| | - Yanhua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Dhungel L, Bonner R, Cook M, Henson D, Moulder T, Benbow ME, Jordan H. Impact of Temperature and Oxygen Availability on Gene Expression Patterns of Mycobacterium ulcerans. Microbiol Spectr 2023; 11:e0496822. [PMID: 36912651 PMCID: PMC10100886 DOI: 10.1128/spectrum.04968-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/29/2023] [Indexed: 03/14/2023] Open
Abstract
Buruli ulcer disease is a neglected tropical disease caused by the environmental pathogen Mycobacterium ulcerans. The M. ulcerans major virulence factor is mycolactone, a lipid cytotoxic compound whose genes are carried on a plasmid. Although an exact reservoir and mode(s) of transmission are unknown, data provide evidence of both. First, Buruli ulcer incidence and M. ulcerans presence have been linked to slow-moving water with low oxygen. M. ulcerans has also been suggested to be sensitive to UV due to termination in crtI, encoding a phytoene dehydrogenase, required for carotenoid production. Further, M. ulcerans has been shown to cause disease following puncture but not when introduced to open abrasion sites, suggesting that puncture is necessary for transmission and pathology. Despite these findings, the function and modulation of mycolactone and other genes in response to dynamic abiotic conditions such as UV, temperature, and oxygen have not been shown. In this study, we investigated modulation of mycolactone and other genes on exposure to changing UV and oxygen microenvironmental conditions. Mycolactone expression was downregulated on exposure to the single stress high temperature and did not change significantly with exposure to UV; however, it was upregulated when exposed to microaerophilic conditions. Mycolactone expression was downregulated under combined stresses of high temperature and low oxygen, but there was upregulation of several stress response genes. Taken together, results suggest that temperature shapes M. ulcerans metabolic response more so than UV exposure or oxygen requirements. These data help to define the environmental niche of M. ulcerans and metabolic responses during initial human infection. IMPORTANCE Buruli ulcer is a debilitating skin disease caused by the environmental pathogen Mycobacterium ulcerans. M. ulcerans produces a toxic compound, mycolactone, which leads to tissue necrosis and ulceration. Barriers to preventing Buruli ulcer include an incomplete understanding of M. ulcerans reservoirs, how the pathogen is transmitted, and under what circumstances mycolactone and other M. ulcerans genes are expressed and produced in its natural environment and in the host. We conducted a study to investigate M. ulcerans gene expression under several individual or combined abiotic conditions. Our data showed that mycolactone expression was downregulated under combined stresses of high temperature and low oxygen but there was upregulation of several stress response genes. These data are among only a few studies measuring modulation of mycolactone and other M. ulcerans genes that could be involved in pathogen fitness in its natural environment and virulence while within the host.
Collapse
Affiliation(s)
- Laxmi Dhungel
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Raisa Bonner
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Meagan Cook
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Duncan Henson
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Trent Moulder
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - M. Eric Benbow
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- AgBioResearch, Michigan State University, East Lansing, Michigan, USA
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, Michigan, USA
| | - Heather Jordan
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
12
|
Du Z, Zhang M, Qin Y, Zhao L, Huang L, Xu X, Yan Q. The role and mechanisms of the two-component system EnvZ/OmpR on the intracellular survival of Aeromonas hydrophila. JOURNAL OF FISH DISEASES 2022; 45:1609-1621. [PMID: 35822274 DOI: 10.1111/jfd.13684] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas hydrophila infections are common in aquaculture. Our previous studies found that the A. hydrophila B11 strain can survive in fish macrophages for at least 24 h and the two-component system EnvZ/OmpR may be involved in intracellular survival. To reveal the role and mechanism of the two-component system EnvZ/OmpR in intracellular survival of A. hydrophila, the genes of envZ/ompR were silenced by shRNAi. The results showed that the survival rates of the envZ-RNAi and ompR-RNAi strains were only 2.05% and 3.75%, respectively, which were decreased by 91% and 83.6% compared with that of the wild-type strain. The escape ability of envZ-RNAi and ompR-RNAi was also decreased by 51.4% and 19.7%, respectively. The comparative transcriptome analysis revealed that the functional genes directly related to bacterial intracellular survival mainly included the genes related to anti-stress capacity, and the genes related to Zn2+ and Mg2+ transport. Further research confirmed that two-component system EnvZ/OmpR can regulate the expression of the important molecular chaperones, such as groEL, htpG, dnaK, clpB and grpE. The expression of these molecular chaperones in wild-type strain was up-regulated with the increase in H2 O2 concentrations, while the expression of these molecular chaperones in silent strains did not change significantly. Cells that phagocytosed wild-type strain had higher ROS content than cells that phagocytosed silent strains. Two-component system EnvZ/OmpR could also regulate zinc transporter (znuA, znuB, znuC) and zinc efflux protein (zntA) to maintain zinc homeostasis in cells, thus affecting the ability of bacteria to survive in phagocytes. Moreover, two-component system EnvZ/OmpR could affect the growth and intracellular survival of A. hydrophila by regulating the expression of MgtA, MgtC and MgtE and participating in bacterial Mg2+ homeostasis in fish macrophages.
Collapse
Affiliation(s)
- Ziyan Du
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Mengmeng Zhang
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| |
Collapse
|
13
|
Blancá B, Hayes JA, Surmann K, Hugo V, Hentschker C, Lamberti Y, Völker U, Rodriguez ME. Bordetella pertussis outer membrane vesicles as virulence factor vehicles that influence bacterial interaction with macrophages. Pathog Dis 2022; 80:6655986. [PMID: 35927587 DOI: 10.1093/femspd/ftac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023] Open
Abstract
Gram-negative pathogenic bacteria constitutively shed outer membrane vesicles (OMVs) which play a significant role in the host-pathogen interaction, eventually determining the outcome of the infection. We previously found that Bordetella pertussis, the etiological agent of whooping cough, survives the innate interaction with human macrophages remaining alive inside these immune cells. Adenylate cyclase (CyaA), one of the main toxins of this pathogen, was found involved in the modulation of the macrophage defense response, eventually promoting bacterial survival within the cells. We here investigated whether B. pertussis OMVs, loaded with most of the bacterial toxins and CyaA among them, modulate the macrophage response to the bacterial infection. We observed that the pre-incubation of macrophages with OMVs led to a decreased macrophage defense response to the encounter with the bacteria, in a CyaA dependent way. Our results suggest that CyaA delivered by B. pertussis OMVs dampens macrophages protective function by decreasing phagocytosis and the bactericidal capability of these host cells. By increasing the chances of bacterial survival to the innate encounter with the macrophages, B. pertussis OMVs might play a relevant role in the course of infection, promoting bacterial persistence within the host and eventually, shaping the whole infection process.
Collapse
Affiliation(s)
- Bruno Blancá
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| | - Jimena Alvarez Hayes
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Valdez Hugo
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| | - Christian Hentschker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Yanina Lamberti
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - María Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| |
Collapse
|
14
|
García-Morales L, Del Portillo P, Anzola JM, Ares MA, Helguera-Repetto AC, Cerna-Cortes JF, Méndez-Tenorio A, García MJ, Otal I, Martín C, Gonzalez-y-Merchand JA, Rivera-Gutiérrez S. The Lack of the TetR-Like Repressor Gene BCG_2177c (Rv2160A) May Help Mycobacteria Overcome Intracellular Redox Stress and Survive Longer Inside Macrophages When Surrounded by a Lipid Environment. Front Cell Infect Microbiol 2022; 12:907890. [PMID: 35873160 PMCID: PMC9301340 DOI: 10.3389/fcimb.2022.907890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Mycobacteria, like other microorganisms, survive under different environmental variations by expressing an efficient adaptive response, oriented by regulatory elements, such as transcriptional repressors of the TetR family. These repressors in mycobacteria also appear to be related to cholesterol metabolism. In this study, we have evaluated the effect of a fatty acid (oleic–palmitic–stearic)/cholesterol mixture on some phenotypic and genotypic characteristics of a tetR-mutant strain (BCG_2177c mutated gene) of M. bovis BCG, a homologous of Rv2160A of M. tuberculosis. In order to accomplish this, we have analyzed the global gene expression of this strain by RNA-seq and evaluated its neutral-lipid storage capacity and potential to infect macrophages. We have also determined the macrophage response by measuring some pro- and anti-inflammatory cytokine expressions. In comparison with wild-type microorganisms, we showed that the mutation in the BCG_2177c gene did not affect the growth of M. bovis BCG in the presence of lipids but it probably modified the structure/composition of its cell envelope. Compared to with dextrose, an overexpression of the transcriptome of the wild-type and mutant strains was observed when these mycobacteria were cultured in lipids, mainly at the exponential phase. Twelve putative intracellular redox balance maintenance genes and four others coding for putative transcriptional factors (including WhiB6 and three TetR-like) were the main elements repeatedly overexpressed when cultured in the presence of lipids. These genes belonged to the central part of what we called the “genetic lipid signature” for M. bovis BCG. We have also found that all these mycobacteria genotypic changes affected the outcome of BCG-infected macrophages, being the mutant strain most adapted to persist longer inside the host. This high persistence result was also confirmed when mutant-infected macrophages showed overexpression of the anti-inflammatory cytokine TGF-β versus pro-inflammatory cytokines. In summary, the lack of this TetR-like repressor expression, within a lipid environment, may help mycobacteria overcome intracellular redox stress and survive longer inside their host.
Collapse
Affiliation(s)
- Lázaro García-Morales
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Patricia Del Portillo
- Grupo de Biotecnología Molecular, Grupo de Bioinformática y Biología Computacional, Corporación CorpoGen, Bogotá, Colombia
| | - Juan M. Anzola
- Grupo de Biotecnología Molecular, Grupo de Bioinformática y Biología Computacional, Corporación CorpoGen, Bogotá, Colombia
- Facultad de Ingeniería y Ciencias Básicas, Universidad Central, Bogotá, D.C., Colombia
| | - Miguel A. Ares
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Addy C. Helguera-Repetto
- Departamento de Inmuno-Bioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Jorge F. Cerna-Cortes
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Alfonso Méndez-Tenorio
- Laboratorio de Bioinformática y Biotecnología Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María J. García
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Otal
- Grupo de Genética de Micobacterias, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- Centro de Investigación Biomédica en Red (CIBER) Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- Centro de Investigación Biomédica en Red (CIBER) Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Jorge A. Gonzalez-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- *Correspondence: Jorge A. Gonzalez-y-Merchand, ; Sandra Rivera-Gutiérrez,
| | - Sandra Rivera-Gutiérrez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- *Correspondence: Jorge A. Gonzalez-y-Merchand, ; Sandra Rivera-Gutiérrez,
| |
Collapse
|
15
|
Kuebutornye FKA, Lu Y, Wang Z, Mraz J. Functional annotation and complete genome analysis confirm the probiotic characteristics of Bacillus species isolated from the gut of Nile tilapia. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Single-Fluorescence ATP Sensor Based on Fluorescence Resonance Energy Transfer Reveals Role of Antibiotic-Induced ATP Perturbation in Mycobacterial Killing. mSystems 2022; 7:e0020922. [PMID: 35615956 PMCID: PMC9238375 DOI: 10.1128/msystems.00209-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The rapid emergence of multidrug-resistant/extensively drug-resistant tuberculosis (TB) is responsible for treatment failure in patients with TB and significantly endangers global public health. Recently, bioenergetics has become a new paradigm for anti-TB drug discovery and is based on the link between bacterial ATP levels and drug efficacy. A better understanding of the role of ATP fluctuations during antibiotic treatment may provide insight into antibiotic-mediated killing of mycobacteria. Here, we employed an advanced single-fluorescence FRET (fluorescence resonance energy transfer)-based ATP biosensor, ATPser, for the stable and convenient detection of intracellular ATP fluctuations in mycobacteria. This strategy correlated closely with the results obtained from conventional luminescence ATP assays, indicating the reliability of the system for bioenergetics analysis in mycobacteria. Moreover, the reporter strains expressing ATPser displayed obvious ATP changes when subjected to different stresses, such as starvation and ATP depletion. Interestingly, we observed that different antibiotics induced fluctuations in cellular ATP levels in individual cells of various magnitudes, revealing a strong connection between ATP fluctuations and drug efficacy. Furthermore, drug combinations accelerated ATP perturbation, resulting in increased cell death. We concluded that ATPser enabled real-time measurement of ATP at the single-cell level in mycobacteria, and monitoring ATP dynamics in drug-treated bacteria may shed light on novel treatment strategies. IMPORTANCE Bioenergetics has emerged as a new paradigm for antituberculosis (anti-TB) drug discovery, and the cellular ATP level is the core indicator reflecting bacterial metabolic homeostasis. Although several bulk assays have been designed for the measurement of cellular ATP content, a more convenient strategy is required for real-time ATP measurement of single viable cells. In this study, by combining the ε-subunit of Bacillus subtilis FoF1-ATP synthase with a circularly permuted green fluorescent protein [(cp)GFP], we constructed a FRET-based single-fluorescence ATP sensor, ATPser, for real-time single-cell ATP detection among a mycobacterial population. Using the ATPser, we designed different drug combinations containing components that have similar/opposite effects on ATP alternation. Our results demonstrated that increased cellular ATP fluctuations were associated with depletion of mycobacterial viability, while counteracting ATP fluctuations weakened the killing effect of the drug regime. Thus, potentially efficient drug combinations can be considered based on their similar effects on mycobacterial ATP levels, and ATPser may be a useful tool to study mycobacterial bioenergetics and to guide drug regime design.
Collapse
|
17
|
Mushtaq AU, Ådén J, Alam A, Sjöstedt A, Gröbner G. Backbone chemical shift assignment and dynamics of the N-terminal domain of ClpB from Francisella tularensis type VI secretion system. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:75-79. [PMID: 34985724 PMCID: PMC9068650 DOI: 10.1007/s12104-021-10062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The Hsp100 family member ClpB is a protein disaggregase which solubilizes and reactivates stress-induced protein aggregates in cooperation with the DnaK/Hsp70 chaperone system. In the pathogenic bacterium Francisella tularensis, ClpB is involved in type VI secretion system (T6SS) disassembly through depolymerization of the IglA-IglB sheath. This leads to recycling and reassembly of T6SS components and this process is essential for the virulence of the bacterium. Here we report the backbone chemical shift assignments and 15N relaxation-based backbone dynamics of the N-terminal substrate-binding domain of ClpB (1-156).
Collapse
Affiliation(s)
- Ameeq Ul Mushtaq
- Department of Chemistry, University of Umeå, 901 87, Umeå, Sweden
| | - Jörgen Ådén
- Department of Chemistry, University of Umeå, 901 87, Umeå, Sweden
| | - Athar Alam
- Department of Clinical Microbiology, University of Umeå, 901 87, Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology, University of Umeå, 901 87, Umeå, Sweden
| | - Gerhard Gröbner
- Department of Chemistry, University of Umeå, 901 87, Umeå, Sweden.
| |
Collapse
|
18
|
Willemse D, Moodley C, Mehra S, Kaushal D. Transcriptional Response of Mycobacterium tuberculosis to Cigarette Smoke Condensate. Front Microbiol 2021; 12:744800. [PMID: 34721344 PMCID: PMC8554204 DOI: 10.3389/fmicb.2021.744800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Smoking is known to be an added risk factor for tuberculosis (TB), with nearly a quarter of the TB cases attributed to cigarette smokers in the 22 countries with the highest TB burden. Many studies have indicated a link between risk of active TB and cigarette smoke. Smoking is also known to significantly decrease TB cure and treatment completion rate and increase mortality rates. Cigarette smoke contains thousands of volatile compounds including carcinogens, toxins, reactive solids, and oxidants in both particulate and gaseous phase. Yet, to date, limited studies have analyzed the impact of cigarette smoke components on Mycobacterium tuberculosis (Mtb), the causative agent of TB. Here we report the impact of cigarette smoke condensate (CSC) on survival, mutation frequency, and gene expression of Mtb in vitro. We show that exposure of virulent Mtb to cigarette smoke increases the mutation frequency of the pathogen and strongly induces the expression of the regulon controlled by SigH—a global transcriptional regulator of oxidative stress. SigH has previously been shown to be required for Mtb to respond to oxidative stress, survival, and granuloma formation in vivo. A high-SigH expression phenotype is known to be associated with greater virulence of Mtb. In patients with pulmonary TB who smoke, these changes may therefore play an important, yet unexplored, role in the treatment efficacy by potentially enhancing the virulence of tubercle bacilli.
Collapse
Affiliation(s)
- Danicke Willemse
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Chivonne Moodley
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States.,Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States.,Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
19
|
Teahan B, Ong E, Yang Z. Identification of Mycobacterium tuberculosis Antigens with Vaccine Potential Using a Machine Learning-Based Reverse Vaccinology Approach. Vaccines (Basel) 2021; 9:vaccines9101098. [PMID: 34696207 PMCID: PMC8538456 DOI: 10.3390/vaccines9101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB) is the leading cause of death of any single infectious agent, having led to 1.4 million deaths in 2019 alone. Moreover, an estimated one-quarter of the global population is latently infected with Mycobacterium tuberculosis (MTB), presenting a huge pool of potential future disease. Nonetheless, the only currently licensed TB vaccine fails to prevent the activation of latent TB infections (LTBI). These facts together illustrate the desperate need for a more effective TB vaccine strategy that can prevent both primary infection and the activation of LTBI. In this study, we employed a machine learning-based reverse vaccinology approach to predict the likelihood that each protein within the proteome of MTB laboratory reference strain H37Rv would be a protective antigen (PAg). The proteins predicted most likely to be a PAg were assessed for their belonging to a protein family of previously established PAgs, the relevance of their biological processes to MTB virulence and latency, and finally the immunogenic potential that they may provide in terms of the number of promiscuous epitopes within each. This study led to the identification of 16 proteins with the greatest vaccine potential for further in vitro and in vivo studies. It also demonstrates the value of computational methods in vaccine development.
Collapse
Affiliation(s)
- Blaine Teahan
- Epidemiology Department, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Edison Ong
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Zhenhua Yang
- Epidemiology Department, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA;
- Correspondence:
| |
Collapse
|
20
|
Park HE, Lee W, Shin MK, Shin SJ. Understanding the Reciprocal Interplay Between Antibiotics and Host Immune System: How Can We Improve the Anti-Mycobacterial Activity of Current Drugs to Better Control Tuberculosis? Front Immunol 2021; 12:703060. [PMID: 34262571 PMCID: PMC8273550 DOI: 10.3389/fimmu.2021.703060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, remains a global health threat despite recent advances and insights into host-pathogen interactions and the identification of diverse pathways that may be novel therapeutic targets for TB treatment. In addition, the emergence and spread of multidrug-resistant Mtb strains led to a low success rate of TB treatments. Thus, novel strategies involving the host immune system that boost the effectiveness of existing antibiotics have been recently suggested to better control TB. However, the lack of comprehensive understanding of the immunomodulatory effects of anti-TB drugs, including first-line drugs and newly introduced antibiotics, on bystander and effector immune cells curtailed the development of effective therapeutic strategies to combat Mtb infection. In this review, we focus on the influence of host immune-mediated stresses, such as lysosomal activation, metabolic changes, oxidative stress, mitochondrial damage, and immune mediators, on the activities of anti-TB drugs. In addition, we discuss how anti-TB drugs facilitate the generation of Mtb populations that are resistant to host immune response or disrupt host immunity. Thus, further understanding the interplay between anti-TB drugs and host immune responses may enhance effective host antimicrobial activities and prevent Mtb tolerance to antibiotic and immune attacks. Finally, this review highlights novel adjunctive therapeutic approaches against Mtb infection for better disease outcomes, shorter treatment duration, and improved treatment efficacy based on reciprocal interactions between current TB antibiotics and host immune cells.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Hsp100 Molecular Chaperone ClpB and Its Role in Virulence of Bacterial Pathogens. Int J Mol Sci 2021; 22:ijms22105319. [PMID: 34070174 PMCID: PMC8158500 DOI: 10.3390/ijms22105319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 01/05/2023] Open
Abstract
This review focuses on the molecular chaperone ClpB that belongs to the Hsp100/Clp subfamily of the AAA+ ATPases and its biological function in selected bacterial pathogens, causing a variety of human infectious diseases, including zoonoses. It has been established that ClpB disaggregates and reactivates aggregated cellular proteins. It has been postulated that ClpB’s protein disaggregation activity supports the survival of pathogenic bacteria under host-induced stresses (e.g., high temperature and oxidative stress), which allows them to rapidly adapt to the human host and establish infection. Interestingly, ClpB may also perform other functions in pathogenic bacteria, which are required for their virulence. Since ClpB is not found in human cells, this chaperone emerges as an attractive target for novel antimicrobial therapies in combating bacterial infections.
Collapse
|
22
|
Katikaridis P, Bohl V, Mogk A. Resisting the Heat: Bacterial Disaggregases Rescue Cells From Devastating Protein Aggregation. Front Mol Biosci 2021; 8:681439. [PMID: 34017857 PMCID: PMC8129007 DOI: 10.3389/fmolb.2021.681439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022] Open
Abstract
Bacteria as unicellular organisms are most directly exposed to changes in environmental growth conditions like temperature increase. Severe heat stress causes massive protein misfolding and aggregation resulting in loss of essential proteins. To ensure survival and rapid growth resume during recovery periods bacteria are equipped with cellular disaggregases, which solubilize and reactivate aggregated proteins. These disaggregases are members of the Hsp100/AAA+ protein family, utilizing the energy derived from ATP hydrolysis to extract misfolded proteins from aggregates via a threading activity. Here, we describe the two best characterized bacterial Hsp100/AAA+ disaggregases, ClpB and ClpG, and compare their mechanisms and regulatory modes. The widespread ClpB disaggregase requires cooperation with an Hsp70 partner chaperone, which targets ClpB to protein aggregates. Furthermore, Hsp70 activates ClpB by shifting positions of regulatory ClpB M-domains from a repressed to a derepressed state. ClpB activity remains tightly controlled during the disaggregation process and high ClpB activity states are likely restricted to initial substrate engagement. The recently identified ClpG (ClpK) disaggregase functions autonomously and its activity is primarily controlled by substrate interaction. ClpG provides enhanced heat resistance to selected bacteria including pathogens by acting as a more powerful disaggregase. This disaggregase expansion reflects an adaption of bacteria to extreme temperatures experienced during thermal based sterilization procedures applied in food industry and medicine. Genes encoding for ClpG are transmissible by horizontal transfer, allowing for rapid spreading of extreme bacterial heat resistance and posing a threat to modern food production.
Collapse
Affiliation(s)
- Panagiotis Katikaridis
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Valentin Bohl
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
23
|
Alam A, Bröms JE, Kumar R, Sjöstedt A. The Role of ClpB in Bacterial Stress Responses and Virulence. Front Mol Biosci 2021; 8:668910. [PMID: 33968993 PMCID: PMC8100447 DOI: 10.3389/fmolb.2021.668910] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 02/04/2023] Open
Abstract
Bacterial survival within a mammalian host is contingent upon sensing environmental perturbations and initiating an appropriate counter-response. To achieve this, sophisticated molecular machineries are used, where bacterial chaperone systems play key roles. The chaperones are a prerequisite for bacterial survival during normal physiological conditions as well as under stressful situations, e.g., infection or inflammation. Specific stress factors include, but are not limited to, high temperature, osmolarity, pH, reactive oxidative species, or bactericidal molecules. ClpB, a member of class 1 AAA+ proteins, is a key chaperone that via its disaggregase activity plays a crucial role for bacterial survival under various forms of stress, in particular heat shock. Recently, it has been reported that ClpB also regulates secretion of bacterial effector molecules related to type VI secretion systems. In this review, the roles of ClpB in stress responses and the mechanisms by which it promotes survival of pathogenic bacteria are discussed.
Collapse
Affiliation(s)
- Athar Alam
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Jeanette E Bröms
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Rajender Kumar
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
Belisario JC, Lee HH, Luknauth H, Rigel NW, Martinez LR. Acinetobacter baumannii Strains Deficient in the Clp Chaperone-Protease Genes Have Reduced Virulence in a Murine Model of Pneumonia. Pathogens 2021; 10:pathogens10020204. [PMID: 33668542 PMCID: PMC7917692 DOI: 10.3390/pathogens10020204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/05/2023] Open
Abstract
Acinetobacter baumannii has emerged as a significant opportunistic Gram-negative pathogen and causative agent of nosocomial pneumonia especially in immunocompromised individuals in intensive care units. Recent advances to understand the contribution and function of A. baumannii virulence factors in its pathogenesis have begun to elucidate how this bacterium interacts with immune cells and its interesting mechanisms for multi-antibiotic resistance. Taking advantage of the availability of the A. baumannii AB5075 transposon mutant library, we investigated the impact of the A. baumannii Clp genes, which encode for a chaperone-protease responsible for the degradation of misfolded proteins, on bacterial virulence in a model of pneumonia using C57BL/6 mice and survival within J774.16 macrophage-like cells. Clp-protease A. baumannii mutants exhibit decreased virulence in rodents, high phagocytic cell-mediated killing and reduced biofilm formation. Capsular staining showed evidence of encapsulation in A. baumannii AB5075 and Clp-mutant strains. Surprisingly, clpA and clpS mutants displayed irregular cell morphology, which may be important in the biofilm structural deficiencies observed in these strains. Interestingly, clpA showed apical-like growth, proliferation normally observed in filamentous fungi. These findings provide new information regarding A. baumannii pathogenesis and may be important for the development of therapies intended at reducing morbidity and mortality associated with this remarkable pathogen.
Collapse
Affiliation(s)
- J Christian Belisario
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, PA 19146, USA;
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
| | - Hiu Ham Lee
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
| | - Harshani Luknauth
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA; (H.L.); (N.W.R.)
| | - Nathan W. Rigel
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA; (H.L.); (N.W.R.)
| | - Luis R. Martinez
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
25
|
Harnagel A, Lopez Quezada L, Park SW, Baranowski C, Kieser K, Jiang X, Roberts J, Vaubourgeix J, Yang A, Nelson B, Fay A, Rubin E, Ehrt S, Nathan C, Lupoli TJ. Nonredundant functions of Mycobacterium tuberculosis chaperones promote survival under stress. Mol Microbiol 2020; 115:272-289. [PMID: 32996193 DOI: 10.1111/mmi.14615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Bacterial chaperones ClpB and DnaK, homologs of the respective eukaryotic heat shock proteins Hsp104 and Hsp70, are essential in the reactivation of toxic protein aggregates that occur during translation or periods of stress. In the pathogen Mycobacterium tuberculosis (Mtb), the protective effect of chaperones extends to survival in the presence of host stresses, such as protein-damaging oxidants. However, we lack a full understanding of the interplay of Hsps and other stress response genes in mycobacteria. Here, we employ genome-wide transposon mutagenesis to identify the genes that support clpB function in Mtb. In addition to validating the role of ClpB in Mtb's response to oxidants, we show that HtpG, a homolog of Hsp90, plays a distinct role from ClpB in the proteotoxic stress response. While loss of neither clpB nor htpG is lethal to the cell, loss of both through genetic depletion or small molecule inhibition impairs recovery after exposure to host-like stresses, especially reactive nitrogen species. Moreover, defects in cells lacking clpB can be complemented by overexpression of other chaperones, demonstrating that Mtb's stress response network depends upon finely tuned chaperone expression levels. These results suggest that inhibition of multiple chaperones could work in concert with host immunity to disable Mtb.
Collapse
Affiliation(s)
- Alexa Harnagel
- Department of Chemistry, New York University, New York, NY, USA
| | - Landys Lopez Quezada
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Catherine Baranowski
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karen Kieser
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Yang
- Department of Chemistry, New York University, New York, NY, USA
| | - Brock Nelson
- Department of Chemistry, New York University, New York, NY, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric Rubin
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
26
|
Singh P, Khurana H, Yadav SP, Dhiman K, Singh P, Ashish, Singh R, Sharma D. Biochemical characterization of ClpB protein from Mycobacterium tuberculosis and identification of its small-molecule inhibitors. Int J Biol Macromol 2020; 165:375-387. [PMID: 32987071 DOI: 10.1016/j.ijbiomac.2020.09.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/25/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
Tuberculosis, caused by pathogenic M. tuberculosis, remains a global health concern among various infectious diseases. Studies show that ClpB, a major disaggregase, protects the pathogen from various stresses encountered in the host environment. In the present study we have performed a detailed biophysical characterization of M. tuberculosis ClpB followed by a high throughput screening to identify small molecule inhibitors. The sedimentation velocity studies reveal that ClpB oligomerization varies with its concentration and presence of nucleotides. Further, using high throughput malachite green-based screening assay, we identified potential novel inhibitors of ClpB ATPase activity. The enzyme kinetics revealed that the lead molecule inhibits ClpB activity in a competitive manner. These drugs were also able to inhibit ATPase activity associated with E. coli ClpB and yeast Hsp104. The identified drugs inhibited the growth of intracellular bacteria in macrophages. Small angle X-ray scattering based modeling shows that ATP, and not its non-hydrolyzable analogs induce large scale conformational rearrangements in ClpB. Remarkably, the identified small molecules inhibited these ATP inducible conformational changes, suggesting that nucleotide induced shape changes are crucial for ClpB activity. The study broadens our understanding of M. tuberculosis chaperone machinery and provides the basis for designing more potent inhibitors against ClpB chaperone.
Collapse
Affiliation(s)
- Prashant Singh
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Harleen Khurana
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, India
| | - Shiv Pratap Yadav
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Kanika Dhiman
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Padam Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, India
| | - Ashish
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India.
| |
Collapse
|
27
|
Huang M, Zhao Y, Feng L, Zhu L, Zhan L, Chen X. Role of ClpB From Corynebacterium crenatum in Thermal Stress and Arginine Fermentation. Front Microbiol 2020; 11:1660. [PMID: 32765470 PMCID: PMC7380099 DOI: 10.3389/fmicb.2020.01660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/25/2020] [Indexed: 12/04/2022] Open
Abstract
ClpB, an ATP-dependent molecular chaperone, is involved in metabolic pathways and plays important roles in microorganisms under stress conditions. Metabolic pathways and stress resistance are important characteristics of industrially -relevant bacteria during fermentation. Nevertheless, ClpB-related observations have been rarely reported in industrially -relevant microorganisms. Herein, we found a homolog of ClpB from Corynebacterium crenatum. The amino acid sequence of ClpB was analyzed, and the recombinant ClpB protein was purified and characterized. The full function of ClpB requires DnaK as chaperone protein. For this reason, dnaK/clpB deletion mutants and the complemented strains were constructed to investigate the role of ClpB. The results showed that DnaK/ClpB is not essential for the survival of C. crenatum MT under pH and alcohol stresses. The ClpB-deficient or DnaK-deficient C. crenatum mutants showed weakened growth during thermal stress. In addition, the results demonstrated that deletion of the clpB gene affected glucose consumption and L-arginine, L-glutamate, and lactate production during fermentation.
Collapse
Affiliation(s)
- Mingzhu Huang
- Department of Life Science, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Yue Zhao
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Lin Feng
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Lingfeng Zhu
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Li Zhan
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Xuelan Chen
- Department of Life Science, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang, China
| |
Collapse
|