1
|
Alhadlaq MA, Aljurayyad OI, Almansour A, Al-Akeel SI, Alzahrani KO, Alsalman SA, Yahya R, Al-Hindi RR, Hakami MA, Alshahrani SD, Alhumeed NA, Al Moneea AM, Al-Seghayer MS, AlHarbi AL, Al-Reshoodi FM, Alajel S. Overview of pathogenic Escherichia coli, with a focus on Shiga toxin-producing serotypes, global outbreaks (1982-2024) and food safety criteria. Gut Pathog 2024; 16:57. [PMID: 39370525 PMCID: PMC11457481 DOI: 10.1186/s13099-024-00641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Classification of pathogenic E. coli has been focused either in mammalian host or infection site, which offers limited resolution. This review presents a comprehensive framework for classifying all E. coli branches within a single, unifying figure. This approach integrates established methods based on virulence factors, serotypes and clinical syndromes, offering a more nuanced and informative perspective on E. coli pathogenicity. The presence of the LEE island in pathogenic E. coli is a key genetic marker differentiating EHEC from STEC strains. The coexistence of stx and eae genes within the bacterial genome is a primary characteristic used to distinguish STEC from other pathogenic E. coli strains. The presence of the inv plasmid, Afa/Dr adhesins, CFA-CS-LT-ST and EAST1 are key distinguishing features for identifying pathogenic E. coli strains belonging to EIEC, DAEC, ETEC and EAEC pathotypes respectively. Food microbiological criteria differentiate pathogenic E. coli in food matrices. 'Zero-tolerance' applies to most ready-to-eat (RTE) foods due to high illness risk. Non-RTE foods' roles may allow limited E. coli presence, which expose consumers to potential risk; particularly from the concerning Shiga toxin-producing E. coli (STEC) strains, which can lead to life-threatening complications in humans, including haemolytic uremic syndrome (HUS) and even death in susceptible individuals. These findings suggest that decision-makers should consider incorporating the separate detection of STEC serotypes into food microbiological criteria, in addition to existing enumeration methods. Contamination of STEC is mainly linked to food consumption, therefore, outbreaks of E. coli STEC has been reviewed here and showed a link also to water as a potential contamination route. Since their discovery in 1982, over 39,787 STEC cases associated with 1,343 outbreaks have been documented. The majority of these outbreaks occurred in the Americas, followed by Europe, Asia and Africa. The most common serotypes identified among the outbreaks were O157, the 'Big Six' (O26, O45, O103, O111, O121, and O145), and other serotypes such as O55, O80, O101, O104, O116, O165, O174 and O183. This review provides valuable insights into the most prevalent serotypes implicated in STEC outbreaks and identifies gaps in microbiological criteria, particularly for E. coli non-O157 and non-Big Six serotypes.
Collapse
Affiliation(s)
| | - Othman I Aljurayyad
- Saudi Food and Drug Authority, Riyadh, Saudi Arabia
- Botany and Microbiology Department, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | - Reham Yahya
- Clinical Infection and Microbiology Basic Sciences Department, King Saudi Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, P.O. Box 3661, 11481, Riyadh, Saudi Arabia
| | - Rashad R Al-Hindi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Saleh D Alshahrani
- Department of Public Health Department, Ministry of Interior, Riyadh, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
2
|
Moazeni S, Askari Badouei M, Hashemitabar G, Rezatofighi SE, Mahmoodi F. Detection and characterization of potentially hybrid enteroaggregative Escherichia coli (EAEC) strains isolated from urinary tract infection. Braz J Microbiol 2024; 55:1-9. [PMID: 38036848 PMCID: PMC10920591 DOI: 10.1007/s42770-023-01195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) have the potential to receive the virulence markers of intestinal pathotypes and transform into various important hybrid pathotypes. This study aimed to investigate the frequency and characteristics of hybrid enteroaggregative E. coli (EAEC)/UPEC strains. Out of 202 UPEC strains, nine (4.5%) were detected as hybrid EAEC/UPEC. These strains carried one to four iron uptake systems. Among nine investigated pathogenicity islands (PAIs), PAI IV536, PAI II536, and PAI ICFT073 were found in 9 (100%), 3 (33.3%), and 1 (11.1%) strains, respectively. The chuA and sitA genes were detected in 5 (55.5%) and 3 (33.3%) hybrid strains, respectively. Six hybrid strains were found to be typical extraintestinal pathogenic E. coli (ExPEC) according to their virulence traits. Most of the hybrid strains belonged to the phylogenetic group E (6/9). Among the hybrid strains, seven (7/9) were able to form biofilm and adhere to cells; however, only two strains penetrated into the HeLa cells. Our findings reveal some of the virulence characteristics of hybrid strains that lead to fitness and infection in the urinary tract. These strains, with virulence factors of intestinal and non-intestinal pathotypes, may become emerging pathogens in clinical settings; therefore, further studies are needed to reveal their pathogenicity mechanisms and so that preventive measures can be taken.
Collapse
Affiliation(s)
- Shima Moazeni
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Askari Badouei
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Gholamreza Hashemitabar
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Fahimeh Mahmoodi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
3
|
Abad-Fau A, Sevilla E, Oro A, Martín-Burriel I, Moreno B, Morales M, Bolea R. Multidrug resistance in pathogenic Escherichia coli isolates from urinary tract infections in dogs, Spain. Front Vet Sci 2024; 11:1325072. [PMID: 38585298 PMCID: PMC10996866 DOI: 10.3389/fvets.2024.1325072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/12/2024] [Indexed: 04/09/2024] Open
Abstract
Escherichia coli (E. coli) is a pathogen frequently isolated in cases of urinary tract infections (UTIs) in both humans and dogs and evidence exists that dogs are reservoirs for human infections. In addition, E. coli is associated to increasing antimicrobial resistance rates. This study focuses on the analysis of antimicrobial resistance and the presence of selected virulence genes in E. coli isolates from a Spanish dog population suffering from UTI. This collection of isolates showed an extremely high level of phenotypic resistance to 1st-3rd generation cephalosporins, followed by penicillins, fluoroquinolones and amphenicols. Apart from that, 13.46% of them were considered extended-spectrum beta-lactamase producers. An alarmingly high percentage (71.15%) of multidrug resistant isolates were also detected. There was a good correlation between the antimicrobial resistance genes found and the phenotypic resistance expressed. Most of the isolates were classified as extraintestinal pathogenic E. coli, and two others harbored virulence factors related to diarrheagenic pathotypes. A significant relationship between low antibiotic resistance and high virulence factor carriage was found, but the mechanisms behind it are still poorly understood. The detection of high antimicrobial resistance rates to first-choice treatments highlights the need of constant antimicrobial resistance surveillance, as well as continuous revision of therapeutic guidelines for canine UTI to adapt them to changes in antimicrobial resistance patterns.
Collapse
Affiliation(s)
- Ana Abad-Fau
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
| | - Eloisa Sevilla
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Ainara Oro
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragon, Universidad de Zaragoza, Zaragoza, Spain
| | - Bernardino Moreno
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Mariano Morales
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Albéitar Laboratories, Zaragoza, Spain
| | - Rosa Bolea
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
4
|
Xie LY, Xu YB, Ding XQ, Liang S, Li DL, Fu AK, Zhan XA. Itaconic acid and dimethyl itaconate exert antibacterial activity in carbon-enriched environments through the TCA cycle. Biomed Pharmacother 2023; 167:115487. [PMID: 37713987 DOI: 10.1016/j.biopha.2023.115487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Itaconic acid (IA), a metabolite generated by the tricarboxylic acid (TCA) cycle in eukaryotic immune cells, and its derivative dimethyl itaconate (DI) exert antibacterial functions in intracellular environments. Previous studies suggested that IA and DI only inhibit bacterial growth in carbon-limited environments; however, whether IA and DI maintain antibacterial activity in carbon-enriched environments remains unknown. Here, IA and DI inhibited the bacteria with minimum inhibitory concentrations of 24.02 mM and 39.52 mM, respectively, in a carbon-enriched environment. The reduced bacterial pathogenicity was reflected in cell membrane integrity, motility, biofilm formation, AI-2/luxS, and virulence. Mechanistically, succinate dehydrogenase (SDH) activity and fumaric acid levels decreased in the IA and DI treatments, while isocitrate lyase (ICL) activity was upregulated. Inhibited TCA circulation was also observed through untargeted metabolomics. In addition, energy-related aspartate metabolism and lysine degradation were suppressed. In summary, these results indicated that IA and DI reduced bacterial pathogenicity while exerting antibacterial functions by inhibiting TCA circulation. This study enriches knowledge on the inhibition of bacteria by IA and DI in a carbon-mixed environment, suggesting an alternative method for treating bacterial infections by immune metabolites.
Collapse
Affiliation(s)
- L Y Xie
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Y B Xu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - X Q Ding
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - S Liang
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - D L Li
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - A K Fu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - X A Zhan
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Morales G, Abelson B, Reasoner S, Miller J, Earl AM, Hadjifrangiskou M, Schmitz J. The Role of Mobile Genetic Elements in Virulence Factor Carriage from Symptomatic and Asymptomatic Cases of Escherichia coli Bacteriuria. Microbiol Spectr 2023; 11:e0471022. [PMID: 37195213 PMCID: PMC10269530 DOI: 10.1128/spectrum.04710-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is extremely diverse genotypically and phenotypically. Individual strains can variably carry diverse virulence factors, making it challenging to define a molecular signature for this pathotype. For many bacterial pathogens, mobile genetic elements (MGEs) constitute a major mechanism of virulence factor acquisition. For urinary E. coli, the total distribution of MGEs and their role in the acquisition of virulence factors is not well defined, including in the context of symptomatic infection versus asymptomatic bacteriuria (ASB). In this work, we characterized 151 isolates of E. coli, derived from patients with either urinary tract infection (UTI) or ASB. For both sets of E. coli, we catalogued the presence of plasmids, prophage, and transposons. We analyzed MGE sequences for the presence of virulence factors and antimicrobial resistance genes. These MGEs were associated with only ~4% of total virulence associated genes, while plasmids contributed to ~15% of antimicrobial resistance genes under consideration. Our analyses suggests that, across strains of E. coli, MGEs are not a prominent driver of urinary tract pathogenesis and symptomatic infection. IMPORTANCE Escherichia coli is the most common etiological agent of urinary tract infections (UTIs), with UTI-associated strains designated "uropathogenic" E. coli or UPEC. Across urinary strains of E. coli, the global landscape of MGEs and its relationship to virulence factor carriage and clinical symptomatology require greater clarity. Here, we demonstrate that many of the putative virulence factors of UPEC are not associated with acquisition due to MGEs. The current work enhances our understanding of the strain-to-strain variability and pathogenic potential of urine-associated E. coli and points toward more subtle genomic differences distinguishing ASB from UTI isolates.
Collapse
Affiliation(s)
- Grace Morales
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Benjamin Abelson
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seth Reasoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jordan Miller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ashlee M. Earl
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, Tennessee, USA
| | - Jonathan Schmitz
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Yousefipour M, Rezatofighi SE, Ardakani MR. Detection and characterization of hybrid uropathogenic Escherichia coli strains among E. coli isolates causing community-acquired urinary tract infection. J Med Microbiol 2023; 72. [PMID: 36753429 DOI: 10.1099/jmm.0.001660] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Introduction. The main aetiological agent of urinary tract infection (UTI) is Escherichia coli, categorized as uropathogenic E. coli (UPEC). The genome of UPEC shows a high degree of plasticity, which leads to the emergence of 'intermediary strains' with different traits from the parental pathotypes.Gap Statement/Aim. We aimed to assess the frequency and types of the hybrid UPEC among isolates causing UTI and characterize virulence properties of these hybrid isolates molecularly and phenotypically.Methodology. After detection of intestinal pathogenic E. coli (IPEC) virulence markers among 200 UPEC isolates, they were assessed for the presence of 40 virulence genes (VGs) of extraintestinal, uropathogenic and diarrhoeagenic E. coli, phylogenetic group typing, phenotypic traits including biofilm formation, adherence and invasion to HeLa cells, haemolysis activity and antimicrobial resistance.Results. The analysis showed 21 (10.5 %) UPEC isolates carried enteroaggregative E. coli (EAEC) and enteropathogenic E. coli (EPEC) virulence markers. Twenty isolates carried the aggR (EAEC) and one the eae and escV genes (EPEC), which were classified as hybrid strains. The most commonly identified genes were fimH (71.5 %), fyuA (66.7 %), iutA (62 %), chuA (57.1) and traT (47.6 %). Biofilm production, adhesion and invasion were found among 17 (81), 18 (85.7) and 11 (52.4 %) hybrids, respectively. Investigation of the genetic characteristics, phylogenetic group and virulence profile of the detected hybrids revealed that they have genetic diversity and do not belong to a particular clonal lineage.Conclusion. The present study reveals that some UPEC may carry virulence markers of IPEC pathotypes. EAEC and EPEC seem to have a greater tendency to form hybrids and cause UTI. Further studies are needed to elucidate what factors contributed to survival in the urinary tract system and facilitate infection and whether these combinations lead to an increase in pathogenicity or not.
Collapse
Affiliation(s)
- Mahta Yousefipour
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | | |
Collapse
|
7
|
Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023; 11:344. [PMID: 36838308 PMCID: PMC9965155 DOI: 10.3390/microorganisms11020344] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Collapse
Affiliation(s)
- Pravil Pokharel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sabin Dhakal
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pasteur Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
8
|
Nascimento JAS, Santos FF, Santos-Neto JF, Trovão LO, Valiatti TB, Pinaffi IC, Vieira MAM, Silva RM, Falsetti IN, Santos ACM, Gomes TAT. Molecular Epidemiology and Presence of Hybrid Pathogenic Escherichia coli among Isolates from Community-Acquired Urinary Tract Infection. Microorganisms 2022; 10:microorganisms10020302. [PMID: 35208757 PMCID: PMC8874565 DOI: 10.3390/microorganisms10020302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Urinary tract infections (UTI) affect community and healthcare patients worldwide and may have different clinical outcomes. We assessed the phylogenetic origin, the presence of 43 virulence factors (VFs) of diarrheagenic and extraintestinal pathogenic Escherichia coli, and the occurrence of hybrid strains among E. coli isolates from 172 outpatients with different types of UTI. Isolates from phylogroup B2 (46%) prevailed, followed by phylogroups A (15.7%) and B1 (12.2%), with similar phylogenetic distribution in symptomatic and asymptomatic patients. The most frequent VFs according to their functional category were fimA (94.8%), ompA (83.1%), ompT (63.3%), chuA (57.6%), and vat (22%). Using published molecular criteria, 34.3% and 18.0% of the isolates showed intrinsic virulence and uropathogenic potential, respectively. Two strains carried the eae and escV genes and one the aggR gene, which classified them as hybrid strains. These hybrid strains interacted with renal and bladder cells, reinforcing their uropathogenic potential. The frequency of UPEC strains bearing a more pathogenic potential in the outpatients studied was smaller than reported in other regions. Our data contribute to deepening current knowledge about the mechanisms involved in UTI pathogenesis, especially among hybrid UPEC strains, as these could colonize the host’s intestine, leading to intestinal infections followed by UTI.
Collapse
Affiliation(s)
- Júllia A. S. Nascimento
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (J.F.S.-N.); (L.O.T.); (M.A.M.V.); (A.C.M.S.)
| | - Fernanda F. Santos
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (F.F.S.); (T.B.V.)
| | - José F. Santos-Neto
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (J.F.S.-N.); (L.O.T.); (M.A.M.V.); (A.C.M.S.)
| | - Liana O. Trovão
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (J.F.S.-N.); (L.O.T.); (M.A.M.V.); (A.C.M.S.)
| | - Tiago B. Valiatti
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (F.F.S.); (T.B.V.)
| | - Isabel C. Pinaffi
- Laboratório Santa Cruz Medicina Diagnóstica, Mogi Guaçu 13840-052, Brazil; (I.C.P.); (I.N.F.)
| | - Mônica A. M. Vieira
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (J.F.S.-N.); (L.O.T.); (M.A.M.V.); (A.C.M.S.)
| | - Rosa M. Silva
- Laboratório de Enterobactérias, Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil;
| | - Ivan N. Falsetti
- Laboratório Santa Cruz Medicina Diagnóstica, Mogi Guaçu 13840-052, Brazil; (I.C.P.); (I.N.F.)
| | - Ana C. M. Santos
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (J.F.S.-N.); (L.O.T.); (M.A.M.V.); (A.C.M.S.)
| | - Tânia A. T. Gomes
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (J.F.S.-N.); (L.O.T.); (M.A.M.V.); (A.C.M.S.)
- Correspondence: ; Tel.: +55-11-5576-4848
| |
Collapse
|