1
|
Morito M, Yasuda H, Matsufuji T, Kinoshita M, Matsumori N. Identification of lipid-specific proteins with high-density lipid-immobilized beads. Analyst 2024; 149:3747-3755. [PMID: 38829210 DOI: 10.1039/d4an00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
In biological membranes, lipids often interact with membrane proteins (MPs), regulating the localization and activity of MPs in cells. Although elucidating lipid-MP interactions is critical to comprehend the physiological roles of lipids, a systematic and comprehensive identification of lipid-binding proteins has not been adequately established. Therefore, we report the development of lipid-immobilized beads where lipid molecules were covalently immobilized. Owing to the detergent tolerance, these beads enable screening of water-soluble proteins and MPs, the latter of which typically necessitate surfactants for solubilization. Herein, two sphingolipid species-ceramide and sphingomyelin-which are major constituents of lipid rafts, were immobilized on the beads. We first showed that the density of immobilized lipid molecules on the beads was as high as that of biological lipid membranes. Subsequently, we confirmed that these beads enabled the selective pulldown of known sphingomyelin- or ceramide-binding proteins (lysenin, p24, and CERT) from protein mixtures, including cell lysates. In contrast, commercial sphingomyelin beads, on which lipid molecules are sparsely immobilized through biotin-streptavidin linkage, failed to capture lysenin, a well-known protein that recognizes clustered sphingomyelin molecules. This clearly demonstrates the applicability of our beads for obtaining proteins that recognize not only a single lipid molecule but also lipid clusters or lipid membranes. Finally, we demonstrated the screening of lipid-binding proteins from Neuro2a cell lysates using these beads. This method is expected to significantly contribute to the understanding of interactions between lipids and proteins and to unravel the complexities of lipid diversity.
Collapse
Affiliation(s)
- Masayuki Morito
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Hiroki Yasuda
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Takaaki Matsufuji
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Masanao Kinoshita
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Li W, Yang H, Stachowski K, Norris AS, Lichtenthal K, Kelly S, Gollnick P, Wysocki VH, Foster MP. Structural basis of nearest-neighbor cooperativity in the ring-shaped gene regulatory protein TRAP from protein engineering and cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592192. [PMID: 38746386 PMCID: PMC11092587 DOI: 10.1101/2024.05.02.592192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Homotropic cooperativity is widespread in biological regulation. The homo-oligomeric ring-shaped trp RNA binding attenuation protein (TRAP) from bacillus binds multiple tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the trp operon mRNA. Ligand-activated binding to this specific RNA sequence regulates downstream biosynthesis of Trp in a feedback loop. Characterized TRAP variants form 11- or 12-mer rings and bind Trp at the interface between adjacent subunits. Various studies have shown that a pair of loops that gate each Trp binding site is flexible in the absence of the ligand and become ordered upon ligand binding. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity. To establish a solid basis for describing nearest-neighbor cooperativity we engineered dodecameric (12-mer) TRAP variants constructed with two subunits connected by a flexible linker (dTRAP). We mutated one of the protomers such that only every other site was competent for Trp binding. Thermodynamic and structural studies using native mass spectrometry, NMR spectroscopy, and cryo-EM provided unprecedented detail into the thermodynamic and structural basis for the observed ligand binding cooperativity. Such insights can be useful for understanding allosteric control networks and for the development of new ones with defined ligand sensitivity and regulatory control.
Collapse
Affiliation(s)
- Weicheng Li
- Department of Chemistry and Biochemistry, The Ohio State University
| | - Haoyun Yang
- Department of Chemistry and Biochemistry, The Ohio State University
- Center for RNA Biology, The Ohio State University
| | - Kye Stachowski
- Department of Chemistry and Biochemistry, The Ohio State University
| | - Andrew S. Norris
- Department of Chemistry and Biochemistry, The Ohio State University
- Native MS Guided Structural Biology Center, The Ohio State University
| | | | | | | | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University
- Center for RNA Biology, The Ohio State University
- Native MS Guided Structural Biology Center, The Ohio State University
| | - Mark P. Foster
- Department of Chemistry and Biochemistry, The Ohio State University
- Center for RNA Biology, The Ohio State University
| |
Collapse
|
3
|
Sandberg JW, Santiago-McRae E, Ennis J, Brannigan G. The density-threshold affinity: Calculating lipid binding affinities from unbiased coarse-grained molecular dynamics simulations. Methods Enzymol 2024; 701:47-82. [PMID: 39025580 DOI: 10.1016/bs.mie.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Many membrane proteins are sensitive to their local lipid environment. As structural methods for membrane proteins have improved, there is growing evidence of direct, specific binding of lipids to protein surfaces. Unfortunately the workhorse of understanding protein-small molecule interactions, the binding affinity for a given site, is experimentally inaccessible for these systems. Coarse-grained molecular dynamics simulations can be used to bridge this gap, and are relatively straightforward to learn. Such simulations allow users to observe spontaneous binding of lipids to membrane proteins and quantify localized densities of individual lipids or lipid fragments. In this chapter we outline a protocol for extracting binding affinities from these localized distributions, known as the "density threshold affinity." The density threshold affinity uses an adaptive and flexible definition of site occupancy that alleviates the need to distinguish between "bound'' lipids and bulk lipids that are simply diffusing through the site. Furthermore, the method allows "bead-level" resolution that is suitable for the case where lipids share binding sites, and circumvents ambiguities about a relevant reference state. This approach provides a convenient and straightforward method for comparing affinities of a single lipid species for multiple sites, multiple lipids for a single site, and/or a single lipid species modeled using multiple forcefields.
Collapse
Affiliation(s)
- Jesse W Sandberg
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Ezry Santiago-McRae
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Jahmal Ennis
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Grace Brannigan
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States; Department of Physics, Rutgers University, Camden, NJ, United States.
| |
Collapse
|
4
|
Phung W, Bakalarski CE, Hinkle TB, Sandoval W, Marty MT. UniDec Processing Pipeline for Rapid Analysis of Biotherapeutic Mass Spectrometry Data. Anal Chem 2023; 95:11491-11498. [PMID: 37478487 DOI: 10.1021/acs.analchem.3c02010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Recent advances in native mass spectrometry (MS) and denatured intact protein MS have made these techniques essential for biotherapeutic characterization. As MS analysis has increased in throughput and scale, new data analysis workflows are needed to provide rapid quantitation from large datasets. Here, we describe the UniDec processing pipeline (UPP) for the analysis of batched biotherapeutic intact MS data. UPP is built into the UniDec software package, which provides fast processing, deconvolution, and peak detection. The user and programming interfaces for UPP read a spreadsheet that contains the data file names, deconvolution parameters, and quantitation settings. After iterating through the spreadsheet and analyzing each file, it returns a spreadsheet of results and HTML reports. We demonstrate the use of UPP to measure the correct pairing percentage on a set of bispecific antibody data and to measure drug-to-antibody ratios from antibody-drug conjugates. Moreover, because the software is free and open-source, users can easily build on this platform to create customized workflows and calculations. Thus, UPP provides a flexible workflow that can be deployed in diverse settings and for a wide range of biotherapeutic applications.
Collapse
Affiliation(s)
- Wilson Phung
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc., South San Francisco, California 94080, United States
| | - Corey E Bakalarski
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc., South San Francisco, California 94080, United States
| | - Trent B Hinkle
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc., South San Francisco, California 94080, United States
| | - Wendy Sandoval
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc., South San Francisco, California 94080, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry and the Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
5
|
Mass spectrometry of intact membrane proteins: shifting towards a more native-like context. Essays Biochem 2023; 67:201-213. [PMID: 36807530 PMCID: PMC10070488 DOI: 10.1042/ebc20220169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
Integral membrane proteins are involved in a plethora of biological processes including cellular signalling, molecular transport, and catalysis. Many of these functions are mediated by non-covalent interactions with other proteins, substrates, metabolites, and surrounding lipids. Uncovering such interactions and deciphering their effect on protein activity is essential for understanding the regulatory mechanisms underlying integral membrane protein function. However, the detection of such dynamic complexes has proven to be challenging using traditional approaches in structural biology. Native mass spectrometry has emerged as a powerful technique for the structural characterisation of membrane proteins and their complexes, enabling the detection and identification of protein-binding partners. In this review, we discuss recent native mass spectrometry-based studies that have characterised non-covalent interactions of membrane proteins in the presence of detergents or membrane mimetics. We additionally highlight recent progress towards the study of membrane proteins within native membranes and provide our perspective on how these could be combined with recent developments in instrumentation to investigate increasingly complex biomolecular systems.
Collapse
|
6
|
Marciano S, Dey D, Listov D, Fleishman SJ, Sonn-Segev A, Mertens H, Busch F, Kim Y, Harvey SR, Wysocki VH, Schreiber G. Protein quaternary structures in solution are a mixture of multiple forms. Chem Sci 2022; 13:11680-11695. [PMID: 36320402 PMCID: PMC9555727 DOI: 10.1039/d2sc02794a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Over half the proteins in the E. coli cytoplasm form homo or hetero-oligomeric structures. Experimentally determined structures are often considered in determining a protein's oligomeric state, but static structures miss the dynamic equilibrium between different quaternary forms. The problem is exacerbated in homo-oligomers, where the oligomeric states are challenging to characterize. Here, we re-evaluated the oligomeric state of 17 different bacterial proteins across a broad range of protein concentrations and solutions by native mass spectrometry (MS), mass photometry (MP), size exclusion chromatography (SEC), and small-angle X-ray scattering (SAXS), finding that most exhibit several oligomeric states. Surprisingly, some proteins did not show mass-action driven equilibrium between the oligomeric states. For approximately half the proteins, the predicted oligomeric forms described in publicly available databases underestimated the complexity of protein quaternary structures in solution. Conversely, AlphaFold multimer provided an accurate description of the potential multimeric states for most proteins, suggesting that it could help resolve uncertainties on the solution state of many proteins.
Collapse
Affiliation(s)
- Shir Marciano
- Department of Biomolecular Sciences, Weizmann Institute of Science Rehovot Israel
| | - Debabrata Dey
- Department of Biomolecular Sciences, Weizmann Institute of Science Rehovot Israel
| | - Dina Listov
- Department of Biomolecular Sciences, Weizmann Institute of Science Rehovot Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science Rehovot Israel
| | - Adar Sonn-Segev
- Refeyn Ltd 1 Electric Avenue, Ferry Hinksey Road Oxford OX2 0BY UK
| | - Haydyn Mertens
- Hamburg Outstation, European Molecular Biology Laboratory Notkestrasse 85 Hamburg 22607 Germany
| | - Florian Busch
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University Columbus OH 43210 USA
| | - Yongseok Kim
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University Columbus OH 43210 USA
| | - Sophie R Harvey
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University Columbus OH 43210 USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University Columbus OH 43210 USA
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
7
|
Li W, Norris AS, Lichtenthal K, Kelly S, Ihms EC, Gollnick P, Wysocki VH, Foster MP. Thermodynamic coupling between neighboring binding sites in homo-oligomeric ligand sensing proteins from mass resolved ligand-dependent population distributions. Protein Sci 2022; 31:e4424. [PMID: 36173171 PMCID: PMC9514064 DOI: 10.1002/pro.4424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022]
Abstract
Homo-oligomeric ligand-activated proteins are ubiquitous in biology. The functions of such molecules are commonly regulated by allosteric coupling between ligand-binding sites. Understanding the basis for this regulation requires both quantifying the free energy ΔG transduced between sites, and the structural basis by which it is transduced. We consider allostery in three variants of the model ring-shaped homo-oligomeric trp RNA-binding attenuation protein (TRAP). First, we developed a nearest-neighbor statistical thermodynamic binding model comprising microscopic free energies for ligand binding to isolated sites ΔG0 , and for coupling between adjacent sites, ΔGα . Using the resulting partition function (PF) we explored the effects of these parameters on simulated population distributions for the 2N possible liganded states. We then experimentally monitored ligand-dependent population shifts using conventional spectroscopic and calorimetric methods and using native mass spectrometry (MS). By resolving species with differing numbers of bound ligands by their mass, native MS revealed striking differences in their ligand-dependent population shifts. Fitting the populations to a binding polynomial derived from the PF yielded coupling free energy terms corresponding to orders of magnitude differences in cooperativity. Uniquely, this approach predicts which of the possible 2N liganded states are populated at different ligand concentrations, providing necessary insights into regulation. The combination of statistical thermodynamic modeling with native MS may provide the thermodynamic foundation for a meaningful understanding of the structure-thermodynamic linkage that drives cooperativity.
Collapse
Affiliation(s)
- Weicheng Li
- Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusOhioUSA
| | - Andrew S. Norris
- Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusOhioUSA
- Resource for Native Mass Spectrometry Guided Structural BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Katie Lichtenthal
- Department of Biological SciencesUniversity at Buffalo, State University of New YorkBuffaloNew YorkUSA
| | - Skyler Kelly
- Department of Biological SciencesUniversity at Buffalo, State University of New YorkBuffaloNew YorkUSA
| | - Elihu C. Ihms
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Paul Gollnick
- Department of Biological SciencesUniversity at Buffalo, State University of New YorkBuffaloNew YorkUSA
| | - Vicki H. Wysocki
- Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusOhioUSA
- Resource for Native Mass Spectrometry Guided Structural BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Mark P. Foster
- Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
8
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
9
|
Chen S, Getter T, Salom D, Wu D, Quetschlich D, Chorev DS, Palczewski K, Robinson CV. Capturing a rhodopsin receptor signalling cascade across a native membrane. Nature 2022; 604:384-390. [PMID: 35388214 PMCID: PMC9007743 DOI: 10.1038/s41586-022-04547-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/14/2022] [Indexed: 11/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are cell-surface receptors that respond to various stimuli to induce signalling pathways across cell membranes. Recent progress has yielded atomic structures of key intermediates1,2 and roles for lipids in signalling3,4. However, capturing signalling events of a wild-type receptor in real time, across a native membrane to its downstream effectors, has remained elusive. Here we probe the archetypal class A GPCR, rhodopsin, directly from fragments of native disc membranes using mass spectrometry. We monitor real-time photoconversion of dark-adapted rhodopsin to opsin, delineating retinal isomerization and hydrolysis steps, and further showing that the reaction is significantly slower in its native membrane than in detergent micelles. Considering the lipids ejected with rhodopsin, we demonstrate that opsin can be regenerated in membranes through photoisomerized retinal-lipid conjugates, and we provide evidence for increased association of rhodopsin with unsaturated long-chain phosphatidylcholine during signalling. Capturing the secondary steps of the signalling cascade, we monitor light activation of transducin (Gt) through loss of GDP to generate an intermediate apo-trimeric G protein, and observe Gαt•GTP subunits interacting with PDE6 to hydrolyse cyclic GMP. We also show how rhodopsin-targeting compounds either stimulate or dampen signalling through rhodopsin-opsin and transducin signalling pathways. Our results not only reveal the effect of native lipids on rhodopsin signalling and regeneration but also enable us to propose a paradigm for GPCR drug discovery in native membrane environments.
Collapse
Affiliation(s)
- Siyun Chen
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Tamar Getter
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA
| | - David Salom
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA
| | - Di Wu
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Daniel Quetschlich
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Dror S Chorev
- Chemistry Research Laboratory, University of Oxford, Oxford, UK.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA.
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
| | - Carol V Robinson
- Chemistry Research Laboratory, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Bennett JL, Nguyen GTH, Donald WA. Protein-Small Molecule Interactions in Native Mass Spectrometry. Chem Rev 2021; 122:7327-7385. [PMID: 34449207 DOI: 10.1021/acs.chemrev.1c00293] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Small molecule drug discovery has been propelled by the continual development of novel scientific methodologies to occasion therapeutic advances. Although established biophysical methods can be used to obtain information regarding the molecular mechanisms underlying drug action, these approaches are often inefficient, low throughput, and ineffective in the analysis of heterogeneous systems including dynamic oligomeric assemblies and proteins that have undergone extensive post-translational modification. Native mass spectrometry can be used to probe protein-small molecule interactions with unprecedented speed and sensitivity, providing unique insights into polydisperse biomolecular systems that are commonly encountered during the drug discovery process. In this review, we describe potential and proven applications of native MS in the study of interactions between small, drug-like molecules and proteins, including large multiprotein complexes and membrane proteins. Approaches to quantify the thermodynamic and kinetic properties of ligand binding are discussed, alongside a summary of gas-phase ion activation techniques that have been used to interrogate the structure of protein-small molecule complexes. We additionally highlight some of the key areas in modern drug design for which native mass spectrometry has elicited significant advances. Future developments and applications of native mass spectrometry in drug discovery workflows are identified, including potential pathways toward studying protein-small molecule interactions on a whole-proteome scale.
Collapse
Affiliation(s)
- Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
11
|
Choi R, Zhou M, Shek R, Wilson JW, Tillery L, Craig JK, Salukhe IA, Hickson SE, Kumar N, James RM, Buchko GW, Wu R, Huff S, Nguyen TT, Hurst BL, Cherry S, Barrett LK, Hyde JL, Van Voorhis WC. High-throughput screening of the ReFRAME, Pandemic Box, and COVID Box drug repurposing libraries against SARS-CoV-2 nsp15 endoribonuclease to identify small-molecule inhibitors of viral activity. PLoS One 2021; 16:e0250019. [PMID: 33886614 PMCID: PMC8062000 DOI: 10.1371/journal.pone.0250019] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2 has caused a global pandemic, and has taken over 1.7 million lives as of mid-December, 2020. Although great progress has been made in the development of effective countermeasures, with several pharmaceutical companies approved or poised to deliver vaccines to market, there is still an unmet need of essential antiviral drugs with therapeutic impact for the treatment of moderate-to-severe COVID-19. Towards this goal, a high-throughput assay was used to screen SARS-CoV-2 nsp15 uracil-dependent endonuclease (endoU) function against 13 thousand compounds from drug and lead repurposing compound libraries. While over 80% of initial hit compounds were pan-assay inhibitory compounds, three hits were confirmed as nsp15 endoU inhibitors in the 1-20 μM range in vitro. Furthermore, Exebryl-1, a ß-amyloid anti-aggregation molecule for Alzheimer's therapy, was shown to have antiviral activity between 10 to 66 μM, in Vero 76, Caco-2, and Calu-3 cells. Although the inhibitory concentrations determined for Exebryl-1 exceed those recommended for therapeutic intervention, our findings show great promise for further optimization of Exebryl-1 as an nsp15 endoU inhibitor and as a SARS-CoV-2 antiviral.
Collapse
Affiliation(s)
- Ryan Choi
- Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington School of Medicine, Seattle, WA, United States of America
| | - Mowei Zhou
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA, United States of America
| | - Roger Shek
- Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington School of Medicine, Seattle, WA, United States of America
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, United States of America
| | - Jesse W. Wilson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA, United States of America
| | - Logan Tillery
- Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington School of Medicine, Seattle, WA, United States of America
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, United States of America
| | - Justin K. Craig
- Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington School of Medicine, Seattle, WA, United States of America
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, United States of America
| | - Indraneel A. Salukhe
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Sarah E. Hickson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Neeraj Kumar
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA, United States of America
| | - Rhema M. James
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA, United States of America
| | - Garry W. Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA, United States of America
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, United States of America
- School of Molecular Bioscience, Washington State University, Pullman, WA, United States of America
| | - Ruilian Wu
- Bioenergy and Biome Sciences, Los Alamos National Laboratory (LANL), Los Alamos, NM, United States of America
| | - Sydney Huff
- Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington School of Medicine, Seattle, WA, United States of America
| | - Tu-Trinh Nguyen
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, United States of America
| | - Brett L. Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT, United States of America
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Lynn K. Barrett
- Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington School of Medicine, Seattle, WA, United States of America
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, United States of America
| | - Jennifer L. Hyde
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Wesley C. Van Voorhis
- Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Reemerging Infectious Diseases (CERID), University of Washington School of Medicine, Seattle, WA, United States of America
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| |
Collapse
|