1
|
Hu W, Zhang X, Shen Y, Meng X, Wu Y, Tong P, Li X, Chen H, Gao J. Quantifying allergenic proteins using antibody-based methods or liquid chromatography-mass spectrometry/mass spectrometry: A review about the influence of food matrix, extraction, and sample preparation. Compr Rev Food Sci Food Saf 2024; 23:e70029. [PMID: 39379311 DOI: 10.1111/1541-4337.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Accurate quantification of allergens in food is crucial for ensuring consumer safety. Pretreatment steps directly affect accuracy and efficiency of allergen quantification. We systematically reviewed the latest advances in pretreatment steps for antibody-based methods and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) protein quantification methods in food. For antibody-based methods, the effects induced by food matrix like decreased allergen solubility, epitope masking, and nonspecific binding are of the upmost importance. To mitigate interference from the matrix, effective and proper extraction can be used to obtain the target allergens with a high protein concentration and necessary epitope exposure. Removal of interfering substances, extraction systems (buffers and additives), assistive technologies, and commercial kits were discussed. About LC-MS/MS quantification, the preparation of the target peptides is the crucial step that significantly affects the efficiency and results obtained from the MS detector. The advantages and limitations of each method for pre-purification, enzymatic digestion, and peptide desalting were compared. Additionally, the application characteristics of microfluidic-based pretreatment devices were illustrated to improve the convenience and efficiency of quantification. A promising research direction is the targeted development of pretreatment methods for complex food matrices, such as lipid-based and carbohydrate-based matrices.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Yunpeng Shen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Xuanyi Meng
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Yong Wu
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Ping Tong
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Xin Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Jinyan Gao
- College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| |
Collapse
|
2
|
Bhattarai M, Wang Q, Hussain Z, Tanim-Al-Hassan M, Chen H, Faik A. New insights on β-glycan synthases using in vitro GT-array (i-GT-ray) platform. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109052. [PMID: 39163652 DOI: 10.1016/j.plaphy.2024.109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
Cellulose and hemicellulose are the major structural β-glycan polysaccharides in cell walls of land plants. They are characterized by a backbone of β-(1,3)- and/or β-(1,4)-linked sugars such as glucose, mannose, or xylose. The backbones of these polymers are produced by processive glycosyltransferases (GTs) called synthases having multiple transmembrane domains anchoring them to the membrane. Thus, they are among the most difficult membrane proteins to test in vitro and to purify. Recently, we developed an in vitro GT-array (i-GTray) platform and showed that non-processive type II membrane GTs could be produced via cell-free system in a soluble and active form and tested in this platform. To determine whether i-GT-ray platform is adequate for the production and testing of β-glycan synthases, we tested five synthases involved in cellulose, xyloglucan, (gluco)mannan, and β-(1,3)(1,4)-mixed-linkage glucan synthesis. Our results revealed unsuspected features of these enzymes. For example, all these synthases could be produced in a soluble and active form and are active in the absence of detergent or membrane lipids, and none of them required a primer for initiation of synthesis. All synthases produced ethanol-insoluble products that were susceptible to the appropriate hydrolases (i.e., cellulase, lichenase, mannanase). Using this platform, we showed that AtCslC4 and AtXXT1 interact directly to form an active xyloglucan synthase that produced xylosylated cello-oligosaccharides (up to three xylosyl residues) when supplied with UDP-Glc and UDP-Xyl. i-GTray platform represents a simple and powerful functional genomics tool for discovery of new insights of synthase activities and can be adapted to other enzymes.
Collapse
Affiliation(s)
- Matrika Bhattarai
- From the Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| | - Qi Wang
- The Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Zawar Hussain
- From the Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
| | - Md Tanim-Al-Hassan
- The Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Hao Chen
- The Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Ahmed Faik
- From the Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
3
|
Osonga FJ, Eshun GB, Xue H, Kurilla S, Al Hassan MT, Qamar A, Chen H, Boufadel M, Sadik OA. IMPACT: Innovative (nano)Materials and processes for advanced catalytic technologies to degrade PFOA in water. CHEMOSPHERE 2024; 364:143057. [PMID: 39146983 DOI: 10.1016/j.chemosphere.2024.143057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
We hereby report the development of a novel electrochemical method to degrade perfluorooctanoic acid (C7F15COOH, PFOA). At the center of the approach are bimetallic Pd-Ru nano-catalyst materials called IMPACT: Innovative (nano)Materials and Processes for Advanced Catalytic Technologies. IMPACT uses flavonoid-sequestered Pd-Ru, allowing the development of specialized electrodes with tunable properties to sequentially degrade PFOA in wastewater samples into a sustainable byproduct via an indirect electrochemical method. Electron transfers at RuOxHy species stabilize the Pd component of the nano-catalysts, enabling the degradation process via PFOA deprotonation, chain shortening, decarboxylation, hydrolysis, fluoride elimination, and CF2 flake-off mechanism. IMPACT enabled the observation of redox peaks at -0.26 V and 0.56 V for the first time, with accompanying reduction peaks at -0.5V and 0.29 V, respectively. These redox peaks, which correlated with the concentrations of PFOA (20, 50, 100, 200, and 400. mg L-1), were verified and confirmed using electrochemical simulations. Control experiments did not show degradation of PFOA in the absence of Pd-Ru nano-catalyst. The degradation in wastewater was obtained within 3 h with an efficiency of 98.5%. The electrochemical degradation products of PFOA were identified using High-resolution desalting paper spray mass spectrometry (DPS-MS) and collision-induced dissociation (CID) analysis. The results yielded C2F5COOH, C3F7COOH, and C6F13OH with dissociation losses of CF2O or CO2. IMPACT introduces a novel nano-catalyst with high efficiency and a reliable capability that defluorinates strong C-F bonds that are components of recalcitrant organics in myriad environmental matrices.
Collapse
Affiliation(s)
- Francis J Osonga
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Gaddi B Eshun
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Huize Xue
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Stephen Kurilla
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Md Tanim Al Hassan
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Areej Qamar
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Hao Chen
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Michel Boufadel
- Department of Civil & Environmental Engineering, 323 Martin Luther King Blvd, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Omowunmi A Sadik
- Department of Chemistry and Environmental Sciences, 161 Warren Street, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA.
| |
Collapse
|
4
|
Chen W, Yuan K, He Q, Li Q, Luo J, Chu F, Wang H, Feng H, Pan Y. Long term online desalting analysis of MS/LC-MS using thermal assisted recrystallization ionization. Talanta 2024; 274:125981. [PMID: 38583325 DOI: 10.1016/j.talanta.2024.125981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
Mass spectrometric analysis of non-volatile salts containing samples remains challenging due to salt-induced ion suppression and contamination. This challenge is even more pronounced for a liquid chromatography-mass spectrometry analysis, where the accumulation of salts in the transmission system poses an ongoing problem. In this study, a novel thermal assisted recrystallization ionization mass spectrometry (TARI-MS) device was developed to achieve efficient on-line desalting and prolonged analysis of saline samples. The core component of this device was a heated plate positioned between the electrospray unit and the MS inlet. The desalting mechanism was demonstrated as the spontaneous separation of target molecules from salts during the "crystallization" process. After optimization, the angle between the nebulizer and the heated plate was 45°; the distance between the front end of the heated plate and the MS inlet was 2 mm; the distance between the front edge of the heated plate and the center of the sample spray projected onto the heating plate was 3 mm; the distance between the emitter of nebulizer and the heated plate was 3 mm. TARI-MS realized direct analysis of eight drugs dissolved in eight commonly used non-volatile salts solutions (up to 0.5 mol/L). The high sensitivity, repeatability, linearity, accuracy, and intra- and inter-day precision of TARI-MS confirm its reliability as a robust tool for the analysis of saline samples. Furthermore, TARI-MS allowed continuous analysis of salty eluates of LC for up to nearly 1 h without maintenance and verified the feasibility of LC-MS analysis through detecting a five-drug mixture and a crude aripiprazole product. Finally, six impurities in the crude aripiprazole product were successfully detected by LC-TARI-MS. The established method holds promise for applications across academic and pharmaceutical domains.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Kailong Yuan
- China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, Zhejiang, 310008, PR China
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Qing Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Jing Luo
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Fengjian Chu
- Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Huiwen Wang
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Hongru Feng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China.
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
6
|
Chen W, Li Q, Luo J, Pan Y, Feng H. Crystallization and Solvent Evaporation Ionization Mass Spectrometry (CSEI-MS) for Rapid Detection of Drugs in Complex Matrices. Anal Chem 2024; 96:8886-8892. [PMID: 38771107 DOI: 10.1021/acs.analchem.4c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Illegal addition of drugs is common but seriously threatens public health safety. Conventional mass spectrometry methods are difficult to realize direct analysis of drugs existing in some complex matrices such as seawater or soil due to the ion suppression effect and contamination to MS parts caused by nonvolatile salts. In this work, a novel crystallization and solvent evaporation ionization mass spectrometry (CSEI-MS) method was constructed and developed to achieve rapid desalting detection. CSEI only consists of a heated plate and a nebulizer and exhibits excellent desalting performance, enabling direct analysis of six drugs dissolved in eight kinds of salt solutions (up to 200 mmol/L) and three complex salty matrices. Under optimized conditions, CSEI-MS presents high sensitivity, accuracy, linearity, and intraday and interday precision. Finally, this method is applied to the quantitative analysis of drugs in seawater, hand cream, and soil. Furthermore, the highly sensitive detection of CSEI-MS is demonstrated to remain even if the detection processes are conducted within 5 s via common commercial tools.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Chemistry, Zhejiang University, Hangzhou Zhejiang 310027, P. R. China
| | - Qing Li
- Department of Chemistry, Zhejiang University, Hangzhou Zhejiang 310027, P. R. China
| | - Jing Luo
- Department of Chemistry, Zhejiang University, Hangzhou Zhejiang 310027, P. R. China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou Zhejiang 310027, P. R. China
| | - Hongru Feng
- Department of Chemistry, Zhejiang University, Hangzhou Zhejiang 310027, P. R. China
| |
Collapse
|
7
|
Pereira I, Sboto JNS, Robinson JL, Gill CG. Paper spray mass spectrometry combined with machine learning as a rapid diagnostic for chronic kidney disease. Analyst 2024; 149:2600-2608. [PMID: 38529879 DOI: 10.1039/d4an00099d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
A new analytical method for chronic kidney disease (CKD) detection utilizing paper spray mass spectrometry (PS-MS) combined with machine learning is presented. The analytical protocol is rapid and simple, based on metabolic profile alterations in urine. Anonymized raw urine samples were deposited (10 μL each) onto pointed PS-MS sample strips. Without waiting for the sample to dry, 75 μL of acetonitrile and high voltage were applied to the strips, using high resolution mass spectrometry measurement (15 s per sample) with polarity switching to detect a wide range of metabolites. Random forest machine learning was used to classify the resulting data. The diagnostic performance for the potential diagnosis of CKD was evaluated for accuracy, sensitivity, and specificity, achieving results >96% for the training data and >91% for validation and test data sets. Metabolites selected by the classification model as up- or down-regulated in healthy or CKD samples were tentatively identified and in agreement with previously reported literature. The potential utilization of this approach to discriminate albuminuria categories (normo, micro, and macroalbuminuria) was also demonstrated. This study indicates that PS-MS combined with machine learning has the potential to be used as a rapid and simple diagnostic tool for CKD.
Collapse
Affiliation(s)
- Igor Pereira
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, 900 Fifth Street, Nanaimo, BC, V9R 5S5, Canada.
| | - Jindar N S Sboto
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, 900 Fifth Street, Nanaimo, BC, V9R 5S5, Canada.
| | | | - Chris G Gill
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, 900 Fifth Street, Nanaimo, BC, V9R 5S5, Canada.
- Chemistry Department, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Chemistry Department, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Department of Occupational and Environmental Health Sciences, University of Washington, Seattle, WA, 98195-1618, USA
| |
Collapse
|
8
|
Hassan MTA, Chen X, Fnu PIJ, Osonga FJ, Sadik OA, Li M, Chen H. Rapid detection of per- and polyfluoroalkyl substances (PFAS) using paper spray-based mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133366. [PMID: 38185081 DOI: 10.1016/j.jhazmat.2023.133366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Traditional PFAS analysis by mass spectrometry (MS) is time-consuming, as laborious sample preparation (e.g., extraction and desalting) is necessary. Herein, we report fast detection of PFAS by paper spray (PS)-based MS techniques, which employs a triangular-shaped filter paper for sample loading and ionization (≤ 3 min per sample). In this study, PS-MS was first used for direct PFAS analysis of drinking water, tap water, and wastewater. Interestingly, food package paper materials can be directly cut and examined with PS-MS for possible PFAS contamination. For samples containing salt matrices which would suppress PFAS ion signal, desalting paper spray mass spectrometry (DPS-MS), was shown to be capable of rapidly desalting, ionizing and detecting PFAS species such as per-fluorooctanoic acid (PFOA) and per-fluorosulphonic acid (PFOS). The retention of PFAS on paper substrate while salts being washed away by water is likely due to hydrophilic interaction between the PFAS polar head (e.g., carboxylic acid, sulfonic acid) with the polar filter paper cellulose surface. The DPS-MS method is highly sensitive (limits of detection:1.2-4.5 ppt) and can be applicable for directly analyzing soil extract and soil samples. These results suggest the high potential of PS-MS and the related DPS-MS technique in real-world environmental analysis of PFAS.
Collapse
Affiliation(s)
- Md Tanim-Al Hassan
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Xingzhi Chen
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Praneeth Ivan Joel Fnu
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Francis J Osonga
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Omowunmi A Sadik
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institutes of Technology, University Heights, Newark, NJ 07102, USA.
| |
Collapse
|
9
|
Bhattarai M, Wang Q, Javaid T, Venkataraghavan A, Al Hassan MT, O'Neill M, Tan L, Chen H, Faik A. Streamlining assays of glycosyltransferases activity using in vitro GT-array (i-GT-ray) platform: Application to family GT37 fucosyltransferases. J Biol Chem 2024; 300:105734. [PMID: 38336294 PMCID: PMC10933551 DOI: 10.1016/j.jbc.2024.105734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Numerous putative glycosyltransferases (GTs) have been identified using bioinformatic approaches. However, demonstrating the activity of these GTs remains a challenge. Here, we describe the development of a rapid in vitro GT-array screening platform for activity of GTs. GT-arrays are generated by cell-free in vitro protein synthesis and binding using microplates precoated with a N-terminal Halo- or a C-terminal GST-tagged GT-encoding plasmid DNA and a capture antibody. These arrays are then used for screening of transferase activities and the reactions are monitored by a luminescence GLO assay. The products formed by these reactions can be analyzed directly from the microplates by mass spectrometry. Using this platform, a total of 280 assays were performed to screen 22 putative fucosyltransferases (FUTs) from family GT37 (seven from Arabidopsis and 15 from rice) for activity toward five acceptors: non-fucosylated tamarind xyloglucan (TXyG), arabinotriose (Ara3), non-fucosylated rhamnogalacturonan I (RG-I), and RG-II from the mur1-1 Arabidopsis mutant, and the celery RG-II monomer lacking Arap and MeFuc of chain B and l-Gal of chain A. Our screen showed that AtFUT2, AtFUT5, and AtFUT10 have activity toward RG-I, while AtFUT8 was active on RG-II. Five rice OsFUTs have XyG-FUT activity and four rice OsFUTs have activity toward Ara3. None of the putative OsFUTs were active on the RG-I and RG-II. However, promiscuity toward acceptors was observed for several FUTs. These findings extend our knowledge of cell wall polysaccharide fucosylation in plants. We believe that in vitro GT-array platform provides a valuable tool for cell wall biochemistry and other research fields.
Collapse
Affiliation(s)
- Matrika Bhattarai
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, USA
| | - Qi Wang
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Tasleem Javaid
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, USA
| | | | - Md Tanim Al Hassan
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Malcolm O'Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Ahmed Faik
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, USA.
| |
Collapse
|
10
|
Pereira I, Robinson JL, Gill CG. Simultaneous quantitation of urinary albumin and creatinine for rapid clinical albuminuria diagnostics using high-throughput paper spray mass spectrometry. Analyst 2024; 149:1102-1110. [PMID: 38093632 DOI: 10.1039/d3an01855e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Albuminuria is a clinical condition associated with poor kidney function, diagnosed by determining the ratio of albumin to creatinine concentrations in patient urine samples. We present a high-throughput paper spray mass spectrometry (PS-MS) method for simultaneous quantitation of urinary albumin and creatinine for potential diagnosis of albuminuria. Minimal (urine dilution) or no sample preparation is required. The analytical performance of the method was evaluated, achieving linear calibration curves (R2 > 0.99) with little inter-day variability in the slope (N = 5 days), exhibiting coefficient of variation (CV) of 8% and 3% for albumin and creatinine, respectively. LOD and LOQ for albumin were 2.1 and 7.0 mg L-1, and for creatinine were 0.01 and 0.03 mmol L-1, respectively. Intra- and inter-day (N = 5) precisions (%CV) and accuracies (%bias) were <10% and ±11%, respectively, for both analytes. The method was applied to determine albumin-to-creatinine ratios in anonymous human patient urine samples (N = 56), and a correlation of R2 = 0.9744 was achieved between the PS-MS results and validated clinical method results. This work demonstrates the utility of PS-MS to simultaneously quantify a large (albumin) and a small (creatinine) molecule directly in patient urine samples, and its potential as a tool for clinical albuminuria diagnostics.
Collapse
Affiliation(s)
- Igor Pereira
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada.
| | | | - Chris G Gill
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada.
- Chemistry Department, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Chemistry Department, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Department of Occupational and Environmental Health Sciences, University of Washington, Seattle, WA, 98195-1618, USA
| |
Collapse
|
11
|
Zhang X, Wang Z, Li X, Xiao W, Zou X, Huang Q, Zhou L. Competitive electrochemical sensing for cancer cell evaluation based on thionine-interlinked signal probes. Analyst 2023; 148:912-918. [PMID: 36692060 DOI: 10.1039/d2an01599d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of effective methods for tracking cancer cells is of significant importance in the early diagnosis and treatment of tumor diseases. Compared with the developed techniques, the electrochemical assay has shown considerable potential for monitoring glycan expression on the cell surface using nondestructive means. However, the application expansion of the electrochemical strategy is strongly impeded owing to its dependence on electroactive species. In this study, a competitive electrochemical strategy was reported for monitoring cancer cells based on mannose (a typical glycan) as a clinical biomarker. Herein, functionalized carbon nanotubes were used to load the thiomannosyl dimer, and thionine-interlinking signal probes were designed for competitive recognition. After effective competition between cancer cells and the anchored mannose, a decreased current was obtained as the cell concentration increased. Under optimal conditions, the proposed biosensor exhibited attractive performance for cancer cell analysis with a detection limit as low as 20 cells per mL for QGY-7701 and 35 cells per mL for QGY-7703, facilitating great promise for the sensitive detection of cancer cells and thus showing potential applications in cancer diagnosis.
Collapse
Affiliation(s)
- Xinai Zhang
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222001, P. R. China. .,School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222001, P. R. China.
| | - Xu Li
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222001, P. R. China.
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, 222001, P. R. China.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Qilin Huang
- Yunnan Police College, Kunming, 650223, P. R. China
| | - Lili Zhou
- Shandong Institute for Product Quality Inspection, Jinan, 250100, P. R. China
| |
Collapse
|
12
|
Li C, DeVor A, Wang J, Valentine SJ, Li P. Rapid and flexible online desalting using Nafion-coated melamine sponge for mass spectrometry analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9341. [PMID: 35729084 PMCID: PMC9357145 DOI: 10.1002/rcm.9341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE The performance of mass spectrometry (MS) analysis is often affected by the presence of salt ions. To achieve optimal MS detection results, desalting is necessary for samples with high salt concentrations. We report a rapid, low-cost and flexible online desalting method using Nafion-coated sponge. This method is easy to perform and can be implemented to a wide range of customized fluidic systems. METHODS Nafion-coated melamine sponge was fabricated by soaking a glass tube containing a melamine sponge in Nafion solution and then drying overnight. The online desalting workflow is comprised of three major parts: (1) Syringe pump, which provides a continuous flow for the online fluid system; (2) Nafion sponge in a glass tube, where the online desalting of sample solution happens; (3) Capillary Vibrating Sharp-Edge Spray Ionization (cVSSI), which is an ionization technique to ionize the desalted analytes. RESULTS Effective online desalting of a 10 mM NaCl solution was demonstrated for a wide range of molecules including small molecules, peptides, DNAs, and proteins using a flow rate of 10 μL/min. By incorporating multiple pieces of the Nafion-coated sponge, effective desalting for ubiquitin and cytochrome c (Cyt-c) from physiological buffers, including phosphate-buffered saline (PBS) and tris-buffered saline (TBS), were also achieved. For molecules that are sensitive to low pH conditions after desalting, a R-SO3 NH4 -type Nafion-coated sponge was fabricated. Desalting of ubiquitin, oligosaccharide, and DNA oligomers from 10 mM NaCl or 10 mM KCl solutions was demonstrated. CONCLUSIONS Flexible, low-cost, and efficient online desalting was achieved by the Nafion-coated sponge. A variety of molecules ranging from small molecules, peptides, proteins to oligosaccharides and DNAs can be desalted for MS analysis. The desalting by Nafion sponge has great potential for desalting applications that require customized fluidic design and rapid analysis.
Collapse
Affiliation(s)
- Chong Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV
| | - Amanda DeVor
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV
| | - Jing Wang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV
| | - Stephen J. Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV
| |
Collapse
|
13
|
Challen B, Cramer R. Advances in ionisation techniques for mass spectrometry-based omics research. Proteomics 2022; 22:e2100394. [PMID: 35709387 DOI: 10.1002/pmic.202100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022]
Abstract
Omics analysis by mass spectrometry (MS) is a vast field, with proteomics, metabolomics and lipidomics dominating recent research by exploiting biological MS ionisation techniques. Traditional MS ionisation techniques such as electrospray ionisation have limitations in analyte-specific sensitivity, modes of sampling and throughput, leading to many researchers investigating new ionisation methods for omics research. In this review, we examine the current landscape of these new ionisation techniques, divided into the three groups of (electro)spray-based, laser-based and other miscellaneous ionisation techniques. Due to the wide range of new developments, this review can only provide a starting point for further reading on each ionisation technique, as each have unique benefits, often for specialised applications, which promise beneficial results for different areas in the omics world.
Collapse
Affiliation(s)
- Bob Challen
- Department of Chemistry, University of Reading, Whiteknights, Reading, UK
| | - Rainer Cramer
- Department of Chemistry, University of Reading, Whiteknights, Reading, UK
| |
Collapse
|
14
|
Song X, Mofidfar M, Zare RN. Introducing Nafion for In Situ Desalting and Biofluid Profiling in Spray Mass Spectrometry. Front Chem 2022; 9:807244. [PMID: 35145954 PMCID: PMC8821663 DOI: 10.3389/fchem.2021.807244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
We introduce Nafion into the ambient ionization technique of spray mass spectrometry to serve for in situ desalting and direct analysis of biological fluids. Nafion was coated onto the surface of the triangular spray tip as the cation exchange material. Because the sulfonic group from the Nafion membrane effectively exchanges their carried protons with inorganic salt ions (e.g., Na+ and K+), the analyte's ionization efficiency can be significantly enhanced by reducing ion suppression. The desalting efficiency can reach 90% and the maximum tolerance of the absolute salt amount reaches 100 μmol. The mass spectral profile can also be simplified by removing the multiple adducted ion types from small-molecule drugs and metabolites ([M + Na]+ and [M + K]+), or multiply charged ions formed by proteins ([M + nNa]n+ and [M + nK]n+). Thus, the Nafion coating makes less ambiguous data interpretation collected from spray mass spectrometry for qualitative profiling or quantitative measurement of a target analyte.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Chemistry, Fudan University, Shanghai, China
- Department of Chemistry, Stanford University, Stanford, CA, United States
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Stanford, CA, United States
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA, United States
| |
Collapse
|
15
|
Song X, Li J, Mofidfar M, Zare RN. Distinguishing between Isobaric Ions Using Microdroplet Hydrogen-Deuterium Exchange Mass Spectrometry. Metabolites 2021; 11:728. [PMID: 34822386 PMCID: PMC8625015 DOI: 10.3390/metabo11110728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Isobaric ions having the same mass-to-charge ratio cannot be separately identified by mass spectrometry (MS) alone, but this limitation can be overcome by using hydrogen-deuterium exchange (HDX) in microdroplets. Because isobaric ions may contain a varied number of exchangeable sites and different types of functional groups, each one produces a unique MS spectral pattern after droplet spray HDX without the need for MS/MS experiments or introduction of ion mobility measurements. As an example of the power of this approach, isobaric ions in urinary metabolic profiles are identified and used to distinguish between healthy individuals and those having bladder cancer.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (X.S.); (M.M.)
- Department of Chemistry, Fudan University, Shanghai 200438, China;
| | - Jia Li
- Department of Chemistry, Fudan University, Shanghai 200438, China;
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (X.S.); (M.M.)
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (X.S.); (M.M.)
| |
Collapse
|