1
|
Jones BS, Pareek V, Hu DD, Weaver SD, Syska C, Galfano G, Champion MM, Champion PA. N - acetyl-transferases required for iron uptake and aminoglycoside resistance promote virulence lipid production in M. marinum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602253. [PMID: 39005365 PMCID: PMC11245092 DOI: 10.1101/2024.07.05.602253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Phagosomal lysis is a key aspect of mycobacterial infection of host macrophages. Acetylation is a protein modification mediated enzymatically by N-acetyltransferases (NATs) that impacts bacterial pathogenesis and physiology. To identify NATs required for lytic activity, we leveraged Mycobacterium marinum, a nontubercular pathogen and an established model for M. tuberculosis. M. marinum hemolysis is a proxy for phagolytic activity. We generated M. marinum strains with deletions in conserved NAT genes and screened for hemolytic activity. Several conserved lysine acetyltransferases (KATs) contributed to hemolysis. Hemolysis is mediated by the ESX-1 secretion system and by phthiocerol dimycocerosate (PDIM), a virulence lipid. For several strains, the hemolytic activity was restored by the addition of second copy of the ESX-1 locus. Using thin-layer chromatography (TLC), we found a single NAT required for PDIM and phenolic glycolipid (PGL) production. MbtK is a conserved KAT required for mycobactin siderophore synthesis and virulence. Mycobactin J exogenously complemented PDIM/PGL production in the Δ mbtK strain. The Δ mbtK M. marinum strain was attenuated in macrophage and Galleria mellonella infection models. Constitutive expression of either eis or papA5, which encode a KAT required for aminoglycoside resistance and a PDIM/PGL biosynthetic enzyme, rescued PDIM/PGL production and virulence of the Δ mbtK strain. Eis N-terminally acetylated PapA5 in vitro , supporting a mechanism for restored lipid production. Overall, our study establishes connections between the MbtK and Eis NATs, and between iron uptake and PDIM and PGL synthesis in M. marinum . Our findings underscore the multifunctional nature of mycobacterial NATs and their connection to key virulence pathways. Significance Statement Acetylation is a modification of protein N-termini, lysine residues, antibiotics and lipids. Many of the enzymes that promote acetylation belong to the GNAT family of proteins. M. marinum is a well-established as a model to understand how M. tuberculosis causes tuberculosis. In this study we sought to identify conserved GNAT proteins required for early stages of mycobacterial infection. Using M. marinum, we determined that several GNAT proteins are required for the lytic activity of M. marinum. We uncovered previously unknown connections between acetyl-transferases required for iron uptake and antimicrobial resistance, and the production of the unique mycobacterial lipids, PDIM and PGLOur data support that acetyl-transferases from the GNAT family are interconnected, and have activities beyond those previously reported.
Collapse
|
2
|
Hou K, Jabeen R, Sun L, Wei J. How do Mutations of Mycobacterium Genes Cause Drug Resistance in Tuberculosis? Curr Pharm Biotechnol 2024; 25:724-736. [PMID: 37888812 DOI: 10.2174/0113892010257816230920053547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 10/28/2023]
Abstract
A steady increase in the prevalence of drug-resistant tuberculosis (DR-TB) has already been reported in Pakistan. In addition, DR-TB is gradually changing from one-drug resistance to multi-drug resistance, which is a serious challenge for tuberculosis treatment. This review provides an overview of the anti-tuberculosis drugs and focuses on the molecular mechanisms of drug resistance in Mycobacterium tuberculosis, with the hope that it will contribute to the study of drug resistance in response to the emergence of multidrug-resistant tuberculosis.
Collapse
Affiliation(s)
- Kaiying Hou
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Riffat Jabeen
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lin Sun
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Jianshe Wei
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
3
|
Morey-León G, Mejía-Ponce PM, Granda Pardo JC, Muñoz-Mawyin K, Fernández-Cadena JC, García-Moreira E, Andrade-Molina D, Licona-Cassani C, Berná L. A precision overview of genomic resistance screening in Ecuadorian isolates of Mycobacterium tuberculosis using web-based bioinformatics tools. PLoS One 2023; 18:e0294670. [PMID: 38051742 DOI: 10.1371/journal.pone.0294670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
INTRODUCTION Tuberculosis (TB) is among the deadliest diseases worldwide, and its impact is mainly due to the continuous emergence of resistant isolates during treatment due to the laborious process of resistance diagnosis, nonadherence to treatment and circulation of previously resistant isolates of Mycobacterium tuberculosis. In this study, we evaluated the performance and functionalities of web-based tools, including Mykrobe, TB-profiler, PhyResSE, KvarQ, and SAM-TB, for detecting resistance in 88 Ecuadorian isolates of Mycobacterium tuberculosis drug susceptibility tested previously. Statistical analysis was used to determine the correlation between genomic and phenotypic analysis. Our results showed that with the exception of KvarQ, all tools had the highest correlation with the conventional drug susceptibility test (DST) for global resistance detection (98% agreement and 0.941 Cohen's kappa), while SAM-TB, PhyResSE, TB-profiler and Mykrobe had better correlations with DST for first-line drug analysis individually. We also identified that in our study, only 50% of mutations characterized by the web-based tools in the rpoB, katG, embB, pncA, gyrA and rrs regions were canonical and included in the World Health Organization (WHO) catalogue. Our findings suggest that SAM-TB, PhyResSE, TB-profiler and Mykrobe were efficient in determining canonical resistance-related mutations, but more analysis is needed to improve second-line detection. Improving surveillance programs using whole-genome sequencing tools for first-line drugs, MDR-TB and XDR-TB is essential to understand the molecular epidemiology of TB in Ecuador. IMPORTANCE Tuberculosis, an infectious disease caused by Mycobacterium tuberculosis, most commonly affects the lungs and is often spread through the air when infected people cough, sneeze, or spit. However, despite the existence of effective drug treatment, patient adherence, long duration of treatment, and late diagnosis have reduced the effectiveness of therapy and increased drug resistance. The increase in resistant cases, added to the impact of the COVID-19 pandemic, has highlighted the importance of implementing efficient and timely diagnostic methodologies worldwide. The significance of our research is in evaluating and identifying a more efficient and user-friendly web-based tool to characterize resistance in Mycobacterium tuberculosis by whole-genome sequencing, which will allow more routine application to improve TB strain surveillance programs locally.
Collapse
Affiliation(s)
- Gabriel Morey-León
- Facultad de Ciencias de la Salud, Universidad Espíritu Santo, Samborondón, Ecuador
- Universidad de la República, Montevideo, Uruguay
- University of Guayaquil, Guayaquil, Ecuador
| | - Paulina M Mejía-Ponce
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Juan Carlos Granda Pardo
- Centro de Referencia Nacional de Micobacterias, Instituto Nacional de Investigación en Salud Pública Dr Leopoldo Izquieta Perez, INSPI-LIP, Guayaquil, Ecuador
| | - Karen Muñoz-Mawyin
- Laboratorio de Ciencias Ómicas, Universidad Espíritu Santo, Samborondón, Ecuador
| | | | | | - Derly Andrade-Molina
- Facultad de Ciencias de la Salud, Universidad Espíritu Santo, Samborondón, Ecuador
- Laboratorio de Ciencias Ómicas, Universidad Espíritu Santo, Samborondón, Ecuador
| | | | - Luisa Berná
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
4
|
Sachan RK, Mistry V, Dholaria M, Rana A, Devgon I, Ali I, Iqbal J, Eldin SM, Mohammad Said Al-Tawaha AR, Bawazeer S, Dutta J, Karnwal A. Overcoming Mycobacterium tuberculosis Drug Resistance: Novel Medications and Repositioning Strategies. ACS OMEGA 2023; 8:32244-32257. [PMID: 37720746 PMCID: PMC10500578 DOI: 10.1021/acsomega.3c02563] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023]
Abstract
Mycobacterium tuberculosis, the bacterium responsible for tuberculosis, is a global health concern, affecting millions worldwide. This bacterium has earned a reputation as a formidable adversary due to its multidrug-resistant nature, allowing it to withstand many antibiotics. The development of this drug resistance in Mycobacterium tuberculosis is attributed to innate and acquired mechanisms. In the past, rifampin was considered a potent medication for treating tuberculosis infections. However, the rapid development of resistance to this drug by the bacterium underscores the pressing need for new therapeutic agents. Fortunately, several other medications previously overlooked for tuberculosis treatment are already available in the market. Moreover, several innovative drugs are under clinical investigation, offering hope for more effective treatments. To enhance the effectiveness of these drugs, it is recommended that researchers concentrate on identifying unique target sites within the bacterium during the drug development process. This strategy could potentially circumvent the issues presented by Mycobacterium drug resistance. This review primarily focuses on the characteristics of novel drug resistance mechanisms in Mycobacterium tuberculosis. It also discusses potential medications being repositioned or sourced from novel origins. The ultimate objective of this review is to discover efficacious treatments for tuberculosis that can successfully tackle the hurdles posed by Mycobacterium drug resistance.
Collapse
Affiliation(s)
| | - Vyoma Mistry
- C.
G. Bhakta Institute of Biotechnology, Uka
Tarsadia University, Bardoli 394350, Surat, India
| | - Mayuri Dholaria
- Naran
Lala College of Professional and Applied Sciences, Navsari 396450, Gujarat, India
| | - Abhishek Rana
- Jindal
Global Law School, OP Jindal Global University, Sonepat 131001, Haryana, India
| | - Inderpal Devgon
- Lovely
Professional University, Phagwara 144411, Punjab, India
| | - Iftikhar Ali
- Center
for Plant Science and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
- Department
of Genetics and Development, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Javed Iqbal
- Department
of Botany, Bacha Khan University, Charsadda, 24420 Khyber Pakhtunkhwa, Pakistan
| | - Sayed M. Eldin
- Center
of Research, Faculty of Engineering, Future
University in Egypt, New Cairo 11835, Egypt
| | | | - Sami Bawazeer
- Faculty
of Pharmacy, Department of Pharmacognosy, Umm Al-Qura University, Makkah 4041-4152, Kingdom of Saudi Arabia
| | - Joydeep Dutta
- Lovely
Professional University, Phagwara 144411, Punjab, India
| | - Arun Karnwal
- Lovely
Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
5
|
Alonso-Vásquez T, Fondi M, Perrin E. Understanding Antimicrobial Resistance Using Genome-Scale Metabolic Modeling. Antibiotics (Basel) 2023; 12:antibiotics12050896. [PMID: 37237798 DOI: 10.3390/antibiotics12050896] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The urgent necessity to fight antimicrobial resistance is universally recognized. In the search of new targets and strategies to face this global challenge, a promising approach resides in the study of the cellular response to antimicrobial exposure and on the impact of global cellular reprogramming on antimicrobial drugs' efficacy. The metabolic state of microbial cells has been shown to undergo several antimicrobial-induced modifications and, at the same time, to be a good predictor of the outcome of an antimicrobial treatment. Metabolism is a promising reservoir of potential drug targets/adjuvants that has not been fully exploited to date. One of the main problems in unraveling the metabolic response of cells to the environment resides in the complexity of such metabolic networks. To solve this problem, modeling approaches have been developed, and they are progressively gaining in popularity due to the huge availability of genomic information and the ease at which a genome sequence can be converted into models to run basic phenotype predictions. Here, we review the use of computational modeling to study the relationship between microbial metabolism and antimicrobials and the recent advances in the application of genome-scale metabolic modeling to the study of microbial responses to antimicrobial exposure.
Collapse
Affiliation(s)
- Tania Alonso-Vásquez
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto F.no, 50019 Florence, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto F.no, 50019 Florence, Italy
| | - Elena Perrin
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto F.no, 50019 Florence, Italy
| |
Collapse
|
6
|
Otchere ID, Morgan PA, Asare P, Osei-Wusu S, Aboagye SY, Yirenkyi SO, Musah AB, Danso EK, Tetteh-Ocloo G, Afum T, Asante-Poku A, Laryea C, Poku YA, Bonsu F, Gagneux S, Yeboah-Manu D. Analysis of drug resistance among difficult-to-treat tuberculosis patients in Ghana identifies several pre-XDR TB cases. Front Microbiol 2023; 13:1069292. [PMID: 36713197 PMCID: PMC9878308 DOI: 10.3389/fmicb.2022.1069292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Background Resistance to tuberculosis (TB) drugs has become a major threat to global control efforts. Early case detection and drug susceptibility profiling of the infecting bacteria are essential for appropriate case management. The objective of this study was to determine the drug susceptibility profiles of difficult-to-treat (DTT) TB patients in Ghana. Methods Sputum samples obtained from DTT-TB cases from health facilities across Ghana were processed for rapid diagnosis and detection of drug resistance using the Genotype MTBDRplus and Genotype MTBDRsl.v2 from Hain Life science. Results A total of 298 (90%) out of 331 sputum samples processed gave interpretable bands out of which 175 (58.7%) were resistant to at least one drug (ANYr); 16.8% (50/298) were isoniazid-mono-resistant (INHr), 16.8% (50/298) were rifampicin-mono-resistant (RIFr), and 25.2% (75/298) were MDR. 24 (13.7%) of the ANYr were additionally resistant to at least one second line drug: 7.4% (2 RIFr, 1 INHr, and 10 MDR samples) resistant to only FQs and 2.3% (2 RIFr, 1 INHr, and 1 MDR samples) resistant to AMG drugs kanamycin (KAN), amikacin (AMK), capreomycin (CAP), and viomycin (VIO). Additionally, there were 4.0% (5 RIFr and 2 MDR samples) resistant to both FQs and AMGs. 81 (65.6%) out of 125 INH-resistant samples including INHr and MDR had katG-mutations (MT) whereas 15 (12%) had inhApro-MT. The remaining 28 (22.4%) had both katG and inhA MT. All the 19 FQ-resistant samples were gyrA mutants whereas the 10 AMGs were rrs (3), eis (3) as well as rrs, and eis co-mutants (4). Except for the seven pre-XDR samples, no sample had eis MT. Conclusion The detection of several pre-XDR TB cases in Ghana calls for intensified drug resistance surveillance and monitoring of TB patients to, respectively, ensure early diagnosis and treatment compliance.
Collapse
Affiliation(s)
- Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Portia Abena Morgan
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Samuel Yaw Aboagye
- Institute for Environment and Sanitation Studies, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | | | - Abdul Basit Musah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Emelia Konadu Danso
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Theophilus Afum
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Yaw Adusi Poku
- National Tuberculosis Control Program, Ghana Health Service, Accra, Ghana
| | - Frank Bonsu
- National Tuberculosis Control Program, Ghana Health Service, Accra, Ghana
| | - Sebastien Gagneux
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
7
|
Panova AE, Vinokurov AS, Shemetova AA, Burmistrova IA, Shulgina MV, Samoilova AG, Vasilyeva IA, Vakhrusheva DV, Umpeleva TV, Eremeeva NI, Lavrenchuk LS, Golubeva LA, Danilova TI, Vasilyeva TB, Ugol'kova VA, Sosova NV, Lekhlyaider MV, Gorshkova IA, Romanova TA. Molecular characteristics of Mycobacterium tuberculosis drug-resistant isolates from HIV- and HIV+ tuberculosis patients in Russia. BMC Microbiol 2022; 22:138. [PMID: 35590243 PMCID: PMC9118847 DOI: 10.1186/s12866-022-02553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background High burden of drug-resistant (DR) tuberculosis (TB) is a significant threat to national TB control programs all over the world and in the Russian Federation. Different Mycobacterium tuberculosis (MTB) genotypes are hypothesized to have specific characteristics affecting TB control programs. For example, Beijing strains are supposed to have higher mutation rates compared to strains of other genotypes and subsequently higher capability to develop drug-resistance. Results Clinical MTB isolates from HIV- and HIV+ patients from four regions of Russia were analyzed for genotypes and mutations conferring resistance to Isoniazid, Rifampicin, Ethambutol, aminoglycosides, and fluoroquinolones. Analysis of genotypes and polymorphism of genomic loci according to the HIV status of the patients – sources of MTB isolates were performed. Studied MTB isolates from HIV- TB patients belonged to 15 genotypes and from HIV + TB patients – to 6 genotypes. Beijing clinical isolates dominated in HIV- (64,7%) and HIV+ (74,4%) groups. Other isolates were of LAM (including LAM1 and LAM9), Ural, and 4 minor groups of genotypes (including 5 subclones T). The spectrum of genotypes in the HIV- group was broader than in the HIV+ group. PR of B0/W148 Beijing was significantly lower than of other Beijing genotypes in susceptible and MDR-XDR isolates. Rates of isolates belonging to non-Beijing genotypes were higher than Beijing in susceptible isolates from HIV- patients. Conclusions Beijing genotype isolates prevailed in clinical isolates of all drug susceptibility profiles both from HIV- and HIV+ patients, although B0/W148 Beijing genotype did not dominate in this study. Genome loci and mutations polymorphisms were more pronounced in clinical isolates from HIV- patients, than from HIV+.
Collapse
Affiliation(s)
- Anna E Panova
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Ministry of Public Heath of the Russian Federation (NMRC PhID), Moscow, Russian Federation
| | - Anatoliy S Vinokurov
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Ministry of Public Heath of the Russian Federation (NMRC PhID), Moscow, Russian Federation
| | - Anastasiya A Shemetova
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Ministry of Public Heath of the Russian Federation (NMRC PhID), Moscow, Russian Federation
| | - Irina A Burmistrova
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Ministry of Public Heath of the Russian Federation (NMRC PhID), Moscow, Russian Federation
| | - Marina V Shulgina
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Ministry of Public Heath of the Russian Federation (NMRC PhID), Moscow, Russian Federation.
| | - Anastasiya G Samoilova
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Ministry of Public Heath of the Russian Federation (NMRC PhID), Moscow, Russian Federation
| | - Irina A Vasilyeva
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Ministry of Public Heath of the Russian Federation (NMRC PhID), Moscow, Russian Federation
| | - Diana V Vakhrusheva
- Ural Research Institute of Phthisiopulmonology -Branch of NMRC PhID, Ekaterinburg, Russian Federation
| | - Tatiana V Umpeleva
- Ural Research Institute of Phthisiopulmonology -Branch of NMRC PhID, Ekaterinburg, Russian Federation
| | - Nataliya I Eremeeva
- Ural Research Institute of Phthisiopulmonology -Branch of NMRC PhID, Ekaterinburg, Russian Federation
| | - Leonid S Lavrenchuk
- Ural Research Institute of Phthisiopulmonology -Branch of NMRC PhID, Ekaterinburg, Russian Federation
| | - Lyudmila A Golubeva
- Ural Research Institute of Phthisiopulmonology -Branch of NMRC PhID, Ekaterinburg, Russian Federation
| | - Tatiana I Danilova
- Regional TB dispensary of Leningradskaya oblast, Saint Petersburg, Russian Federation
| | - Tatiana B Vasilyeva
- Regional TB dispensary of Leningradskaya oblast, Saint Petersburg, Russian Federation
| | - Vera A Ugol'kova
- Regional TB dispensary of Leningradskaya oblast, Saint Petersburg, Russian Federation
| | - Nataliya V Sosova
- Regional TB dispensary of Stavropolskiy kray, Stavropol, Russian Federation
| | - Marina V Lekhlyaider
- Regional TB dispensary of Chelyabinskaya oblast, Chelyabinsk, Russian Federation
| | - Irina A Gorshkova
- Regional TB dispensary of Chelyabinskaya oblast, Chelyabinsk, Russian Federation
| | - Tatiana A Romanova
- Regional TB dispensary of Kemerovskaya oblast, Kemerovo, Russian Federation
| |
Collapse
|
8
|
Distribution of Common and Rare Genetic Markers of Second-Line-Injectable-Drug Resistance in Mycobacterium tuberculosis Revealed by a Genome-Wide Association Study. Antimicrob Agents Chemother 2022; 66:e0207521. [PMID: 35532237 DOI: 10.1128/aac.02075-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Point mutations in the rrs gene and the eis promoter are known to confer resistance to the second-line injectable drugs (SLIDs) amikacin (AMK), capreomycin (CAP), and kanamycin (KAN). While mutations in these canonical genes confer the majority of SLID resistance, alternative mechanisms of resistance are not uncommon and threaten effective treatment decisions when using conventional molecular diagnostics. In total, 1,184 clinical Mycobacterium tuberculosis isolates from 7 countries were studied for genomic markers associated with phenotypic resistance. The markers rrs:A1401G and rrs:G1484T were associated with resistance to all three SLIDs, and three known markers in the eis promoter (eis:G-10A, eis:C-12T, and eis:C-14T) were similarly associated with kanamycin resistance (KAN-R). Among 325, 324, and 270 AMK-R, CAP-R, and KAN-R isolates, 274 (84.3%), 250 (77.2%), and 249 (92.3%) harbored canonical mutations, respectively. Thirteen isolates harbored more than one canonical mutation. Canonical mutations did not account for 103 of the phenotypically resistant isolates. A genome-wide association study identified three genes and promoters with mutations that, on aggregate, were associated with unexplained resistance to at least one SLID. Our analysis associated whiB7 5'-untranslated-region mutations with KAN resistance, supporting clinical relevance for this previously demonstrated mechanism of KAN resistance. We also provide evidence for the novel association of CAP resistance with the promoter of the Rv2680-Rv2681 operon, which encodes an exoribonuclease that may influence the binding of CAP to the ribosome. Aggregating mutations by gene can provide additional insight and therefore is recommended for identifying rare mechanisms of resistance when individual mutations carry insufficient statistical power.
Collapse
|
9
|
Mujuni D, Kasemire DL, Ibanda I, Kabugo J, Nsawotebba A, Phelan JE, Majwala RK, Tugumisirize D, Nyombi A, Orena B, Turyahabwe I, Byabajungu H, Nadunga D, Musisi K, Joloba ML, Ssengooba W. Molecular characterisation of second-line drug resistance among drug resistant tuberculosis patients tested in Uganda: a two and a half-year's review. BMC Infect Dis 2022; 22:363. [PMID: 35410160 PMCID: PMC9003953 DOI: 10.1186/s12879-022-07339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Second-line drug resistance (SLD) among tuberculosis (TB) patients is a serious emerging challenge towards global control of the disease. We characterized SLD-resistance conferring-mutations among TB patients with rifampicin and/or isoniazid (RIF and/or INH) drug-resistance tested at the Uganda National TB Reference Laboratory (NTRL) between June 2017 and December 2019. METHODS This was a descriptive cross-sectional secondary data analysis of 20,508 M. tuberculosis isolates of new and previously treated patients' resistant to RIF and/or INH. DNA strips with valid results to characterise the SLD resistance using the commercial Line Probe Assay Genotype MTBDRsl Version 2.0 Assay (Hain Life Science, Nehren, Germany) were reviewed. Data were analysed with STATAv15 using cross-tabulation for frequency and proportions of known resistance-conferring mutations to injectable agents (IA) and fluoroquinolones (FQ). RESULTS Among the eligible participants, 12,993/20,508 (63.4%) were male and median (IQR) age 32 (24-43). A total of 576/20,508 (2.8%) of the M. tuberculosis isolates from participants had resistance to RIF and/or INH. These included; 102/576 (17.7%) single drug-resistant and 474/576 (82.3%) multidrug-resistant (MDR) strains. Only 102 patients had test results for FQ of whom 70/102 (68.6%) and 01/102 (0.98%) had resistance-conferring mutations in the gyrA locus and gyrB locus respectively. Among patients with FQ resistance, gyrAD94G 42.6% (30.0-55.9) and gyrA A90V 41.1% (28.6-54.3) mutations were most observed. Only one mutation, E540D was detected in the gyrB locus. A total of 26 patients had resistance-conferring mutations to IA in whom, 20/26 77.0% (56.4-91.0) had A1401G mutation in the rrs gene locus. CONCLUSIONS Our study reveals a high proportion of mutations known to confer high-level fluoroquinolone drug-resistance among patients with rifampicin and/or isoniazid drug resistance. Utilizing routinely generated laboratory data from existing molecular diagnostic methods may aid real-time surveillance of emerging tuberculosis drug-resistance in resource-limited settings.
Collapse
Affiliation(s)
- Dennis Mujuni
- Makerere University, College of Health Sciences, Kampala, Uganda.,World Health Organisation Supranational Reference Laboratory, Uganda National TB Reference Laboratory, Kampala, Uganda
| | - Dianah Linda Kasemire
- World Health Organisation Supranational Reference Laboratory, Uganda National TB Reference Laboratory, Kampala, Uganda
| | - Ivan Ibanda
- Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Kampala, Uganda
| | - Joel Kabugo
- World Health Organisation Supranational Reference Laboratory, Uganda National TB Reference Laboratory, Kampala, Uganda
| | - Andrew Nsawotebba
- World Health Organisation Supranational Reference Laboratory, Uganda National TB Reference Laboratory, Kampala, Uganda.,National Health Laboratory and Diagnostic Services, Kampala, Uganda
| | - Jody E Phelan
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Robert Kaos Majwala
- United States Agency for International Development, Defeat TB Project, Kampala, Uganda
| | - Didas Tugumisirize
- World Health Organisation Supranational Reference Laboratory, Uganda National TB Reference Laboratory, Kampala, Uganda.,National Tuberculosis and Leprosy Control Programme, Ministry of Health, Kampala, Uganda
| | - Abdunoor Nyombi
- World Health Organisation Supranational Reference Laboratory, Uganda National TB Reference Laboratory, Kampala, Uganda.,National Tuberculosis and Leprosy Control Programme, Ministry of Health, Kampala, Uganda
| | - Beatrice Orena
- World Health Organisation Supranational Reference Laboratory, Uganda National TB Reference Laboratory, Kampala, Uganda
| | - Irene Turyahabwe
- World Health Organisation EPI Laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | - Henry Byabajungu
- World Health Organisation Supranational Reference Laboratory, Uganda National TB Reference Laboratory, Kampala, Uganda
| | - Diana Nadunga
- World Health Organisation Supranational Reference Laboratory, Uganda National TB Reference Laboratory, Kampala, Uganda
| | - Kenneth Musisi
- World Health Organisation Supranational Reference Laboratory, Uganda National TB Reference Laboratory, Kampala, Uganda
| | - Moses Lutakoome Joloba
- World Health Organisation Supranational Reference Laboratory, Uganda National TB Reference Laboratory, Kampala, Uganda.,Department of Medical Microbiology, School of Biomedical Sciences, Makerere University, Kampala, Uganda
| | - Willy Ssengooba
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University, Kampala, Uganda. .,Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda.
| |
Collapse
|
10
|
Sarwer MI, Khan MT, Khurshid S. Novel rrs mutations in second-line injectable drug-resistant clinical isolates of Mycobacterium tuberculosis from the Punjab province of Pakistan. J Infect Chemother 2022; 28:1119-1124. [DOI: 10.1016/j.jiac.2022.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
|
11
|
Vargas R, Freschi L, Spitaleri A, Tahseen S, Barilar I, Niemann S, Miotto P, Cirillo DM, Köser CU, Farhat MR. Role of Epistasis in Amikacin, Kanamycin, Bedaquiline, and Clofazimine Resistance in Mycobacterium tuberculosis Complex. Antimicrob Agents Chemother 2021; 65:e0116421. [PMID: 34460306 PMCID: PMC8522733 DOI: 10.1128/aac.01164-21] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance among bacterial pathogens poses a major global health threat. Mycobacterium tuberculosis complex (MTBC) is estimated to have the highest resistance rates of any pathogen globally. Given the low growth rate and the need for a biosafety level 3 laboratory, the only realistic avenue to scale up drug susceptibility testing (DST) for this pathogen is to rely on genotypic techniques. This raises the fundamental question of whether a mutation is a reliable surrogate for phenotypic resistance or whether the presence of a second mutation can completely counteract its effect, resulting in major diagnostic errors (i.e., systematic false resistance results). To date, such epistatic interactions have only been reported for streptomycin that is now rarely used. By analyzing more than 31,000 MTBC genomes, we demonstrated that the eis C-14T promoter mutation, which is interrogated by several genotypic DST assays endorsed by the World Health Organization, cannot confer resistance to amikacin and kanamycin if it coincides with loss-of-function (LoF) mutations in the coding region of eis. To our knowledge, this represents the first definitive example of antibiotic reversion in MTBC. Moreover, we raise the possibility that mmpR (Rv0678) mutations are not valid markers of resistance to bedaquiline and clofazimine if these coincide with an LoF mutation in the efflux pump encoded by mmpS5 (Rv0677c) and mmpL5 (Rv0676c).
Collapse
Affiliation(s)
- Roger Vargas
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Luca Freschi
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea Spitaleri
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabira Tahseen
- National TB Reference Laboratory, National TB Control Program, Islamabad, Pakistan
| | - Ivan Barilar
- German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Stefan Niemann
- German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Maha R. Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Genome-Scale Metabolic Models and Machine Learning Reveal Genetic Determinants of Antibiotic Resistance in Escherichia coli and Unravel the Underlying Metabolic Adaptation Mechanisms. mSystems 2021; 6:e0091320. [PMID: 34342537 PMCID: PMC8409726 DOI: 10.1128/msystems.00913-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial resistance (AMR) is becoming one of the largest threats to public health worldwide, with the opportunistic pathogen Escherichia coli playing a major role in the AMR global health crisis. Unravelling the complex interplay between drug resistance and metabolic rewiring is key to understand the ability of bacteria to adapt to new treatments and to the development of new effective solutions to combat resistant infections. We developed a computational pipeline that combines machine learning with genome-scale metabolic models (GSMs) to elucidate the systemic relationships between genetic determinants of resistance and metabolism beyond annotated drug resistance genes. Our approach was used to identify genetic determinants of 12 AMR profiles for the opportunistic pathogenic bacterium E. coli. Then, to interpret the large number of identified genetic determinants, we applied a constraint-based approach using the GSM to predict the effects of genetic changes on growth, metabolite yields, and reaction fluxes. Our computational platform leads to multiple results. First, our approach corroborates 225 known AMR-conferring genes, 35 of which are known for the specific antibiotic. Second, integration with the GSM predicted 20 top-ranked genetic determinants (including accA, metK, fabD, fabG, murG, lptG, mraY, folP, and glmM) essential for growth, while a further 17 top-ranked genetic determinants linked AMR to auxotrophic behavior. Third, clusters of AMR-conferring genes affecting similar metabolic processes are revealed, which strongly suggested that metabolic adaptations in cell wall, energy, iron and nucleotide metabolism are associated with AMR. The computational solution can be used to study other human and animal pathogens. IMPORTANCEEscherichia coli is a major public health concern given its increasing level of antibiotic resistance worldwide and extraordinary capacity to acquire and spread resistance via horizontal gene transfer with surrounding species and via mutations in its existing genome. E. coli also exhibits a large amount of metabolic pathway redundancy, which promotes resistance via metabolic adaptability. In this study, we developed a computational approach that integrates machine learning with metabolic modeling to understand the correlation between AMR and metabolic adaptation mechanisms in this model bacterium. Using our approach, we identified AMR genetic determinants associated with cell wall modifications for increased permeability, virulence factor manipulation of host immunity, reduction of oxidative stress toxicity, and changes to energy metabolism. Unravelling the complex interplay between antibiotic resistance and metabolic rewiring may open new opportunities to understand the ability of E. coli, and potentially of other human and animal pathogens, to adapt to new treatments.
Collapse
|
13
|
Melting the eis: Nondetection of Kanamycin Resistance Markers by Routine Diagnostic Tests and Identification of New eis Promoter Variants. Antimicrob Agents Chemother 2021; 65:e0250220. [PMID: 33903113 DOI: 10.1128/aac.02502-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eis promoter mutations can confer reduced Mycobacterium tuberculosis kanamycin susceptibility. GenoType MTBDRsl, a widely used assay evaluating this region, wrongly classified 17/410 isolates as eis promoter wild type. Six out of seventeen isolates harbored mutations known to confer kanamycin resistance, and the remainder harbored either novel eis promoter mutations (7/11) or disputed mutations (4/11). GenoType MTBDRsl can miss established and new variants that cause reduced susceptibility. These data highlight the importance of reflex phenotypic kanamycin testing.
Collapse
|
14
|
Momen G, Aainouss A, Lamaammal A, Chettioui F, Blaghen M, Messoudi M, Belghmi K, Mouslim J, El Mzibri M, El Messaoudi MD, Khyatti M, Chaoui I. Molecular characterization of mutations associated with resistance to second line drugs in Mycobacterium tuberculosis patients from Casablanca, Morocco. Rev Inst Med Trop Sao Paulo 2021; 63:e19. [PMID: 33787739 PMCID: PMC7997671 DOI: 10.1590/s1678-9946202163019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/22/2021] [Indexed: 12/02/2022] Open
Abstract
The emergence and spread of extensively drug-resistant tuberculosis (XDR-TB) is a
serious threat to global health. Therefore, its rapid diagnosis is crucial. The
present study aimed to characterize mutations conferring resistance to second
line drugs (SLDs) within multidrug Mycobacterium tuberculosis
(MDR-MTB) isolates and to estimate the occurrence of XDR-TB in Casablanca,
Morocco. A panel of 200 MDR-TB isolates was collected at the Pasteur Institute
between 2015-2018. Samples were subjected to drug susceptibility testing to
Ofloxacin (OFX), Kanamycin (KAN) and Amikacin (AMK). The mutational status of
gyrA, gyrB, rrs,
tlyA and eis was assessed by sequencing
these target genes. Drug susceptibility testing for SLDs showed that among the
200 MDR strains, 20% were resistant to OFX, 2.5% to KAN and 1.5% to AMK.
Overall, 14.5% of MDR strains harbored mutations in gyrA,
gyrB, rrs and tlyA genes.
From the 40 OFXR isolates, 67.5% had mutations in QRDR of
gyrA and gyrB genes, the most frequent one
being Ala90Val in gyrA gene. Of note, none of the isolates
harbored simultaneously mutations in gyrA and
gyrB genes. In eight out of the 200 MDR-TB isolates
resistant either to KAN or AMK, only 25% had A1401G or Lys89Glu change in
rrs and tlyA genes respectively. This
study is very informative and provides data on the alarming rate of
fluoroquinolone resistance which warrants the need to implement appropriate drug
regimens to prevent the emergence and spread of more severe forms of
Mycobacterium tuberculosis drug resistance.
Collapse
Affiliation(s)
- Ghizlane Momen
- Institut Pasteur du Maroc, Laboratoire des Mycobactéries, Casablanca, Morocco.,Faculté des Sciences, Laboratoire de Microbiologie, Pharmacologie, Biotechnologie et Environnement, Casablanca, Morocco
| | - Achraf Aainouss
- Institut Pasteur du Maroc, Laboratoire des Mycobactéries, Casablanca, Morocco.,Faculté des Sciences Ben M'Sik, Laboratoire d'Ecologie et Environment, Casablanca, Morocco
| | | | - Fouad Chettioui
- Institut Pasteur du Maroc, Laboratoire des Mycobactéries, Casablanca, Morocco
| | - Mohamed Blaghen
- Faculté des Sciences, Laboratoire de Microbiologie, Pharmacologie, Biotechnologie et Environnement, Casablanca, Morocco
| | - Malika Messoudi
- Institut Pasteur du Maroc, Laboratoire des Mycobactéries, Casablanca, Morocco
| | - Khalid Belghmi
- Institut Pasteur du Maroc, Laboratoire des Mycobactéries, Casablanca, Morocco
| | - Jamal Mouslim
- Faculté des Sciences Ben M'Sik, Laboratoire d'Ecologie et Environment, Casablanca, Morocco
| | - Mohammed El Mzibri
- Centre National de l'Energie, des Sciences et Techniques Nucléaires, Département des Sciences du Vivant, Unité de Recherches Médicales et Biologiques, Rabat, Morocco
| | | | - Meriem Khyatti
- Institut Pasteur du Maroc, Laboratoire des Mycobactéries, Casablanca, Morocco
| | - Imane Chaoui
- Centre National de l'Energie, des Sciences et Techniques Nucléaires, Département des Sciences du Vivant, Unité de Recherches Médicales et Biologiques, Rabat, Morocco
| |
Collapse
|
15
|
Kim SY, Kim DH, Moon SM, Song JY, Huh HJ, Lee NY, Shin SJ, Koh WJ, Jhun BW. Association between 16S rRNA gene mutations and susceptibility to amikacin in Mycobacterium avium Complex and Mycobacterium abscessus clinical isolates. Sci Rep 2021; 11:6108. [PMID: 33731862 PMCID: PMC7969740 DOI: 10.1038/s41598-021-85721-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/05/2021] [Indexed: 11/20/2022] Open
Abstract
We evaluated the association between 16S rRNA gene (rrs) mutations and susceptibility in clinical isolates of amikacin-resistant nontuberculous mycobacteria (NTM) in NTM-pulmonary disease (PD) patients. Susceptibility was retested for 134 amikacin-resistant isolates (minimum inhibitory concentration [MIC] ≥ 64 µg/ml) from 86 patients. Amikacin resistance was reconfirmed in 102 NTM isolates from 62 patients with either Mycobacterium avium complex-PD (MAC-PD) (n = 54) or M. abscessus-PD (n = 8). MICs and rrs mutations were evaluated for 318 single colonies from these isolates. For the 54 MAC-PD patients, rrs mutations were present in 34 isolates (63%), comprising all 31 isolates with amikacin MICs ≥ 128 µg/ml, but only three of 23 isolates with an MIC = 64 µg/ml. For the eight M. abscessus-PD patients, all amikacin-resistant (MIC ≥ 64 µg/ml) isolates had rrs mutations. In amikacin-resistant isolates, the A1408G mutation (n = 29) was most common. Two novel mutations, C1496T and T1498A, were also identified. The culture conversion rate did not differ by amikacin MIC. Overall, all high-level and 13% (3/23) of low-level amikacin-resistant MAC isolates had rrs mutations whereas mutations were present in all amikacin-resistant M. abscessus isolates. These findings are valuable for managing MAC- and M. abscessus-PD and suggest the importance of phenotypic and genotypic susceptibility testing.
Collapse
Affiliation(s)
- Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, South Korea
| | - Dae Hun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, South Korea
| | - Seong Mi Moon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Ju Yeun Song
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, South Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Nam Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, South Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
16
|
Drug resistance gene mutations and treatment outcomes in MDR-TB: A prospective study in Eastern China. PLoS Negl Trop Dis 2021; 15:e0009068. [PMID: 33471794 PMCID: PMC7850501 DOI: 10.1371/journal.pntd.0009068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/01/2021] [Accepted: 12/12/2020] [Indexed: 01/28/2023] Open
Abstract
Background Multidrug-resistant tuberculosis (MDR-TB) poses a serious challenge to TB control. It is of great value to search for drug resistance mutation sites and explore the roles that they play in the diagnosis and prognosis of MDR-TB. Methods We consecutively enrolled MDR-TB patients from five cities in Jiangsu Province, China, between January 2013 and December 2014. Drug susceptibility tests of rifampin, isoniazid, ofloxacin, and kanamycin were routinely performed by proportion methods on Lowenstein–Jensen (LJ) medium. Drug resistance-related genes were sequenced, and the consistency of genetic mutations and phenotypic resistance was compared. The association between mutations and treatment outcomes was expressed as odds ratios (ORs) and 95% confidence intervals (CIs). Results Among 87 MDR-TB patients, 71 with treatment outcomes were involved in the analysis. The proportion of successful treatment was 50.7% (36/71). The rpoB gene exhibited the highest mutation rate (93.0%) followed by katG (70.4%), pncA (33.8%), gyrA (29.6%), eis (15.5%), rrs (12.7%), gyrB (9.9%) and rpsA (4.2%). Multivariable analysis demonstrated that patients with pncA gene mutations (adjusted OR: 19.69; 95% CI: 2.43–159.33), advanced age (adjusted OR: 13.53; 95% CI: 1.46–124.95), and nonstandard treatment (adjusted OR: 7.72; 95% CI: 1.35–44.35) had a significantly higher risk of poor treatment outcomes. Conclusions These results suggest that Mycobacterium tuberculosis gene mutations may be related to phenotypic drug susceptibility. The pncA gene mutation along with treatment regimen and age are associated with the treatment outcomes of MDR-TB. Multidrug-resistant tuberculosis (MDR-TB) exacerbates the already serious tuberculosis epidemic, poses a notable threat to global tuberculosis control, and places a considerable burden on developing countries, as treatments for MDR-TB tend to be expensive, of limited efficacy, and toxic. Genotypic determinants of resistance to specific drugs or drug classes offer a rapid and highly specific alternative to phenotypic drug susceptibility testing. Although the relationship between gene mutations and drug resistance has been described previously, the strength of the association of mutations with the treatment outcomes of MDR tuberculosis have not been fully elucidated. The results of our study, which was conducted in a Chinese population, suggest that gene mutations in Mycobacterium tuberculosis may be related to phenotypic drug susceptibility. Mutation of the pncA gene contributes to a poor prognosis and can be applied to predict the treatment outcomes of MDR-TB.
Collapse
|
17
|
Khawbung JL, Nath D, Chakraborty S. Drug resistant Tuberculosis: A review. Comp Immunol Microbiol Infect Dis 2020; 74:101574. [PMID: 33249329 DOI: 10.1016/j.cimid.2020.101574] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) was announced as a global emergency in 1993. There was an alarming counter attack of TB worldwide. However, when it was known that TB can be cured completely, the general public became ignorant towards the infection. The pathogenic organism Mycobacterium tuberculosis continuously evolved to resist the antagonist drugs. This has led to the outbreak of resistant strain that gave rise to "Multi Drug Resistant-Tuberculosis" and "Extensively Drug Resistant Tuberculosis" that can still be cured with a lower success rate. While the mechanism of resistance proceeds further, it ultimately causes unmanageable totally drug resistant TB (TDR-TB). Studying the molecular mechanisms underlying the resistance to drugs would help us grasp the genetics and pathophysiology of the disease. In this review, we present the molecular mechanisms behind Mycobacterium tolerance to drugs and their approach towards the development of multi-drug resistant, extremely drug resistant and totally drug resistant TB.
Collapse
Affiliation(s)
| | - Durbba Nath
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
18
|
Ramakrishna V, Singh PK, Prakash S, Jain A. Second Line Injectable Drug Resistance and Associated Genetic Mutations in Newly Diagnosed Cases of Multidrug-Resistant Tuberculosis. Microb Drug Resist 2020; 26:971-975. [PMID: 32101083 DOI: 10.1089/mdr.2019.0215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aim: To investigate the phenotypic and genotypic profile of multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) clinical isolates with reference to second-line injectable drugs (SLIDs). Methods: A total of 110 MTB isolates, recovered consecutively from confirmed MDR-TB patients between March and June 2016, were included in this study. Phenotypic drug susceptibility testing against SLIDs (Kanamycin, Amikacin, and Capreomycin) and Ofloxacin (OFX) was performed using the MGIT 960 system. For genotypic analysis, SLID/(s) resistant (n = 13) and susceptible isolates (n = 26) were subjected to PCR and DNA sequencing for rrs, eis (promoter region), and tlyA loci of MTB. Furthermore, the identified genetic mutations were analyzed with respect to its significance in detecting phenotypic resistance. Result: Among the 110 analyzed isolates, phenotypic resistance to OFX, SLIDs, and to both was 59.1%, 11.8%, and 10.0%, respectively. Out of a total 13 SLID/(s) resistant isolates, 10 had mutations (including two novel mutations) in one or more of the targeted genes. Only one SLID susceptible MTB isolate showed mutation in the targeted region. In SLID resistant isolates, most frequent mutation detected was C-12T under eis promoter region (46.1%). Conclusion: Mutations in rrs, eis, and tly A loci together are important in predicting SLID resistance in MTB isolates. Future molecular epidemiology studies are needed to have more insight into frequency and clinical relevance of novel mutations identified in this study.
Collapse
Affiliation(s)
- Vangala Ramakrishna
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - Pravin Kumar Singh
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - Shantanu Prakash
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - Amita Jain
- Department of Microbiology, King George's Medical University, Lucknow, India
| |
Collapse
|
19
|
Desikan P, Panwalkar N, Chaudhuri S, Khan Z, Punde RP, Pauranik A, Mirza SB, Ranjan R, Anand S, Sachdeva KS. Burden of baseline resistance of Mycobacterium tuberculosis to fluoroquinolones and second-line injectables in central India. Trans R Soc Trop Med Hyg 2020; 114:249-254. [DOI: 10.1093/trstmh/trz121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
Drug-resistant TB is a serious public health problem in India. Pre-existing resistance to fluoroquinolones (FQs) and second-line injectable drugs (SLIDs) in strains of Mycobacterium tuberculosis (MTB) resistant to rifampicin (RIF) and/or isoniazid (INH) contributes to treatment failures and consequent transmission of drug-resistant TB. A baseline assessment of resistance of MTB to FQs and SLIDs may help guide policies to further improve management of drug-resistant TB in India. This study aims to determine the prevalence of resistance to FQs and SLIDs among MTB strains having RIF and/or INH resistance in central India.
Method
A total of 1032 smear positive sputum samples were subjected to line probe assay (GenoType MTBDRsl version 2) to test for resistance to FQs and SLIDs, according to the integrated diagnostic algorithm of the revised national TB control programme.
Results
Of 1032 samples, 92 (8.91%) were not interpretable and hence excluded, 295 (31.38%) were resistant to FQs alone, 13 (1.38%) were resistant to SLIDs alone, 15 (1.59%) were resistant to both FQs as well as SLIDs and 617 (65.63%) were sensitive to both FQs and SLIDs. The most common mutations in gyrA and gyrB genes were observed at codons D94G and E540V, respectively. Mutations at codon A1401G in rrs genes and in the C-14 T region of eis genes were most frequently observed.
Conclusion
High levels of FQ resistance points towards indiscriminate use of this class of drugs. Regulation for judicial use of FQs is an urgent requirement.
Collapse
Affiliation(s)
- Prabha Desikan
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Nikita Panwalkar
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Shreya Chaudhuri
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Zeba Khan
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Ram Prakash Punde
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Ankur Pauranik
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Shaina Beg Mirza
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | - Rajeev Ranjan
- National Reference laboratory, Department of Microbiology, Bhopal Memorial Hospital, and Research Centre, Bhopal M.P. 462038, India
| | | | - K S Sachdeva
- Central Tuberculosis Division, Ministry of Health and Family Welfare, New Delhi-110011, India
| |
Collapse
|
20
|
Dai E, Zhang H, Zhou X, Song Q, Li D, Luo L, Xu X, Jiang W, Ling H. MycoResistance: a curated resource of drug resistance molecules in Mycobacteria. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5530356. [PMID: 31290951 PMCID: PMC6619405 DOI: 10.1093/database/baz074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 12/01/2022]
Abstract
The emergence and spread of drug-resistant Mycobacterium tuberculosis is of global concern. To improve the understanding of drug resistance in Mycobacteria, numerous studies have been performed to discover diagnostic markers and genetic determinants associated with resistance to anti-tuberculosis drug. However, the related information is scattered in a massive body of literature, which is inconvenient for researchers to investigate the molecular mechanism of drug resistance. Therefore, we manually collected 1707 curated associations between 73 compounds and 132 molecules (including coding genes and non-coding RNAs) in 6 mycobacterial species from 465 studies. The experimental details of molecular epidemiology and mechanism exploration research were also summarized and recorded in our work. In addition, multidrug resistance and extensively drug resistance molecules were also extracted to interpret the molecular mechanisms that are responsible for cross resistance among anti-tuberculosis drugs. Finally, we constructed an omnibus repository named MycoResistance, a user friendly interface to conveniently browse, search and download all related entries. We hope that this elaborate database will serve as a beneficial resource for mechanism explanations, precise diagnosis and effective treatment of drug-resistant mycobacterial strains.
Collapse
Affiliation(s)
- Enyu Dai
- Department of Microbiology, Harbin Medical University, Xuefu Road, Nangang District, Harbin, China
| | - Hao Zhang
- Department of Microbiology, Harbin Medical University, Xuefu Road, Nangang District, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Xuefu Road, Nangang District, Harbin, China.,Department of Parasitology, Harbin Medical University, Xuefu Road, Nangang District, Harbin, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Xuefu Road, Nangang District, Harbin, China.,Key Laboratory of Pathogen Biology, 194 Xuefu Road, Nangang District, Harbin, P. R. China
| | - Xu Zhou
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Jiangjun Avenue, Jiangning District, Nanjing, P.R. China
| | - Qian Song
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Jiangjun Avenue, Jiangning District, Nanjing, P.R. China
| | - Di Li
- Department of Microbiology, Harbin Medical University, Xuefu Road, Nangang District, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Xuefu Road, Nangang District, Harbin, China.,Department of Parasitology, Harbin Medical University, Xuefu Road, Nangang District, Harbin, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Xuefu Road, Nangang District, Harbin, China.,Key Laboratory of Pathogen Biology, 194 Xuefu Road, Nangang District, Harbin, P. R. China
| | - Lei Luo
- Department of Microbiology, Harbin Medical University, Xuefu Road, Nangang District, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Xuefu Road, Nangang District, Harbin, China.,Department of Parasitology, Harbin Medical University, Xuefu Road, Nangang District, Harbin, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Xuefu Road, Nangang District, Harbin, China.,Key Laboratory of Pathogen Biology, 194 Xuefu Road, Nangang District, Harbin, P. R. China
| | - Xinyu Xu
- Department of Microbiology, Harbin Medical University, Xuefu Road, Nangang District, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Xuefu Road, Nangang District, Harbin, China.,Department of Parasitology, Harbin Medical University, Xuefu Road, Nangang District, Harbin, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Xuefu Road, Nangang District, Harbin, China.,Key Laboratory of Pathogen Biology, 194 Xuefu Road, Nangang District, Harbin, P. R. China
| | - Wei Jiang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Jiangjun Avenue, Jiangning District, Nanjing, P.R. China
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Xuefu Road, Nangang District, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Xuefu Road, Nangang District, Harbin, China.,Department of Parasitology, Harbin Medical University, Xuefu Road, Nangang District, Harbin, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Xuefu Road, Nangang District, Harbin, China.,Key Laboratory of Pathogen Biology, 194 Xuefu Road, Nangang District, Harbin, P. R. China
| |
Collapse
|
21
|
Whole-Genome Sequencing for Drug Resistance Profile Prediction in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.02175-18. [PMID: 30718257 PMCID: PMC6496161 DOI: 10.1128/aac.02175-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/25/2019] [Indexed: 01/10/2023] Open
Abstract
Whole-genome sequencing allows rapid detection of drug-resistant Mycobacterium tuberculosis isolates. However, the availability of high-quality data linking quantitative phenotypic drug susceptibility testing (DST) and genomic data have thus far been limited. We determined drug resistance profiles of 176 genetically diverse clinical M. tuberculosis isolates from the Democratic Republic of the Congo, Ivory Coast, Peru, Thailand, and Switzerland by quantitative phenotypic DST for 11 antituberculous drugs using the BD Bactec MGIT 960 system and 7H10 agar dilution to generate a cross-validated phenotypic DST readout. We compared DST results with predicted drug resistance profiles inferred by whole-genome sequencing. Classification of strains by the two phenotypic DST methods into resistotype/wild-type populations was concordant in 73 to 99% of cases, depending on the drug. Our data suggest that the established critical concentration (5 mg/liter) for ethambutol resistance (MGIT 960 system) is too high and misclassifies strains as susceptible, unlike 7H10 agar dilution. Increased minimal inhibitory concentrations were explained by mutations identified by whole-genome sequencing. Using whole-genome sequences, we were able to predict quantitative drug resistance levels for the majority of drug resistance mutations. Predicting quantitative levels of drug resistance by whole-genome sequencing was partially limited due to incompletely understood drug resistance mechanisms. The overall sensitivity and specificity of whole-genome-based DST were 86.8% and 94.5%, respectively. Despite some limitations, whole-genome sequencing has the potential to infer resistance profiles without the need for time-consuming phenotypic methods.
Collapse
|
22
|
Chen CY, Weng JY, Huang HH, Yen WC, Tsai YH, Cheng TC, Jou R. A new oligonucleotide array for the detection of multidrug and extensively drug-resistance tuberculosis. Sci Rep 2019; 9:4425. [PMID: 30872613 PMCID: PMC6418274 DOI: 10.1038/s41598-019-39339-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/21/2019] [Indexed: 11/23/2022] Open
Abstract
Drug-resistant tuberculosis (TB) is a global crisis and a threat to health security. Since conventional drug susceptibility testing (DST) takes several weeks, we herein described a molecular assay to rapidly identify multidrug-resistant (MDR) and extensively drug-resistant (XDR) and reveal transmission associated-mutations of Mycobacterium tuberculosis complex (MTBC) isolates in 6 to 7 hours. An array was designed with 12 pairs of primers and 60 single nucleotide polymorphisms of 9 genes: rpoB, katG, inhA, ahpC, embB, rpsL, gyrA, rrs and eis. We assessed the performance of the array using 176 clinical MTBC isolates. The results of culture-based DST were used as the gold standard, the GenoType MTBDRplus and MTBDRsl tests were used for parallel comparison, and gene sequencing was performed to resolve the discordance. The sensitivities and specificities of the array are comparable to those of the MTBDRplus test for resistance to isoniazid (INH) (100.0%, 96.7%) and rifampicin (RIF) (99.4%, 96.7%) and of the MTBDRsl test for resistance to fluoroquinolones (FQs) (100%, 100%) and second-line injectable drugs (SLIDs) (98.3%, 100%). The sensitivities of the array for detecting resistance to ethambutol and streptomycin were 79.3% and 64.9%, respectively. The array has potential as a powerful tool for clinical diagnosis and epidemiological investigations.
Collapse
Affiliation(s)
- Ching-Yu Chen
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, 115, Taiwan
| | - Jui-Yun Weng
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, 115, Taiwan
| | - Hsin-Hui Huang
- Department of Medical Laboratory and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wen-Chun Yen
- Department of Medical Laboratory and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yu-Han Tsai
- Department of Medical Laboratory and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Tsung Chain Cheng
- Department of Medical Laboratory and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ruwen Jou
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, 115, Taiwan. .,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
23
|
Machado D, Couto I, Viveiros M. Advances in the molecular diagnosis of tuberculosis: From probes to genomes. INFECTION GENETICS AND EVOLUTION 2018; 72:93-112. [PMID: 30508687 DOI: 10.1016/j.meegid.2018.11.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 11/29/2022]
Abstract
Tuberculosis, disease caused by Mycobacterium tuberculosis, is currently the leading cause of death by a single infectious agent worldwide. Early, rapid and accurate identification of M. tuberculosis and the determination of drug susceptibility is essential for the treatment and management of this disease. Tuberculosis diagnosis is mainly based on chest radiography, smear microscopy and bacteriological culture. Smear microscopy has variable sensitivity, mainly in patients co-infected with the human immunodeficiency virus (HIV). Conventional culture for M. tuberculosis isolation, identification and drug susceptibility testing requires several weeks owning to the slow growth of M. tuberculosis. The delay in the time to results drives the prolongation of potentially inappropriate antituberculosis therapy contributing to the emergence of drug resistance, reducing treatment options and increasing treatment duration and associated costs, resulting in increased mortality and morbidity. For these reasons, novel diagnostic methods are need for timely identification of M. tuberculosis and determination of the antibiotic susceptibility profile of the infecting strain. Molecular methods offer enhanced sensitivity and specificity, early detection and the capacity to detect mixed infections. These technologies have improved turnaround time, cost effectiveness and are amenable for point-of-care testing. However, although these methods produce results within hours from sample collection, the phenotypic susceptibility testing is still needed for the determination of drug susceptibility and quantify the susceptibility levels of a given strain towards individual antibiotics. This review presents the history, advances and forthcoming promises in the molecular diagnosis of tuberculosis. An overview on the general principles, diagnostic value and the main advantages and disadvantages of the molecular methods used for the detection and identification of M. tuberculosis and its associated disease, is provided. It will be also discussed how the current phenotypic methods should be used in combination with the genotypic methods for rapid antituberculosis susceptibility testing.
Collapse
Affiliation(s)
- Diana Machado
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Isabel Couto
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal.
| |
Collapse
|
24
|
Miotto P, Zhang Y, Cirillo DM, Yam WC. Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology 2018; 23:1098-1113. [PMID: 30189463 DOI: 10.1111/resp.13393] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/03/2018] [Accepted: 08/12/2018] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) is the deadliest infectious disease and the associated global threat has worsened with the emergence of drug resistance, in particular multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB). Although the World Health Organization (WHO) End-TB Strategy advocates for universal access to antimicrobial susceptibility testing, this is not widely available and/or it is still underused. The majority of drug resistance in clinical MTB strains is attributed to chromosomal mutations. Resistance-related mutations could also exert certain fitness cost to the drug-resistant MTB strains and growth fitness could be restored by the presence of compensatory mutations. Understanding these underlying mechanisms could provide an important insight into TB pathogenesis and predict the future trend of MDR-TB global pandemic. This review covers the mechanisms of resistance in MTB and provides a comprehensive overview of current phenotypic and molecular approaches for drug susceptibility testing, with particular attention to the methods endorsed and recommended by the WHO.
Collapse
Affiliation(s)
- Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Wing Cheong Yam
- Department of Microbiology, Queen Mary Hospital Compound, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Park J, Shin SY, Kim K, Park K, Shin S, Ihm C. Determining Genotypic Drug Resistance by Ion Semiconductor Sequencing With the Ion AmpliSeq™ TB Panel in Multidrug-Resistant Mycobacterium tuberculosis Isolates. Ann Lab Med 2018; 38:316-323. [PMID: 29611381 PMCID: PMC5895860 DOI: 10.3343/alm.2018.38.4.316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 12/11/2017] [Accepted: 02/13/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We examined the feasibility of a full-length gene analysis for the drug resistance-related genes inhA, katG, rpoB, pncA, rpsL, embB, eis, and gyrA using ion semiconductor next-generation sequencing (NGS) and compared the results with those obtained from conventional phenotypic drug susceptibility testing (DST) in multidrug-resistant Mycobacterium tuberculosis (MDR-TB) isolates. METHODS We extracted genomic DNA from 30 pure MDR-TB isolates with antibiotic susceptibility profiles confirmed by phenotypic DST for isoniazid (INH), rifampin (RIF), ethambutol (EMB), pyrazinamide (PZA), amikacin (AMK), kanamycin (KM), streptomycin (SM), and fluoroquinolones (FQs) including ofloxacin, moxifloxacin, and levofloxacin. Enriched ion spheres were loaded onto Ion PI Chip v3, with 30 samples on a chip per sequencing run, and Ion Torrent sequencing was conducted using the Ion AmpliSeq TB panel (Life Technologies, USA). RESULTS The genotypic DST results revealed good agreement with the phenotypic DST results for EMB (Kappa 0.8), PZA (0.734), SM (0.769), and FQ (0.783). Agreements for INH, RIF, and AMK+KM were not estimated because all isolates were phenotypically resistant to INH and RIF, and all isolates were phenotypically and genotypically susceptible to AMK+KM. Moreover, 17 novel variants were identified: six (p.Gly169Ser, p.Ala256Thr, p.Ser383Pro, p.Gln439Arg, p.Tyr597Cys, p.Thr625Ala) in katG, one (p.Tyr113Phe) in inhA, five (p.Val170Phe, p.Thr400Ala, p.Met434Val, p.Glu812Gly, p.Phe971Leu) in rpoB, two (p.Tyr319Asp and p.His1002Arg) in embB, and three (p.Cys14Gly, p.Asp63Ala, p.Gly162Ser) in pncA. CONCLUSIONS Ion semiconductor NGS could detect reported and novel amino acid changes in full coding regions of eight drug resistance-related genes. However, genotypic DST should be complemented and validated by phenotypic DSTs.
Collapse
Affiliation(s)
- Joonhong Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - So Youn Shin
- Korean Institute of Tuberculosis, Cheongju, Korea
| | | | - Kuhn Park
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Soyoung Shin
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chunhwa Ihm
- Department of Laboratory Medicine, Eulji University Hospital, Daejeon, Korea.
| |
Collapse
|
26
|
Govindaswamy A, Sakthi D, Pai R, Jeyaseelan L, Michael JS. Pyrosequencing: a rapid and effective sequencing method to diagnose drug-resistant tuberculosis. J Med Microbiol 2018; 67:1212-1216. [PMID: 30028665 DOI: 10.1099/jmm.0.000669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE This study was undertaken to evaluate the efficiency of the pyrosequencing (PSQ) assay for the rapid detection of resistance to rifampicin (RIF), fluoroquinolones (FQs) and second-line injectables (SLIs) such as capreomycin (CAP) and kanamycin (KAN) in Mycobacterium tuberculosis (Mtb) clinical isolates. METHODOLOGY Pyrosequencing is a simple and accurate short read DNA sequencing method for genome analysis. DNA extraction from Mtb clinical isolates was performed using Tris-HCl buffer and chloroform. The rpoB (RIF), gyrA (FQs) and rrs (aminoglycosides) genes were amplified, followed by sequencing using the PyroMark Q24 ID system. The PSQ results were compared with the results from the conventional drug susceptibility testing performed in the laboratory. RESULTS The sensitivity of the PSQ assay for the detection of resistance to RIF, FQ, CAP and KAN was 100 %, 100 %, 40 % and 50 %, respectively. The specificity of the PSQ assay was 100 %. CONCLUSION The PSQ assay is a rapid and effective method for detecting drug resistance mutations from Mtb clinical isolates in a short period of time.
Collapse
Affiliation(s)
- Aishwarya Govindaswamy
- 1Department of Clinical Microbiology, Christian Medical College, Vellore 632 004, India
| | - Dhananjayan Sakthi
- 2Department of General Pathology, Christian Medical College, Vellore 632 004, India
| | - Rekha Pai
- 2Department of General Pathology, Christian Medical College, Vellore 632 004, India
| | | | - Joy Sarojini Michael
- 1Department of Clinical Microbiology, Christian Medical College, Vellore 632 004, India
| |
Collapse
|
27
|
Overexpression of eis without a mutation in promoter region of amikacin- and kanamycin-resistant Mycobacterium tuberculosis clinical strain. Ann Clin Microbiol Antimicrob 2018; 17:33. [PMID: 30008266 PMCID: PMC6047124 DOI: 10.1186/s12941-018-0285-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aminoglycosides such as amikacin and kanamycin are effective injectable second-line drugs for treatment of multidrug-resistant tuberculosis. Molecular mechanisms underlying aminoglycoside resistance are not well understood. We have previously identified the amikacin- and kanamycin-resistant M. tuberculosis MT433 clinical strain, of which all known mutations related to resistance have not been found. Drug efflux pump is one of reported resistance mechanisms that might play a role in aminoglycoside resistance. METHODS The expression levels of sixteen putative efflux pump genes, including eis and one regulator gene, whiB7, of MT433 in the presence of kanamycin were determined using the reverse transcription-quantitative PCR method. The effects of upregulated genes on amikacin and kanamycin resistance were investigated by overexpression in M. tuberculosis H37Ra strain. RESULTS Upon kanamycin exposure, other than whiB7 and eis that were found extremely overexpressed, two drug efflux pump genes, namely Rv1877 and Rv2846c, showed specifically high-level of expression in M. tuberculosis MT433 strain. However, direct effect of overexpressed Rv1877 and Rv2846c on amikacin and kanamycin resistance could not be demonstrated in M. tuberculosis H37Ra overexpressed strain. CONCLUSIONS Our finding demonstrated that overexpression of eis could occur without any mutations in the promoter region and be detectable in clinical isolate. This might be a consequence of overexpressed whiB7, resulting in amikacin and kanamycin resistance in M. tuberculosis MT433 strain.
Collapse
|
28
|
Next-Generation Sequencing for Characterizing Drug Resistance-Conferring Mycobacterium tuberculosis Genes from Clinical Isolates in the Ukraine. J Clin Microbiol 2018; 56:JCM.00009-18. [PMID: 29563202 DOI: 10.1128/jcm.00009-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/16/2018] [Indexed: 01/22/2023] Open
Abstract
The Ukraine ranks among the top 20 countries with the highest number of multidrug-resistant (MDR) and extensively drug resistant (XDR) Mycobacterium tuberculosis cases in the world. However, little is known of the genetic diversity, i.e., resistance signatures, in clinical isolates from this region. We analyzed seven of most prevalent MDR/XDR antibiotic resistance-conferring genes from clinical isolates (n = 75) collected from geographically diverse Ukrainian oblasts and the southern Crimean peninsula. Genomic analysis revealed that 6 (8%) were sensitive, 3 (4%) were resistant to at least one antibiotic but were not MDR, 40 (53%) were MDR, and 26 (35%) were XDR. The majority of isolates (81%) were of the Beijing-like lineage. This is the first study to use next-generation sequencing (NGS) of clinical isolates from the Ukraine to characterize mutations in genes conferring M. tuberculosis drug resistance. Several isolates harbored drug resistance signatures that have not been observed in other countries with high-burden tuberculosis. Most notably, the absence of inhA gene promoter mutations, a diversity of mutation types in the rpoB resistance-determining region, and detection of heteroresistance provide a broader understanding of MDR/XDR from this area of the world.
Collapse
|
29
|
Molecular drug resistance profiles of Mycobacterium tuberculosis from sputum specimens using ion semiconductor sequencing. J Microbiol Methods 2018; 145:1-6. [DOI: 10.1016/j.mimet.2017.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/09/2017] [Accepted: 12/09/2017] [Indexed: 11/23/2022]
|
30
|
Coll F, Phelan J, Hill-Cawthorne GA, Nair MB, Mallard K, Ali S, Abdallah AM, Alghamdi S, Alsomali M, Ahmed AO, Portelli S, Oppong Y, Alves A, Bessa TB, Campino S, Caws M, Chatterjee A, Crampin AC, Dheda K, Furnham N, Glynn JR, Grandjean L, Minh Ha D, Hasan R, Hasan Z, Hibberd ML, Joloba M, Jones-López EC, Matsumoto T, Miranda A, Moore DJ, Mocillo N, Panaiotov S, Parkhill J, Penha C, Perdigão J, Portugal I, Rchiad Z, Robledo J, Sheen P, Shesha NT, Sirgel FA, Sola C, Oliveira Sousa E, Streicher EM, Helden PV, Viveiros M, Warren RM, McNerney R, Pain A, Clark TG. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat Genet 2018; 50:307-316. [PMID: 29358649 DOI: 10.1038/s41588-017-0029-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 12/01/2017] [Indexed: 12/30/2022]
Abstract
To characterize the genetic determinants of resistance to antituberculosis drugs, we performed a genome-wide association study (GWAS) of 6,465 Mycobacterium tuberculosis clinical isolates from more than 30 countries. A GWAS approach within a mixed-regression framework was followed by a phylogenetics-based test for independent mutations. In addition to mutations in established and recently described resistance-associated genes, novel mutations were discovered for resistance to cycloserine, ethionamide and para-aminosalicylic acid. The capacity to detect mutations associated with resistance to ethionamide, pyrazinamide, capreomycin, cycloserine and para-aminosalicylic acid was enhanced by inclusion of insertions and deletions. Odds ratios for mutations within candidate genes were found to reflect levels of resistance. New epistatic relationships between candidate drug-resistance-associated genes were identified. Findings also suggest the involvement of efflux pumps (drrA and Rv2688c) in the emergence of resistance. This study will inform the design of new diagnostic tests and expedite the investigation of resistance and compensatory epistatic mechanisms.
Collapse
Affiliation(s)
- Francesc Coll
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Grant A Hill-Cawthorne
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Sydney Emerging Infections and Biosecurity Institute and School of Public Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Mridul B Nair
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kim Mallard
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Shahjahan Ali
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdallah M Abdallah
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mona Alsomali
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdallah O Ahmed
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Stephanie Portelli
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Yaa Oppong
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Adriana Alves
- National Mycobacterium Reference Laboratory, Porto, Portugal
| | | | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Maxine Caws
- Liverpool School of Tropical Medicine, Liverpool, UK
- Pham Ngoc Thach Hospital for TB and Lung Diseases, Ho Chi Minh City, Vietnam
| | | | - Amelia C Crampin
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
- Karonga Prevention Study, Chilumba, Karonga, Malawi
| | - Keertan Dheda
- Lung Infection and Immunity Unit, UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Nicholas Furnham
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Judith R Glynn
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
- Karonga Prevention Study, Chilumba, Karonga, Malawi
| | - Louis Grandjean
- Laboratorio de Enfermedades Infecciosas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dang Minh Ha
- Pham Ngoc Thach Hospital for TB and Lung Diseases, Ho Chi Minh City, Vietnam
| | - Rumina Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Zahra Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Martin L Hibberd
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Moses Joloba
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Edward C Jones-López
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA, USA
| | | | - Anabela Miranda
- National Mycobacterium Reference Laboratory, Porto, Portugal
| | - David J Moore
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Laboratorio de Enfermedades Infecciosas, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nora Mocillo
- Reference Laboratory of Tuberculosis Control, Buenos Aires, Argentina
| | - Stefan Panaiotov
- National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | | | - Carlos Penha
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | - João Perdigão
- iMed.ULisboa-Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Portugal
- iMed.ULisboa-Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Zineb Rchiad
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jaime Robledo
- Corporación para Investigaciones Biológicas, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Patricia Sheen
- Lung Infection and Immunity Unit, UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | | | - Frik A Sirgel
- Division of Molecular Biology and Human Genetics, SAMRC Centre for Tuberculosis Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Christophe Sola
- Institute for Integrative Cell Biology, CEA, CNRS, Université Paris-Saclay, Orsay, France
| | - Erivelton Oliveira Sousa
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Laboratorio Central de Saúde Pública Professor Gonçalo Moniz, Salvador, Brazil
| | - Elizabeth M Streicher
- Division of Molecular Biology and Human Genetics, SAMRC Centre for Tuberculosis Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Paul Van Helden
- Division of Molecular Biology and Human Genetics, SAMRC Centre for Tuberculosis Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Miguel Viveiros
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Robert M Warren
- Division of Molecular Biology and Human Genetics, SAMRC Centre for Tuberculosis Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Ruth McNerney
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
- Lung Infection and Immunity Unit, UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa.
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
31
|
Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol Rev 2018; 41:354-373. [PMID: 28369307 DOI: 10.1093/femsre/fux011] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/17/2017] [Indexed: 11/12/2022] Open
Abstract
Antibiotic-resistant Mycobacterium tuberculosis strains are threatening progress in containing the global tuberculosis epidemic. Mycobacterium tuberculosis is intrinsically resistant to many antibiotics, limiting the number of compounds available for treatment. This intrinsic resistance is due to a number of mechanisms including a thick, waxy, hydrophobic cell envelope and the presence of drug degrading and modifying enzymes. Resistance to the drugs which are active against M. tuberculosis is, in the absence of horizontally transferred resistance determinants, conferred by chromosomal mutations. These chromosomal mutations may confer drug resistance via modification or overexpression of the drug target, as well as by prevention of prodrug activation. Drug resistance mutations may have pleiotropic effects leading to a reduction in the bacterium's fitness, quantifiable e.g. by a reduction in the in vitro growth rate. Secondary so-called compensatory mutations, not involved in conferring resistance, can ameliorate the fitness cost by interacting epistatically with the resistance mutation. Although the genetic diversity of M. tuberculosis is low compared to other pathogenic bacteria, the strain genetic background has been demonstrated to influence multiple aspects in the evolution of drug resistance. The rate of resistance evolution and the fitness costs of drug resistance mutations may vary as a function of the genetic background.
Collapse
Affiliation(s)
- Sebastian M Gygli
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, 4002 Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, 4002 Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, 4002 Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, 4002 Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
32
|
Amikacin: Uses, Resistance, and Prospects for Inhibition. Molecules 2017; 22:molecules22122267. [PMID: 29257114 PMCID: PMC5889950 DOI: 10.3390/molecules22122267] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/16/2022] Open
Abstract
Aminoglycosides are a group of antibiotics used since the 1940s to primarily treat a broad spectrum of bacterial infections. The primary resistance mechanism against these antibiotics is enzymatic modification by aminoglycoside-modifying enzymes that are divided into acetyl-transferases, phosphotransferases, and nucleotidyltransferases. To overcome this problem, new semisynthetic aminoglycosides were developed in the 70s. The most widely used semisynthetic aminoglycoside is amikacin, which is refractory to most aminoglycoside modifying enzymes. Amikacin was synthesized by acylation with the l-(-)-γ-amino-α-hydroxybutyryl side chain at the C-1 amino group of the deoxystreptamine moiety of kanamycin A. The main amikacin resistance mechanism found in the clinics is acetylation by the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib], an enzyme coded for by a gene found in integrons, transposons, plasmids, and chromosomes of Gram-negative bacteria. Numerous efforts are focused on finding strategies to neutralize the action of AAC(6')-Ib and extend the useful life of amikacin. Small molecules as well as complexes ionophore-Zn+2 or Cu+2 were found to inhibit the acetylation reaction and induced phenotypic conversion to susceptibility in bacteria harboring the aac(6')-Ib gene. A new semisynthetic aminoglycoside, plazomicin, is in advance stage of development and will contribute to renewed interest in this kind of antibiotics.
Collapse
|
33
|
Xie YL, Chakravorty S, Armstrong DT, Hall SL, Via LE, Song T, Yuan X, Mo X, Zhu H, Xu P, Gao Q, Lee M, Lee J, Smith LE, Chen RY, Joh JS, Cho Y, Liu X, Ruan X, Liang L, Dharan N, Cho SN, Barry CE, Ellner JJ, Dorman SE, Alland D. Evaluation of a Rapid Molecular Drug-Susceptibility Test for Tuberculosis. N Engl J Med 2017; 377:1043-1054. [PMID: 28902596 PMCID: PMC5727572 DOI: 10.1056/nejmoa1614915] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Fluoroquinolones and second-line injectable drugs are the backbone of treatment regimens for multidrug-resistant tuberculosis, and resistance to these drugs defines extensively drug-resistant tuberculosis. We assessed the accuracy of an automated, cartridge-based molecular assay for the detection, directly from sputum specimens, of Mycobacterium tuberculosis with resistance to fluoroquinolones, aminoglycosides, and isoniazid. METHODS We conducted a prospective diagnostic accuracy study to compare the investigational assay against phenotypic drug-susceptibility testing and DNA sequencing among adults in China and South Korea who had symptoms of tuberculosis. The Xpert MTB/RIF assay and sputum culture were performed. M. tuberculosis isolates underwent phenotypic drug-susceptibility testing and DNA sequencing of the genes katG, gyrA, gyrB, and rrs and of the eis and inhA promoter regions. RESULTS Among the 308 participants who were culture-positive for M. tuberculosis, when phenotypic drug-susceptibility testing was used as the reference standard, the sensitivities of the investigational assay for detecting resistance were 83.3% for isoniazid (95% confidence interval [CI], 77.1 to 88.5), 88.4% for ofloxacin (95% CI, 80.2 to 94.1), 87.6% for moxifloxacin at a critical concentration of 0.5 μg per milliliter (95% CI, 79.0 to 93.7), 96.2% for moxifloxacin at a critical concentration of 2.0 μg per milliliter (95% CI, 87.0 to 99.5), 71.4% for kanamycin (95% CI, 56.7 to 83.4), and 70.7% for amikacin (95% CI, 54.5 to 83.9). The specificity of the assay for the detection of phenotypic resistance was 94.3% or greater for all drugs except moxifloxacin at a critical concentration of 2.0 μg per milliliter (specificity, 84.0% [95% CI, 78.9 to 88.3]). When DNA sequencing was used as the reference standard, the sensitivities of the investigational assay for detecting mutations associated with resistance were 98.1% for isoniazid (95% CI, 94.4 to 99.6), 95.8% for fluoroquinolones (95% CI, 89.6 to 98.8), 92.7% for kanamycin (95% CI, 80.1 to 98.5), and 96.8% for amikacin (95% CI, 83.3 to 99.9), and the specificity for all drugs was 99.6% (95% CI, 97.9 to 100) or greater. CONCLUSIONS This investigational assay accurately detected M. tuberculosis mutations associated with resistance to isoniazid, fluoroquinolones, and aminoglycosides and holds promise as a rapid point-of-care test to guide therapeutic decisions for patients with tuberculosis. (Funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health, and the Ministry of Science and Technology of China; ClinicalTrials.gov number, NCT02251327 .).
Collapse
Affiliation(s)
- Yingda L Xie
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Soumitesh Chakravorty
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Derek T Armstrong
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Sandra L Hall
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Laura E Via
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Taeksun Song
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Xing Yuan
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Xiaoying Mo
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Hong Zhu
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Peng Xu
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Qian Gao
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Myungsun Lee
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Jongseok Lee
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Laura E Smith
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Ray Y Chen
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Joon Sung Joh
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - YoungSoo Cho
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Xin Liu
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Xianglin Ruan
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Lili Liang
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Nila Dharan
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Sang-Nae Cho
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Clifton E Barry
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Jerrold J Ellner
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - Susan E Dorman
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| | - David Alland
- From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) - both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul - all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino-U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) - all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.)
| |
Collapse
|
34
|
Impact of gyrB and eis Mutations in Improving Detection of Second-Line-Drug Resistance among Mycobacterium tuberculosis Isolates from Georgia. Antimicrob Agents Chemother 2017. [PMID: 28630205 DOI: 10.1128/aac.01921-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The country of Georgia has a high burden of multi- and extensively drug-resistant tuberculosis (XDR-TB). To evaluate whether mutations in gyrB and eis genes increased the sensitivity of detection of phenotypic resistance to ofloxacin and kanamycin or capreomycin compared to use of the first-generation MTBDRsl assay alone, which tests for mutations in gyrA and rrs genes, a retrospective study of stored Mycobacterium tuberculosis isolates was performed. All isolates underwent DNA sequencing of resistance-determining regions. Among 112 M. tuberculosis isolates with DNA extraction data, targeted sequencing was successfully performed for each gene as follows: for gyrA, 98% sensitivity; for gyrB, 96%; for rrs, 93%; for the eis gene and its promoter, 93%. The specificity and hence the positive predictive value of gyrA and gyrB mutations for detecting ofloxacin resistance were 100%. The addition of gyrB mutations increased the sensitivity of phenotypic ofloxacin resistance detection by 13% (75% to 88%). All rrs resistance-conferring mutations were A1401G, and this mutation had low sensitivity (40% and 18%) and high specificity (95% and 100%) in predicting phenotypic capreomycin and kanamycin resistance, respectively. The eis C-14T mutation increased the sensitivity of phenotypic kanamycin resistance detection by 9% (18% to 27%) and was found solely in kanamycin phenotypic resistance isolates. Our data showed that the inclusion of eis C-14T and gyrB mutations in addition to rrs and gyrA mutations improves the sensitivity of detection of phenotypic ofloxacin and kanamycin resistance, respectively.
Collapse
|
35
|
Increased Tuberculosis Patient Mortality Associated with Mycobacterium tuberculosis Mutations Conferring Resistance to Second-Line Antituberculous Drugs. J Clin Microbiol 2017; 55:1928-1937. [PMID: 28404672 DOI: 10.1128/jcm.00152-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
Rapid molecular diagnostics have great potential to limit the spread of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) (M/XDR-TB). These technologies detect mutations in the Mycobacterium tuberculosis genome that confer phenotypic drug resistance. However, there have been few data published regarding the relationships between the detected M. tuberculosis resistance mutations and M/XDR-TB treatment outcomes, limiting our current ability to exploit the full potential of molecular diagnostics. We analyzed clinical, microbiological, and sequencing data for 451 patients and their clinical isolates collected in a multinational, observational cohort study to determine if there was an association between M. tuberculosis resistance mutations and patient mortality. The presence of an rrs 1401G mutation was associated with significantly higher odds of patient mortality (adjusted odds ratio [OR] = 5.72; 95% confidence interval [CI], 1.65 to 19.84]) after adjusting for relevant patient clinical characteristics and all other resistance mutations. Further analysis of mutations, categorized by the associated resistance level, indicated that the detection of mutations associated with high-level fluoroquinolone (OR, 3.99 [95% CI, 1.10 to 14.40]) and kanamycin (OR, 5.47 [95% CI, 1.64 to 18.24]) resistance was also significantly associated with higher odds of patient mortality, even after accounting for clinical site, patient age, reported smoking history, body mass index (BMI), diabetes, HIV, and all other resistance mutations. Specific gyrA and rrs resistance mutations, associated with high-level resistance, were associated with patient mortality as identified in clinical M. tuberculosis isolates from a diverse M/XDR-TB patient population at three high-burden clinical sites. These results have important implications for the interpretation of molecular diagnostics, including identifying patients at increased risk for mortality during treatment. (This study has been registered at ClinicalTrials.gov under registration no. NCT02170441.).
Collapse
|
36
|
Evolution of Phenotypic and Molecular Drug Susceptibility Testing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:221-246. [PMID: 29116638 DOI: 10.1007/978-3-319-64371-7_12] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Drug Resistant Tuberculosis (DRTB) is an emerging problem world-wide. In order to control the disease and decrease the number of cases overtime a prompt diagnosis followed by an appropriate treatment should be provided to patients. Phenotypic DST based on liquid automated culture has greatly reduced the time needed to generate reliable data but has the drawback to be expensive and prone to contamination in the absence of appropriate infrastructures. In the past 10 years molecular biology tools have been developed. Those tools target the main mutations responsible for DRTB and are now globally accessible in term of cost and infrastructures needed for the implementation. The dissemination of the Xpert MTB/rif has radically increased the capacity to perform the detection of rifampicin resistant TB cases. One of the main challenges for the large scale implementation of molecular based tests is the emergence of conflicting results between phenotypic and genotypic tests. This mines the confidence of clinicians in the molecular tests and delays the initiation of an appropriate treatment. A new technique is revolutionizing the genotypic approach to DST: the WGS by Next-Generation Sequencing technologies. This methodology promises to become the solution for a rapid access to universal DST, able indeed to overcome the limitations of the current phenotypic and genotypic assays. Today the use of the generated information is still challenging in decentralized facilities due to the lack of automation for sample processing and standardization in the analysis.The growing knowledge of the molecular mechanisms at the basis of drug resistance and the introduction of high-performing user-friendly tools at peripheral level should allow the very much needed accurate diagnosis of DRTB in the near future.
Collapse
|
37
|
Evaluation of the GenoType MTBDR sl Version 2.0 Assay for Second-Line Drug Resistance Detection of Mycobacterium tuberculosis Isolates in South Africa. J Clin Microbiol 2016; 55:791-800. [PMID: 27974543 DOI: 10.1128/jcm.01865-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/09/2016] [Indexed: 11/20/2022] Open
Abstract
Early detection of resistance to second-line antituberculosis drugs is important for the management of multidrug-resistant tuberculosis (MDR-TB). The GenoType MTBDRsl version 2.0 (VER 2.0) line probe assay has been redesigned for molecular detection of resistance-conferring mutations of fluoroquinolones (FLQ) (gyrA and gyrB genes) and second-line injectable drugs (SLID) (rrs and eis genes). The study evaluated the diagnostic performance of the GenoType MTBDRsl VER 2.0 assay for the detection of second-line drug resistance compared with phenotypic drug susceptibility testing (DST), using the Bactec MGIT 960 system on Mycobacterium tuberculosis complex isolates from South Africa. A total of 268 repository isolates collected between 2012 and 2014, which were rifampin monoresistant or MDR based on DST, were selected. MTBDRsl VER 2.0 testing was performed on these isolates and the results analyzed. The MTBDRsl VER 2.0 sensitivity and specificity indices for culture isolates were the following: FLQ, 100% (95% confidence interval [CI] 95.8 to 100%) and 98.9% (95% CI, 96.1 to 99.9%); SLID, 89.2% (95% CI, 79.1 to 95.6%) and 98.5% (95% CI, 95.7 to 99.7%). The sensitivity and specificity observed for individual SLID were the following: amikacin, 93.8% (95% CI, 79.2 to 99.2%) and 98.5% (95% CI, 95.5 to 99.7%); kanamycin, 89.2% (95% CI, 79.1 to 95.6%) and 98.5% (95% CI, 95.5 to 99.7%); and capreomycin, 86.2% (95% CI, 68.3 to 96.1%) and 95.9% (95% CI, 92.2 to 98.2%). An interoperator reproducibility of 100% and an overall interlaboratory performance of 93% to 96% were found. The overall improvement in sensitivity and specificity with excellent reproducibility makes the GenoType MTBDRsl VER 2.0 a highly suitable tool for rapid screening of clinical isolates for second-line drug resistance for use in high-burden TB/HIV settings.
Collapse
|
38
|
Frequency and Distribution of Tuberculosis Resistance-Associated Mutations between Mumbai, Moldova, and Eastern Cape. Antimicrob Agents Chemother 2016; 60:3994-4004. [PMID: 27090176 DOI: 10.1128/aac.00222-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/12/2016] [Indexed: 01/17/2023] Open
Abstract
Molecular diagnostic assays, with their ability to rapidly detect resistance-associated mutations in bacterial genes, are promising technologies to control the spread of drug-resistant tuberculosis (DR-TB). Sequencing assays provide detailed information for specific gene regions and can help diagnostic assay developers prioritize mutations for inclusion in their assays. We performed pyrosequencing of seven Mycobacterium tuberculosis gene regions (katG, inhA, ahpC, rpoB, gyrA, rrs, and eis) for 1,128 clinical specimens from India, Moldova, and South Africa. We determined the frequencies of each mutation among drug-resistant and -susceptible specimens based on phenotypic drug susceptibility testing results and examined mutation distributions by country. The most common mutation among isoniazid-resistant (INH(r)) specimens was the katG 315ACC mutation (87%). However, in the Eastern Cape, INH(r) specimens had a lower frequency of katG mutations (44%) and higher frequencies of inhA (47%) and ahpC (10%) promoter mutations. The most common mutation among rifampin-resistant (RIF(r)) specimens was the rpoB 531TTG mutation (80%). The mutation was common in RIF(r) specimens in Mumbai (83%) and Moldova (84%) but not the Eastern Cape (17%), where the 516GTC mutation appeared more frequently (57%). The most common mutation among fluoroquinolone-resistant specimens was the gyrA 94GGC mutation (44%). The rrs 1401G mutation was found in 84%, 84%, and 50% of amikacin-resistant, capreomycin-resistant, and kanamycin (KAN)-resistant (KAN(r)) specimens, respectively. The eis promoter mutation -12T was found in 26% of KAN(r) and 4% of KAN-susceptible (KAN(s)) specimens. Inclusion of the ahpC and eis promoter gene regions was critical for optimal test sensitivity for the detection of INH resistance in the Eastern Cape and KAN resistance in Moldova. (This study has been registered at ClinicalTrials.gov under registration number NCT02170441.).
Collapse
|