1
|
Bhengu KN, Singh R, Naidoo P, Mpaka-Mbatha MN, Nembe-Mafa N, Mkhize-Kwitshana ZL. Cytokine Responses during Mycobacterium tuberculosis H37Rv and Ascaris lumbricoides Costimulation Using Human THP-1 and Jurkat Cells, and a Pilot Human Tuberculosis and Helminth Coinfection Study. Microorganisms 2023; 11:1846. [PMID: 37513018 PMCID: PMC10384037 DOI: 10.3390/microorganisms11071846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Helminth infections are widespread in tuberculosis-endemic areas and are associated with an increased risk of active tuberculosis. In contrast to the pro-inflammatory Th1 responses elicited by Mycobacterium tuberculosis (Mtb) infection, helminth infections induce anti-inflammatory Th2/Treg responses. A robust Th2 response has been linked to reduced tuberculosis protection. Several studies show the effect of helminth infection on BCG vaccination and TB, but the mechanisms remain unclear. AIM To determine the cytokine response profiles during tuberculosis and intestinal helminth coinfection. METHODS For the in vitro study, lymphocytic Jurkat and monocytic THP-1 cell lines were stimulated with Mtb H37Rv and Ascaris lumbricoides (A. lumbricoides) excretory-secretory protein extracts for 24 and 48 h. The pilot human ex vivo study consisted of participants infected with Mtb, helminths, or coinfected with both Mtb and helminths. Thereafter, the gene transcription levels of IFN-γ, TNF-α, granzyme B, perforin, IL-2, IL-17, NFATC2, Eomesodermin, IL-4, IL-5, IL-10, TGF-β and FoxP3 in the unstimulated/uninfected controls, singly stimulated/infected and costimulated/coinfected groups were determined using RT-qPCR. RESULTS TB-stimulated Jurkat cells had significantly higher levels of IFN-γ, TNF-α, granzyme B, and perforin compared to unstimulated controls, LPS- and A. lumbricoides-stimulated cells, and A. lumbricoides plus TB-costimulated cells (p < 0.0001). IL-2, IL-17, Eomes, and NFATC2 levels were also higher in TB-stimulated Jurkat cells (p < 0.0001). Jurkat and THP-1 cells singly stimulated with TB had lower IL-5 and IL-4 levels compared to those singly stimulated with A. lumbricoides and those costimulated with TB plus A. lumbricoides (p < 0.0001). A. lumbricoides-singly stimulated cells had higher IL-4 levels compared to TB plus A. lumbricoides-costimulated Jurkat and THP-1 cells (p < 0.0001). TGF-β levels were also lower in TB-singly stimulated cells compared to TB plus A. lumbricoides-costimulated cells (p < 0.0001). IL-10 levels were lower in TB-stimulated Jurkat and THP-1 cells compared to TB plus A. lumbricoides-costimulated cells (p < 0.0001). Similar results were noted for the human ex vivo study, albeit with a smaller sample size. CONCLUSIONS Data suggest that helminths induce a predominant Th2/Treg response which may downregulate critical Th1 responses that are crucial for tuberculosis protection.
Collapse
Affiliation(s)
- Khethiwe N Bhengu
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Cape Town 7505, South Africa
- Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
| | - Ravesh Singh
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Cape Town 7505, South Africa
| | - Miranda N Mpaka-Mbatha
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Cape Town 7505, South Africa
- Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
| | - Nomzamo Nembe-Mafa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Cape Town 7505, South Africa
| | - Zilungile L Mkhize-Kwitshana
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Cape Town 7505, South Africa
| |
Collapse
|
2
|
Chin KL, Fonte L, Lim BH, Sarmiento ME, Acosta A. Immunomodulation resulting of helminth infection could be an opportunity for immunization against tuberculosis and mucosal pathogens. Front Immunol 2023; 14:1091352. [PMID: 37020538 PMCID: PMC10067736 DOI: 10.3389/fimmu.2023.1091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Affiliation(s)
- Kai Ling Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- *Correspondence: Kai Ling Chin, ; Luis Fonte, ; Armando Acosta,
| | - Luis Fonte
- Department of Parasitology, Institute of Tropical Medicine “Pedro Kourí”, Havana, Cuba
- *Correspondence: Kai Ling Chin, ; Luis Fonte, ; Armando Acosta,
| | - Boon Huat Lim
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Maria E. Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- *Correspondence: Kai Ling Chin, ; Luis Fonte, ; Armando Acosta,
| |
Collapse
|
3
|
Immunological Interactions between Intestinal Helminth Infections and Tuberculosis. Diagnostics (Basel) 2022; 12:diagnostics12112676. [PMID: 36359526 PMCID: PMC9689268 DOI: 10.3390/diagnostics12112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Helminth infections are among the neglected tropical diseases affecting billions of people globally, predominantly in developing countries. Helminths’ effects are augmented by coincident tuberculosis disease, which infects a third of the world’s population. The role of helminth infections on the pathogenesis and pathology of active tuberculosis (T.B.) remains controversial. Parasite-induced suppression of the efficacy of Bacille Calmette-Guerin (BCG) has been widely reported in helminth-endemic areas worldwide. T.B. immune response is predominantly proinflammatory T-helper type 1 (Th1)-dependent. On the other hand, helminth infections induce an opposing anti-inflammatory Th2 and Th3 immune-regulatory response. This review summarizes the literature focusing on host immune response profiles during single-helminth, T.B. and dual infections. It also aims to necessitate investigations into the complexity of immunity in helminth/T.B. coinfected patients since the research data are limited and contradictory. Helminths overlap geographically with T.B., particularly in Sub-Saharan Africa. Each disease elicits a response which may skew the immune responses. However, these effects are helminth species-dependent, where some parasites have no impact on the immune responses to concurrent T.B. The implications for the complex immunological interactions that occur during coinfection are highlighted to inform government treatment policies and encourage the development of high-efficacy T.B. vaccines in areas where helminths are prevalent.
Collapse
|
4
|
Helminth species dependent effects on Th1 and Th17 cytokines in active tuberculosis patients and healthy community controls. PLoS Negl Trop Dis 2022; 16:e0010721. [PMID: 35976976 PMCID: PMC9423606 DOI: 10.1371/journal.pntd.0010721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/29/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
Despite that the impact of different helminth species is not well explored, the current dogma states that helminths affect the Th1/Th2 balance which in turn affects the risk of tuberculosis (TB) reactivation and severity of disease. We investigated the influence of helminth species on cytokine profiles including IL-17A in TB patients and healthy community controls (CCs). In total, 104 newly diagnosed pulmonary TB patients and 70 HIV negative and QuantiFERON negative CCs in Gondar, Ethiopia were included following helminth screening by stool microscopy. Plasma samples and ex vivo stimulation of peripheral blood mononuclear cells (PBMCs) with purified protein derivative (PPD) and Staphylococcus enterotoxin B (SEB) was used to determine cytokine profiles by cytometric bead array. In CCs, Ascaris lumbricoides or Schistosoma mansoni infections were associated with an impaired Th1-type response (IFN-gamma, IL-6 and TNF-alpha) in PBMCs mainly with SEB stimulations, whereas in TB patients only hookworm infection showed a similar pattern. Among CCs, the IL-17A response in PBMCs stimulated with SEB was higher only for S. mansoni, whereas in TB patients, the elevated systemic IL-17A plasma level was significantly suppressed in hookworm infected TB patients compared to patients without helminth coinfection. Following treatment of TB and helminth infection there was a general decrease in ex vivio IL-10 and TNF-alpha production in unstimulated, PPD or SEB stimulated PBMCs that was the most pronounced and significant in TB patients infected with S. mansoni, whereas the follow-up levels of IFN-gamma and IL-17A was significantly increased only in TB patients without helminth coinfection from PBMCs stimulated mainly with SEB. In summary, in addition to confirming helminth specific effects on the Th1/Th2 response before and after TB treatment, our novel finding is that IL-17A was impaired in helminth infected TB patients especially for hookworm, indicating a helminth species-specific immunoregulatory effect on IL-17A which needs to be further investigated.
Collapse
|
5
|
Differential effects of asymptomatic Ascaris lumbricoides, Schistosoma mansoni or hook worm infection on the frequency and TGF-beta-producing capacity of regulatory T cells during active tuberculosis. Tuberculosis (Edinb) 2021; 131:102126. [PMID: 34601265 DOI: 10.1016/j.tube.2021.102126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
Helminth induced expansion of regulatory T cells (Tregs) may take part in suppressing protective host responses during tuberculosis (TB), although Tregs functionality and link to TB disease severity remains unexplored. We investigated the species-specific effect of helminths on frequency and TGF-β producing capacity of Tregs, and possible connection to TB disease severity. 89 pulmonary TB patients (PTB) and 69 community controls (CCs) from Gondar, Ethiopia, were included. Clinical disease severity was graded by TB score, and flow cytometry used to characterize Treg frequency and functionality measured as their TGF-β-producing capacity. In helminth positive PTB patients (Helminth+PTB+) compared to helminth negative PTB or CCs, TGF-β+ Tregs were significantly increased mainly in hookworm coinfection whereas S. mansoni increased TGF-β+ Tregs in CCs. Treatment of TB and helminths decreased TGF-β+ Tregs in Helminth+PTB+ at 2 months follow-up. There were no overall differences in the frequency of Tregs in CCs or PTB unless stratification on TB disease severity was performed. At inclusion Helminth+PTB+ had increased frequency of Tregs already at low disease severity, and TGF-β+ Tregs correlated to intermediate-to-high disease severity. In conclusion, helminth specific increase of TGF-β+ Tregs in PTB patients was correlated to TB disease severity and was restored following anti-helminth treatment.
Collapse
|
6
|
Togarsimalemath SK, Pushpamithran G, Schön T, Stendahl O, Blomgran R. Helminth Antigen Exposure Enhances Early Immune Control of Mycobacterium tuberculosis in Monocytes and Macrophages. J Innate Immun 2020; 13:148-163. [PMID: 33333522 DOI: 10.1159/000512279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Helminth and Mycobacterium tuberculosis (Mtb) coinfection is common and suggested to influence the risk of developing active tuberculosis (TB). It is known that helminths in contrast to TB induce a strong Th2 response in the host. However, the direct impact of helminth antigen exposure on host immunity against TB is largely unknown. Our aim was to explore the effects of helminth antigen exposure on the early immune control of Mtb in monocytes and macrophages. Ascaris lumbricoides (ASC) and Schistosoma mansoni (SM) protein antigens were used to study the immediate effect of helminth antigen exposure in monocytes, on monocyte-to-macrophage differentiation, or mature macrophages, in the control of virulent Mtb H37Rv. Pre-exposure of peripheral blood mononuclear cells reduced Mtb growth in monocytes, especially with SM, but no Th1/Th2 cytokines or activation markers indicated involvement of T cells. Monocytes exposed before maturing into macrophages reduced Mtb growth in macrophages (ASC), and pre-exposure of mature macrophages reduced (ASC) or kept Mtb growth at control levels (SM). This in vitro model shows how helminth infection directly affects the monocyte-macrophage axis at an early stage before cell-mediated immunity develops. During acute helminth coinfection or when helminth antigen concentration is elevated at the site of Mtb infection, these helminths provide an enhanced control and killing of Mtb owing to the direct stimulatory effect of helminth antigens on phagocytic cells.
Collapse
Affiliation(s)
- Shambhuprasad Kotresh Togarsimalemath
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Giggil Pushpamithran
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Thomas Schön
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.,Department of Infectious Diseases and Clinical Microbiology, Kalmar County Hospital, Kalmar, Sweden
| | - Olle Stendahl
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Robert Blomgran
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden,
| |
Collapse
|
7
|
Dessie G, Negesse A, Wagnew F, Amare D, Tiruneh BZ, Mulugeta H, Mekonen BA, Haile D, Ayalew T, Habtewold TD. Intestinal parasites and HIV in Ethiopian tuberclosis patients: A systematic review and meta-analysis. CURRENT THERAPEUTIC RESEARCH 2020; 93:100603. [PMID: 32963640 PMCID: PMC7490528 DOI: 10.1016/j.curtheres.2020.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The distribution of intestinal parasites among patients with tuberculosis in Ethiopia is not well understood. OBJECTIVE This systematic review and meta-analysis was designed to determine the pooled national prevalence of intestinal parasites and its association with HIV among patients with tuberculosis in Ethiopia. METHODS Original articles were searched in PubMed, Google Scholar, EMBASE, World Health Organization's HINARI portal, and supplemented by the hand searching of cross-references. Data were extracted using a standard data extraction checklist. Random-effects model was used to estimate the pooled prevalence of intestinal parasites and odds ratio of the association. The I 2 statistic was utilized to quantify statistical heterogeneity across studies. Funnel plot asymmetry and Egger regression tests were used to check for publication bias. The analysis was done by STATA version 14 for Windows. RESULTS Of 725 identified studies, 12 articles were eligible for inclusion in the final analysis. The pooled national prevalence of intestinal parasites among patients with tuberculosis in Ethiopia was 36.1% (95% CI, 22.1-50.1; I 2 = 98.7%). Subgroup analysis based on study design indicated that the prevalence of intestinal parasite among case-control studies was 41.69% (95% CI, 28.6-54.8; I 2 = 95.1%). The odds of intestinal parasites among patients with tuberculosis-HIV coinfection was not significantly different compared with patients with tuberculosis without HIV/AIDS (odds ratio = 0.99; 95% CI, 0.7-4.7; P = 0.96). CONCLUSIONS In Ethiopia, at least 1 out of 3 patients with tuberculosis have an intestinal parasite. These findings suggest a need of more attention on increasing screening tuberculosis patients for intestinal parasites and deworming interventions. (Curr Ther Res Clin Exp. 2020; 81:XXX-XXX).
Collapse
Affiliation(s)
- Getenet Dessie
- Department of Nursing, School of Health Science, College of Medicine and Health Science, Bahr Dar University, Bahir Dar, Ethiopia
| | - Ayenew Negesse
- Department of Human Nutrition and Food Science, College of Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Fasil Wagnew
- Department of Nursing, College of Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Desalegne Amare
- Department of Nursing, School of Health Science, College of Medicine and Health Science, Bahr Dar University, Bahir Dar, Ethiopia
| | - Balew Zeleke Tiruneh
- Department of Nursing, School of Health Science, College of Medicine and Health Science, Bahr Dar University, Bahir Dar, Ethiopia
| | - Henok Mulugeta
- Department of Nursing, College of Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Berhanu Abebaw Mekonen
- Department of Nutrition, School of Public Health, College of Medicine and Health Science, Bahir Dar University, Bahr Dar, Ethiopia
| | - Dessalegn Haile
- Department of Nursing, College of Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Tilksew Ayalew
- Department of Nursing, School of Health Science, College of Medicine and Health Science, Bahr Dar University, Bahir Dar, Ethiopia
| | - Tesfa Dejenie Habtewold
- Department of Quantitative Economics, School of Business and Economics, Maastricht University, Maastricht
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
8
|
Alemu A, Bitew ZW, Worku T. Intestinal parasites co-infection among tuberculosis patients in Ethiopia: a systematic review and meta-analysis. BMC Infect Dis 2020; 20:510. [PMID: 32664873 PMCID: PMC7362415 DOI: 10.1186/s12879-020-05237-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/07/2020] [Indexed: 01/04/2023] Open
Abstract
Background Tuberculosis and intestinal parasites are mostly affecting poor people. They are in a vicious since one is the risk factor for the other. However, the comprehensive report on the burden and co-incidence of intestinal parasites and tuberculosis in Ethiopia is scant. This systematic review and meta-analysis aimed to provide abridge conclusive evidence on the intestinal parasite-tuberculosis co-infection in Ethiopia. Methods A total of 414 articles published in English were searched from both electronic databases (CINAHL, DOAJ, Embase, Emcare, Medline, ProQuest, and PubMed, Science Direct, and Web of Science) and other sources. The qualities of the included studies were assessed using the Joanna Briggs Institute Critical Appraisal tools and the publication bias was measured using the funnel plot and Eggers regression test. Comprehensive meta-analysis (CMA) Version 3.3.07 and Review Manager software were used to estimate pooled prevalence and associations of intestinal parasites and tuberculosis infection. Results Eleven articles with a total of 3158 tuberculosis patients included in the analysis based on the eligibility criteria. The estimated pooled prevalence of intestinal parasites co-infection was 33% (95% CI: 23.3, 44.3) using the random-effects model. The most common intestinal parasites were Ascaris lumbricoides 10.5% (95% CI: 6.0, 17.5), Hookworm 9.5% (95% CI: 6.10, 14.4), Giardia lamblia 5.7% (95% CI: 2.90, 10.9) and Strongyloides sterocoralis 5.6% (95% CI: 3.3, 9.5). The odds of intestinal parasites infection was higher among tuberculosis patients compared to tuberculosis free individuals (OR = 1.76; 95% CI: 1.17, 2.63). A significant difference was observed among TB patients for infection with intestinal helminths (OR = 2.01; 95% CI: 1.07, 3.80) but not for intestinal protozoans when compared with their counterparts. The odds of multiple parasitic infections was higher among tuberculosis patients (OR = 2.59, 95% CI: 1.90, 3.55) compared to tuberculosis free individuals. However, intestinal parasites co-infection was not associated with HIV status among tuberculosis patients (OR = 0.97; 95% CI: 0.71, 1.32). Conclusion One-third of tuberculosis patients are co-infected with one or more intestinal parasites, and they are more likely to be infected with intestinal helminths and multiple intestinal parasitic infections compared to TB free individuals. We recommend routine screening of tuberculosis patients for intestinal parasites. The effect of mass deworming on tuberculosis incidence would be important to be considered in future researches. Trial registration Registered on PROSPERO with reference number ID: CRD42019135350.
Collapse
Affiliation(s)
- Ayinalem Alemu
- Ethipian Public Health Institute, Addis Ababa, Ethiopia.
| | - Zebenay Workneh Bitew
- Department of Pediatric Nursing, School of Nursing, St Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Teshager Worku
- School of Nursing and Midwifery, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| |
Collapse
|
9
|
Taghipour A, Mosadegh M, Kheirollahzadeh F, Olfatifar M, Safari H, Nasiri MJ, Fathi A, Badri M, Piri Dogaheh H, Azimi T. Are intestinal helminths playing a positive role in tuberculosis risk? A systematic review and meta-analysis. PLoS One 2019; 14:e0223722. [PMID: 31613921 PMCID: PMC6793940 DOI: 10.1371/journal.pone.0223722] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/26/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Co-infection of intestinal helminthic infections (IHIs) and tuberculosis (TB) has appeared as a public health issue, especially in developing countries. Some recent studies have been carried out on the possible relevance of IHIs to TB. The current systematic review and meta-analysis was conducted to assess the prevalence and odds ratio (OR) of IHIs among TB patients and clarify the relationship between IHIs and TB disease. METHODS For the purpose of the study, five English databases including PubMed, Science Direct, Scopus, Web of Science (ISI), and Google scholar were searched (up to January 30, 2019) in order to find the related studies. Random-effects meta-analysis model was used to estimate the pooled prevalence, odds ratio (OR), and 95% confidence interval (CI). Inclusion and exclusion criteria were applied. RESULTS A total of 20 studies including 10 studies with case-control design (2217 patients and 2520 controls) and 10 studies with cross-sectional design (a total of 2415 participants) met the eligibility criteria. As shown by the random-effects model, the pooled prevalence of IHIs in TB patients was estimated to be 26% (95% CI, 17-35%; 1249/4632). The risk of IHI was higher in TB patients compared to controls but this was not statistically significant. However, according to genus/species, the pooled OR of Strongyloides stercoralis (S. stercoralis) (OR, 2.68; 95% CI, 1.59-4.54) had a significantly higher risk in TB patients compared to controls. Nevertheless, the results of random effects model showed no statistically significant association between overall pooled OR of IHIs in TB patients compared to controls in case-control studies (OR, 1; 95% CI, 0-1). CONCLUSIONS It is highly recommended that more precise studies should be carried out by researchers in order to better understand this association. Also, it is of great importance to include the periodic screenings for IHIs in the routine clinical care of these patients.
Collapse
Affiliation(s)
- Ali Taghipour
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kheirollahzadeh
- Biology Department, School of Basic Science, Science and Research Branch Islamic Azad University (SRBIAU), Poonak, Tehran, Iran
| | - Meysam Olfatifar
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Fathi
- Faculty of veterinary medicine, University of Zabol, Zabol, Iran
| | - Milad Badri
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hadi Piri Dogaheh
- Department of Microbiology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Feleke BE, Feleke TE, Mekonnen D, Beyene MB. Micronutrient levels of tuberculosis patients during the intensive phase, a prospective cohort study. Clin Nutr ESPEN 2019; 31:56-60. [PMID: 31060835 DOI: 10.1016/j.clnesp.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The objectives of this study were to estimate the micronutrient deficiency levels of tuberculosis patients at the start and end of the intensive phase, and to identify the predictors of micronutrient deficiencies in tuberculosis patients. METHODS A prospective cohort study design was implemented. The sample size was calculated using Epi-info software. Systematic sampling technique was used. Descriptive statistics were used to estimate the micronutrient levels. The general linear model was used to predict the determinants of micronutrient level. RESULTS At the start of DOTS (directly observed treatment strategy), 64% of tuberculosis patients had a serum iron level less than 60 μg/dl, 41.9% of tuberculosis patients had serum zinc level less than 52 μg/dl, 29.7% of tuberculosis patients had serum selenium level less than 70 ng/dl, 40.5% of tuberculosis patients had serum vitamin d level less than 20 ng/ml, and 60.4% of tuberculosis patients had urine iodine level of less than 60.4 μg/dl. At the end of the intensive phase, 16.7% of tuberculosis patients had a serum iron level less than 60 μg/dl, <1% of tuberculosis patients had serum zinc level less than 52 μg/dl, <1% of tuberculosis patients had serum selenium level less than 70 ng/dl, 20.4% of tuberculosis patients had serum vitamin d level less than 20 ng/ml, and 53% of tuberculosis patients had urine iodine level of less than 60.4 μg/dl. Serum iron level was affected by HIV infection, hookworm infection, and site of tuberculosis infection: serum vitamin d level was affected by HIV infection: and alcohol dependency affected the serum zinc level of tuberculosis patients during the course of tuberculosis treatments. CONCLUSION Antituberculosis drugs were effective in normalizing the serum zinc and selenium level, but the serum level of iron, vitamin d and iodine were not normalized by the anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Berhanu Elfu Feleke
- Department of Epidemiology and Biostatistics, University of Bahir Dar, Bahir Dar, Ethiopia.
| | | | - Daniel Mekonnen
- Department of Medical Microbiology, Immunology and Parasitology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Melkamu Bedimo Beyene
- Department of Epidemiology and Biostatistics, University of Bahir Dar, Bahir Dar, Ethiopia
| |
Collapse
|
11
|
Hasanain AFA, Zayed AAAH, Abd-Ellatief RB, Nafee AMA. Efficacy and safety of cholecalciferol-augmented anti-tuberculosis therapy for treatment of naïve patients with pulmonary tuberculosis: A randomized, controlled, clinical study. Indian J Tuberc 2019; 66:111-117. [PMID: 30797266 DOI: 10.1016/j.ijtb.2018.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND/OBJECTIVE Vitamin D deficiency may contribute to the therapeutic failure of antituberculosis therapy (ATT). The aim of this study is to explore the role of adding cholecalciferol to the standard ATT in improving the therapeutic outcome among the naïve patients with pulmonary tuberculosis (TB). METHODS A randomized, controlled, clinical study, which included 496 naïve patients with pulmonary TB, was carried out. The patients were randomly allocated to two groups. Group-A included 247 patients who received ATT, while group-B included 249 patients who received ATT with cholecalciferol. RESULTS The rate of therapeutic failure among the study population was 29.4%; it was significantly lower among patients of group-B compared to those of group-A (22.1% (95% CI 14.7-26.2) vs 38.1% (95% CI 31.5-46.1), p 0.036). In addition, the rate of early therapeutic response was significantly higher among patients of group-B compared to those of group-A (35.3% (95% CI 29.6-42.3) vs 19.4% (95% CI 15.1-24.6), p 0.041). Incidence rate of adverse effects was 19.3%; it was higher (although not statistically significant) among patients of group-A compared to those of group-B (21.9% vs 16.9%). CONCLUSIONS In conclusion, cholecalciferol-augmented ATT can be more efficacious in treating naïve patients with pulmonary TB compared to the standard ATT. In addition, adding vitamin D3 to ATT provides extra protection against the hepatic and muscular adverse effects of ATT.
Collapse
|
12
|
Evans EE, Siedner MJ. Tropical Parasitic Infections in Individuals Infected with HIV. CURRENT TROPICAL MEDICINE REPORTS 2017; 4:268-280. [PMID: 33842194 PMCID: PMC8034600 DOI: 10.1007/s40475-017-0130-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Neglected tropical diseases share both geographic and socio-behavioral epidemiological risk factors with HIV infection. In this literature review, we describe interactions between parasitic diseases and HIV infection, with a focus on the impact of parasitic infections on HIV infection risk and disease progression, and the impact of HIV infection on clinical characteristics of tropical parasitic infections. We limit our review to tropical parasitic infections of the greatest public health burden, and exclude discussion of classic HIV-associated opportunistic infections that have been well reviewed elsewhere. RECENT FINDINGS Tropical parasitic infections, HIV-infection, and treatment with antiretroviral therapy alter host immunity, which can impact susceptibility, transmissibility, diagnosis, and severity of both HIV and parasitic infections. These relationships have a broad range of consequences, from putatively increasing susceptibility to HIV acquisition, as in the case of schistosomiasis, to decreasing risk of protozoal infections through pharmacokinetic interactions between antiretroviral therapy and antiparasitic agents, as in the case of malaria. However, despite this intimate interplay in pathophysiology and a broad overlap in epidemiology, there is a general paucity of data on the interactions between HIV and tropical parasitic infections, particularly in the era of widespread antiretroviral therapy availability. SUMMARY Additional data are needed to motivate clinical recommendations for detection and management of parasitic infections in HIV-infected individuals, and to consider the implications of and potential opportunity granted by HIV treatment programs on parasitic disease control.
Collapse
Affiliation(s)
| | - Mark J Siedner
- Massachusetts General Hospital
- Harvard Medical School
- Mbarara University of Science and Technology
| |
Collapse
|