1
|
de Araújo PPB, Martinez EF, Garcez AS, de Castro Raucci LMS, Soares AB, de Araújo VC, Teixeira LN. Effects of photobiomodulation on different phases of in vitro osteogenesis. Photochem Photobiol Sci 2024; 23:1565-1571. [PMID: 39060841 DOI: 10.1007/s43630-024-00616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
The present study aimed to evaluate the effect of photobiomodulation therapy (PBM) on different stages of osteogenesis in vitro. For this, osteoblastic-like cells (Saos-2 cell lineage) were irradiated in two different periods: during the Proliferation phase (PP; from the second to the fourth day) and during the Differentiation phase (DP; from the seventh to the ninth day). The energy density used in the study was 1.5 J/ cm2. The following parameters were evaluated: 1) quantification of collagen type 1 (COL 1), osteopontin (OPN), and bone morphogenetic protein 2 (BMP-2); 2) quantification of alkaline phosphatase (ALP) activity; and 3) quantification of extracellular matrix (ECM) mineralization. Non-irradiated cultures were used as controls. The data were analyzed using the Student's t-test or one-way ANOVA, considering a significance level of 5%. The results indicated that COL 1 and BMP-2 quantification was higher in Saos-2 irradiated during the DP in relation to the control group at day 10 (p < 0.05). No differences were observed for other comparisons at this time point (p > 0.05). OPN expression was greater in PP compared with the other experimental groups at day 10 (p < 0.05). Irradiation did not affect ALP activity in Saos-2 regardless of the exposure phase and the time point evaluated (p > 0.05). At day 14, ECM mineralization was higher in Saos-2 cultures irradiated during the DP in relation to the PP (p < 0.05). In conclusion, the results suggested that the effects of PBM on osteoblastic cells may be influenced by the stage of cell differentiation.
Collapse
Affiliation(s)
| | - Elizabeth Ferreira Martinez
- Division of Oral Pathology, Faculdade São Leopoldo Mandic, Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | - Aguinaldo Silva Garcez
- Division of Oral Pathology, Faculdade São Leopoldo Mandic, Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | | | - Andresa Borges Soares
- Division of Oral Pathology, Faculdade São Leopoldo Mandic, Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | - Vera Cavalcanti de Araújo
- Division of Oral Pathology, Faculdade São Leopoldo Mandic, Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | - Lucas Novaes Teixeira
- Division of Oral Pathology, Faculdade São Leopoldo Mandic, Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil.
| |
Collapse
|
2
|
Nakatani A, Kunimatsu R, Sakata S, Tsuka Y, Miyauchi M, Takata T, Tanimoto K. High-frequency low-intensity semiconductor laser irradiation enhances osteogenic differentiation of human cementoblast lineage cells. Lasers Med Sci 2024; 39:174. [PMID: 38969931 PMCID: PMC11226468 DOI: 10.1007/s10103-024-04127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
PURPOSE Laser irradiation activates a range of cellular processes in the periodontal components and promotes tissue repair. However, its effect on osteogenic differentiation of human cementoblast lineage cells remains unclear. This study aimed to examine the effects of high-frequency semiconductor laser irradiation on the osteogenic differentiation of human cementoblast lineage (HCEM) cells. METHODS HCEM cells were cultured to reach 80% confluence and irradiated with a gallium-aluminum-arsenide (Ga-Al-As) semiconductor laser with a pulse width of 200 ns and wavelength of 910 at a dose of 0-2.0 J/cm2. The outcomes were assessed by analyzing the mRNA levels of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), and type I collagen (COLL1) using real-time polymerase chain reaction (PCR) analysis 24 h after laser irradiation. Cell mineralization was evaluated using ALP activity, calcium deposition, and Alizarin Red staining. RESULTS The laser-irradiated HCEM cells showed significantly enhanced gene expression levels of ALP, RUNX2, and COLL1 as well as ALP activity and calcium concentration in the culture medium compared with the non-irradiated cells. In addition, enhanced calcification deposits were confirmed in the laser-irradiated group compared with the non-irradiated group at 21 and 28 days after the induction of osteogenic differentiation. CONCLUSION High-frequency semiconductor laser irradiation enhances the osteogenic differentiation potential of cultured HCEM cells, underscoring its potential utility for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Ayaka Nakatani
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Shuzo Sakata
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuji Tsuka
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Shunan University, Shunan City, Shunan, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Weng W, Bovard D, Zanetti F, Ehnert S, Braun B, Uynuk-Ool T, Histing T, Hoeng J, Nussler AK, Aspera-Werz RH. Tobacco heating system has less impact on bone metabolism than cigarette smoke. Food Chem Toxicol 2023; 173:113637. [PMID: 36708864 DOI: 10.1016/j.fct.2023.113637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 12/14/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Cigarette smoking promotes osteoclast activity, thus increasing the risk of secondary osteoporosis, leading to osteoporosis-associated fracture and impaired fracture healing. Heated tobacco products (HTP) are considered potential reduced-risk alternatives to cigarettes. However, their impact on bone metabolism remains to be elucidated. We developed an in vitro model that mimics in vivo bone cell interactions to comparatively evaluate the effects of HTPs and cigarette smoke on bone cell functionality and viability. We generated an in vitro coculture system with SCP-1 and THP-1 cells (1:8 ratio) cultured on a decellularized Saos-2 matrix with an optimized coculture medium. We found that, following acute or chronic exposure, particulate matter extract from the aerosol of an HTP, the Tobacco Heating System (THS), was less harmful to the bone coculture system than reference cigarette (1R6F) smoke extract. In the fracture healing model, cultures exposed to the THS extract maintained similar osteoclast activity and calcium deposits as control cultures. Conversely, smoke extract exposure promoted osteoclast activity, resulting in an osteoporotic environment, whose formation could be prevented by bisphosphonate coadministration. Thus, THS is potentially less harmful than cigarette smoke to bone cell differentiation and bone mineralization - both being crucial aspects during the reparative phase of fracture healing.
Collapse
Affiliation(s)
- Weidong Weng
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - David Bovard
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Sabrina Ehnert
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Bianca Braun
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Tatiana Uynuk-Ool
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Tina Histing
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Andreas K Nussler
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Romina H Aspera-Werz
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| |
Collapse
|
4
|
Hadad H, Kawamata de Jesus L, Piquera Santos AF, Rinaldi Matheus H, de Souza Rodrigues LG, Paolo Poli P, Marcantonio Junior E, Pozzi Semeghini Guastaldi F, Maiorana C, Milanezi de Almeida J, Okamoto R, Ávila Souza F. Beta tricalcium phosphate, either alone or in combination with antimicrobial photodynamic therapy or doxycycline, prevents medication-related osteonecrosis of the jaw. Sci Rep 2022; 12:16510. [PMID: 36192619 PMCID: PMC9530223 DOI: 10.1038/s41598-022-20128-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Surgical trauma in those under a prolonged use of bisphosphonates, can lead to mediation-related osteonecrosis of the jaw (MRONJ). This study aimed to evaluate the preventive therapies for MRONJ. Following four cycles of zoledronic acid administration, Wistar rats had their molar extracted, and were organized into nine treatment groups: negative control group (NCG), treated with saline solution and blood-clot in the alveolus; positive control group (PCG), with blood-clot in the alveolus; BG, β-tricalcium phosphate-based biomaterial; DG, 10% doxycycline gel; aG, antimicrobial photodynamic therapy; and DBG, aBG, aDG, and aDBG, using combination therapy. After 28 days, the lowest bone volume (BV/TV) was reported in PCG (42.17% ± 2.65), and the highest in aDBG (69.85% ± 6.25) (p < 0.05). The higher values of daily mineral apposition rate were recorded in aDBG (2.64 ± 0.48) and DBG (2.30 ± 0.37) (p < 0.001). Moreover, aDBG presented with the highest neoformed bone area (82.44% ± 2.69) (p < 0.05). Non-vital bone was reported only in the PCG (37.94 ± 18.70%). Owing to the key role of the biomaterial, the combination approach (aDBG) was the most effective in preventing MRONJ following tooth extraction.
Collapse
Affiliation(s)
- Henrique Hadad
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifácio St, Vila Mendonça, Araçatuba, São Paulo, 16015-050, Brazil.
| | - Laís Kawamata de Jesus
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifácio St, Vila Mendonça, Araçatuba, São Paulo, 16015-050, Brazil
| | - Ana Flávia Piquera Santos
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifácio St, Vila Mendonça, Araçatuba, São Paulo, 16015-050, Brazil
| | - Henrique Rinaldi Matheus
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifácio St, Vila Mendonça, Araçatuba, São Paulo, 16015-050, Brazil
| | - Letícia Gabriella de Souza Rodrigues
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifácio St, Vila Mendonça, Araçatuba, São Paulo, 16015-050, Brazil
| | - Pier Paolo Poli
- Department of Biomedical, Surgical and Dental Sciences, Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cá Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Elcio Marcantonio Junior
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Fernando Pozzi Semeghini Guastaldi
- Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital (MGH), Harvard School of Dental Medicine, Boston, MA, USA
| | - Carlo Maiorana
- Department of Biomedical, Surgical and Dental Sciences, Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cá Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifácio St, Vila Mendonça, Araçatuba, São Paulo, 16015-050, Brazil
| | - Roberta Okamoto
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Francisley Ávila Souza
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifácio St, Vila Mendonça, Araçatuba, São Paulo, 16015-050, Brazil.
| |
Collapse
|
5
|
Weng W, Zanetti F, Bovard D, Braun B, Ehnert S, Uynuk-Ool T, Histing T, Hoeng J, Nussler AK, Aspera-Werz RH. A simple method for decellularizing a cell-derived matrix for bone cell cultivation and differentiation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:124. [PMID: 34524552 PMCID: PMC8443471 DOI: 10.1007/s10856-021-06601-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/29/2021] [Indexed: 05/02/2023]
Abstract
The extracellular matrix regulates cell survival, proliferation, and differentiation. In vitro two-dimensional cell experiments are typically performed on a plastic plate or a substrate of a single extracellular matrix constituent such as collagen or calcium phosphate. As these approaches do not include extracellular matrix proteins or growth factors, they fail to mimic a complex cell microenvironment. The cell-derived matrix is an alternative platform for better representing the in vivo microenvironment in vitro. Standard decellularization of a cell-derived matrix is achieved by combining chemical and physical methods. In this study, we compared the decellularization efficacy of several methods: ammonium hydroxide, sodium dodecyl sulfate (SDS), or Triton X-100 with cold or heat treatment on a matrix of Saos-2 cells. We found that the protocols containing SDS were cytotoxic during recellularization. Heat treatment at 47 °C was not cytotoxic, removed cellular constituents, inactivated alkaline phosphatase activity, and maintained the levels of calcium deposition. Subsequently, we investigated the differentiation efficiency of a direct bone coculture system in the established decellularized Saos-2 matrix, an inorganic matrix of calcium phosphate, and a plastic plate as a control. We found that the decellularized Saos-2 cell matrix obtained by heat treatment at 47 °C enhanced osteoclast differentiation and matrix mineralization better than the inorganic matrix and the control. This simple and low-cost method allows us to create a Saos-2 decellularized matrix that can be used as an in vivo-like support for the growth and differentiation of bone cells.
Collapse
Affiliation(s)
- Weidong Weng
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - David Bovard
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Bianca Braun
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Tatiana Uynuk-Ool
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Andreas K Nussler
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Romina H Aspera-Werz
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
6
|
In Vitro Cytological Responses against Laser Photobiomodulation for Periodontal Regeneration. Int J Mol Sci 2020; 21:ijms21239002. [PMID: 33256246 PMCID: PMC7730548 DOI: 10.3390/ijms21239002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontal disease is a chronic inflammatory disease caused by periodontal bacteria. Recently, periodontal phototherapy, treatment using various types of lasers, has attracted attention. Photobiomodulation, the biological effect of low-power laser irradiation, has been widely studied. Although many types of lasers are applied in periodontal phototherapy, molecular biological effects of laser irradiation on cells in periodontal tissues are unclear. Here, we have summarized the molecular biological effects of diode, Nd:YAG, Er:YAG, Er,Cr:YSGG, and CO2 lasers irradiation on cells in periodontal tissues. Photobiomodulation by laser irradiation enhanced cell proliferation and calcification in osteoblasts with altering gene expression. Positive effects were observed in fibroblasts on the proliferation, migration, and secretion of chemokines/cytokines. Laser irradiation suppressed gene expression related to inflammation in osteoblasts, fibroblasts, human periodontal ligament cells (hPDLCs), and endothelial cells. Furthermore, recent studies have revealed that laser irradiation affects cell differentiation in hPDLCs and stem cells. Additionally, some studies have also investigated the effects of laser irradiation on endothelial cells, cementoblasts, epithelial cells, osteoclasts, and osteocytes. The appropriate irradiation power was different for each laser apparatus and targeted cells. Thus, through this review, we tried to shed light on basic research that would ultimately lead to clinical application of periodontal phototherapy in the future.
Collapse
|
7
|
Oryan A, Sahvieh S. Effects of bisphosphonates on osteoporosis: Focus on zoledronate. Life Sci 2020; 264:118681. [PMID: 33129881 DOI: 10.1016/j.lfs.2020.118681] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022]
Abstract
Osteoporosis is a bone disease that mainly affects older people and postmenopausal women. Lack of proper treatment for this disease gives rise to many problems in patients and occasionally leads to death. Many drugs have been utilized to treat osteoporosis but the most effective one is the bisphosphonates (BPs) family. This family has several positive effects on bone tissue, including promoting bone healing, enhancing bone mineral density, reducing bone resorption, preventing pathologic fractures, suppressing bone turnover, and modulating bone remodeling. On the other hand, there have also been inconclusive reports that BPs might have a desirable or even adverse impact on osteoporotic patients. Therefore, we set out to examine the positive and negative effects of this family, with a focus on the most potent one that is zoledronate (Zol), in clinical usage. Zoledronate is an amino-BPs and nitrogen-containing drug which is the most powerful BPs on osteoporosis treatment or prevention. Many studies showed its effectiveness in the treatment of osteoporosis and bone healing. As Zol enjoys a considerable potential in treating and preventing osteoporosis, it can be used as one of the effective treatments in this field.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Sonia Sahvieh
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
8
|
Incerti Parenti S, Tschon M, Sartori M, Visani A, Aroni E, Fini M, Alessandri-Bonetti G. Evidence from systematic reviews on photobiomodulation of human bone and stromal cells: Where do we stand? Arch Biochem Biophys 2020; 685:108333. [PMID: 32194044 DOI: 10.1016/j.abb.2020.108333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/17/2020] [Accepted: 03/10/2020] [Indexed: 01/08/2023]
Abstract
This study summarizes the available evidence from systematic reviews on the in vitro effects of photobiomodulation on the proliferation and differentiation of human bone and stromal cells by appraising their methodological quality. Improvements for future studies are also highlighted, with particular emphasis on in vitro protocols and cell-related characteristics. Six reviews using explicit eligibility criteria and methods selected in order to minimize bias were included. There was no compelling evidence on the cellular mechanisms of action or treatment parameters of photobiomodulation; compliance with quality assessment was poor. A rigorous description of laser parameters (wavelength, power, beam spot size, power density, energy density, repetition rate, pulse duration or duty cycle, exposure duration, frequency of treatments, and total radiant energy), exposure conditions (methods to ensure a uniform irradiation and to avoid cross-irradiation, laser-cell culture surface distance, lid presence during irradiation) and cell-related characteristics (cell type or line, isolation and culture conditions, donor-related factors where applicable, tissue source, cell phenotype, cell density, number of cell passages in culture) should be included among eligibility criteria for study inclusion. These methodological improvements will maximize the contribution of in vitro studies on the effects of photobiomodulation on human bone and stromal cells to evidence-based translational research.
Collapse
Affiliation(s)
- Serena Incerti Parenti
- Unit of Orthodontics, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via San Vitale 59, 40125, Bologna, Italy.
| | - Matilde Tschon
- Preclinical and Surgical Studies Laboratory, Rizzoli RIT Department, IRCCS - Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Maria Sartori
- Preclinical and Surgical Studies Laboratory, Rizzoli RIT Department, IRCCS - Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Andrea Visani
- Laboratory of Biomechanics and Technology Innovation, Rizzoli RIT Department, IRCCS - Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Elena Aroni
- Unit of Orthodontics, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via San Vitale 59, 40125, Bologna, Italy.
| | - Milena Fini
- Preclinical and Surgical Studies Laboratory, Rizzoli RIT Department, IRCCS - Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Giulio Alessandri-Bonetti
- Unit of Orthodontics, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via San Vitale 59, 40125, Bologna, Italy.
| |
Collapse
|
9
|
Chang B, Qiu H, Zhao H, Yang X, Wang Y, Ji T, Zhang Y, Quan Q, Li Y, Zeng J, Meng H, Gu Y. The Effects of Photobiomodulation on MC3T3-E1 Cells via 630 nm and 810 nm Light-Emitting Diode. Med Sci Monit 2019; 25:8744-8752. [PMID: 31743330 PMCID: PMC6880645 DOI: 10.12659/msm.920396] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Photobiomodulation (PBM) has been explored as a promising therapeutic strategy to regulate bone cell growth; however, the effects of PBM on osteoblast cell lines remains poorly understood. In addition, as a light source of PBM, the light uniformity of light-emitting diode (LED) devices has not been given enough attention. MATERIAL AND METHODS Here, we sought to investigate the effects of PBM on MC3T3-E1 cells via 630 nm and 810 nm light from a newly designed LED with high uniformity of light. Cell proliferation, flow cytometric analysis, alkaline phosphatase (ALP) staining, ALP activity, Alizarin Red S staining, and quantitative real-time polymerase chain reaction (qRT-PCR) were carried out to assess treatment response. MC3T3-E1 cells were irradiated with LED devices (630±5 nm and 810±10 nm, continuous wave) for 200 seconds at a power density of 5 mW/cm² once daily. RESULTS Increases in cell proliferation and decreases in cell apoptosis were evident following irradiation. ALP staining intensity and activity were also significantly increased following irradiation. Level of mineralization was obviously enhanced in irradiated groups compared with non-irradiated controls. qRT-PCR also showed significant increases in mRNA expression of osteocalcin (OCN) and osteoprotegerin (OPG) in the irradiated groups. CONCLUSIONS Our results showed that LED PBM could promote the proliferation, ALP staining intensity and activity, level of mineralization, gene expression of OCN and OPG of MC3T3-E1 cells, with no significant difference between the 630 nm- and 810 nm-irradiated groups.
Collapse
Affiliation(s)
- Biao Chang
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Haixia Qiu
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Hongyou Zhao
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Xi Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, P.R. China
- General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, P.R. China
| | - Ying Wang
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Tengda Ji
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Yuxuan Zhang
- Institute of Orthopedics, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, P.R. China
- Key Laboratory of Musculoskeletal Trauma and War Injuries, People’s Liberation Army, Beijing, P.R. China
| | - Qi Quan
- Institute of Orthopedics, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, P.R. China
- Key Laboratory of Musculoskeletal Trauma and War Injuries, People’s Liberation Army, Beijing, P.R. China
| | - Yunqi Li
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Jing Zeng
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Haoye Meng
- Institute of Orthopedics, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, P.R. China
- Key Laboratory of Musculoskeletal Trauma and War Injuries, People’s Liberation Army, Beijing, P.R. China
| | - Ying Gu
- Department of Laser Medicine, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| |
Collapse
|
10
|
Histatin-1 counteracts the cytotoxic and antimigratory effects of zoledronic acid in endothelial and osteoblast-like cells. J Periodontol 2019; 90:766-774. [DOI: 10.1002/jper.18-0644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022]
|
11
|
Yazıcı T, Koçer G, Nazıroğlu M, Övey İS, Öz A. Zoledronic Acid, Bevacizumab and Dexamethasone-Induced Apoptosis, Mitochondrial Oxidative Stress, and Calcium Signaling Are Decreased in Human Osteoblast-Like Cell Line by Selenium Treatment. Biol Trace Elem Res 2018; 184:358-368. [PMID: 29081061 DOI: 10.1007/s12011-017-1187-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
Abstract
Increased intracellular free calcium ion (Ca2+) concentration induces excessive oxidative stress and apoptosis. Medical procedures such as zoledronic acid (Zol), bevacizumab (Bev), and dexamethasone (Dex) are usually used in the treatment of bone diseases (osteoporosis, Paget's disease, etc.) and to prevent metastasis in the bone although the procedures induce osteonecrosis of the jaw through excessive production of reactive oxygen species (ROS). Recently, we observed regulator roles of selenium (Se) on apoptosis and Ca2+ entry through transient receptor potential vanilloid 1 (TRPV1) channels in the cancer cell lines. Therefore, Se may modulate Zol, Bev, and Dex-induced oxidative stress and apoptosis through regulation of TRPV1 channel. In the current study, we investigated the protective effects of Se on apoptosis and oxidative stress through TRPV1 in Zol, Bev, and Dex-induced osteoblast-like cell line. We used human osteoblast-like cell line (Saos-2), and the cells were divided into 12 groups as control, Zol, Bev, Dex, Se, Zol+Se, Bev+Se, Dex+Se, Zol+Dex, Zol+Dex+Se, Zol+Bev, and Zol+Bev+Se which were incubated with drugs (Zol, Bev, Dex, and Se) for 24 h. The cytosolic free Ca2+ concentration was increased by Zol, Bev, Dex, Zol+Bev, and Zol+Dex, although it was reduced by Se treatment. However, Zol, Bev, and Dex-induced increase in apoptosis, caspase 3, caspase 9, poly (ADP-ribose) polymerase 1 expression levels, and intracellular ROS production values in the cells were decreased by Se treatments. In conclusion, we observed that Zol, Bev, and Dex-induced apoptosis, mitochondrial oxidative stress, and calcium signaling are decreased in human osteoblast-like cell line by the Se treatment. Our findings may be relevant to the etiology and treatment of Zol, Bev, and Dex-induced osteonecrosis by Se.
Collapse
Affiliation(s)
- Tayfun Yazıcı
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Suleyman Demirel University, Isparta, Turkey.
| | - Gülperi Koçer
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey
- Department of Neuroscience, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - İshak Suat Övey
- Department of Physiology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Alanya, Turkey
| | - Ahmi Öz
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
12
|
Tani A, Chellini F, Giannelli M, Nosi D, Zecchi-Orlandini S, Sassoli C. Red (635 nm), Near-Infrared (808 nm) and Violet-Blue (405 nm) Photobiomodulation Potentiality on Human Osteoblasts and Mesenchymal Stromal Cells: A Morphological and Molecular In Vitro Study. Int J Mol Sci 2018; 19:ijms19071946. [PMID: 29970828 PMCID: PMC6073131 DOI: 10.3390/ijms19071946] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 01/08/2023] Open
Abstract
Photobiomodulation (PBM) has been used for bone regenerative purposes in different fields of medicine and dentistry, but contradictory results demand a skeptical look for its potential benefits. This in vitro study compared PBM potentiality by red (635 ± 5 nm) or near-infrared (NIR, 808 ± 10 nm) diode lasers and violet-blue (405 ± 5 nm) light-emitting diode operating in a continuous wave with a 0.4 J/cm2 energy density, on human osteoblast and mesenchymal stromal cell (hMSC) viability, proliferation, adhesion and osteogenic differentiation. PBM treatments did not alter viability (PI/Syto16 and MTS assays). Confocal immunofluorescence and RT-PCR analyses indicated that red PBM (i) on both cell types increased vinculin-rich clusters, osteogenic markers expression (Runx-2, alkaline phosphatase, osteopontin) and mineralized bone-like nodule structure deposition and (ii) on hMSCs induced stress fiber formation and upregulated the expression of proliferation marker Ki67. Interestingly, osteoblast responses to red light were mediated by Akt signaling activation, which seems to positively modulate reactive oxygen species levels. Violet-blue light-irradiated cells behaved essentially as untreated ones and NIR irradiated ones displayed modifications of cytoskeleton assembly, Runx-2 expression and mineralization pattern. Although within the limitations of an in vitro experimentation, this study may suggest PBM with 635 nm laser as potential effective option for promoting/improving bone regeneration.
Collapse
Affiliation(s)
- Alessia Tani
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Marco Giannelli
- Odontostomatologic Laser Therapy Center, via dell' Olivuzzo 162, 50143 Florence, Italy.
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| |
Collapse
|
13
|
Statkievicz C, Toro LF, de Mello-Neto JM, de Sá DP, Casatti CA, Issa JPM, Cintra LTA, de Almeida JM, Nagata MJH, Garcia VG, Theodoro LH, Ervolino E. Photomodulation multiple sessions as a promising preventive therapy for medication-related osteonecrosis of the jaws after tooth extraction in rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 184:7-17. [DOI: 10.1016/j.jphotobiol.2018.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/12/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022]
|
14
|
Fallahnezhad S, Piryaei A, Darbandi H, Amini A, Ghoreishi SK, Jalalifirouzkouhi R, Bayat M. Effect of low‐level laser therapy and oxytocin on osteoporotic bone marrow‐derived mesenchymal stem cells. J Cell Biochem 2017; 119:983-997. [DOI: 10.1002/jcb.26265] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Somaye Fallahnezhad
- Department of Biology and Anatomical SciencesSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Abbas Piryaei
- Department of Biology and Anatomical SciencesSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Hasan Darbandi
- Department of ImmunologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Abdollah Amini
- Department of Biology and Anatomical SciencesSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | | | | | - Mohammad Bayat
- Cellular and Molecular Biology Research Center, and Department of Biology and Anatomical SciencesSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
15
|
Abstract
OBJECTIVE Due to accumulation in the bone matrix and a half-life of at least 10 years, it is important to understand the cellular impact of bisphosphonates (BPs). This study assessed the effects of alendronate (ALN) on human primary osteoblasts. MATERIAL AND METHODS Osteoblasts were incubated with ALN (5, 20 and 100 μM), and both cells and cell culture media were harvested after d 1, 3, 7 or 14. Proliferation was evaluated by 3H-thymidine incorporation and tetrazolium dye (MTT) colorimetric assay, and viability by the lactate dehydrogenase (LDH) activity in the medium. Differentiation was evaluated using protein Luminex multiplex assays and RT-PCR. RESULTS ALN had no significant effects on cell viability. The lower concentrations enhanced the proliferation, whereas 100 μM diminished the proliferation. mRNA expression of osteocalcin (OC), alkaline phosphatase (ALP) and α-1 type 1 collagen were reduced, whereas ALN enhanced the expression of leptin mRNA and the secretion of interleukin-8 (IL-8) and regulated on activation normal T cell expressed and secreted (RANTES). CONCLUSIONS ALN enhanced the secretion of immune factors from human osteoblasts. Combined with a lower rate of proliferation and a decline in differentiation, this indicates that higher dosages or accumulation may cause undesirable local changes in bone.
Collapse
|
16
|
Bisphosphonate-related osteonecrosis of the jaw: a review of the potential efficacy of low-level laser therapy. Support Care Cancer 2016; 24:3687-93. [DOI: 10.1007/s00520-016-3139-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/22/2016] [Indexed: 12/27/2022]
|
17
|
Heymann PG, Mandic R, Kämmerer PW, Kretschmer F, Saydali A, Neff A, Draenert FG. Laser-enhanced cytotoxicity of zoledronic acid and cisplatin on primary human fibroblasts and head and neck squamous cell carcinoma cell line UM-SCC-3. J Craniomaxillofac Surg 2014; 42:1469-74. [DOI: 10.1016/j.jcms.2014.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/23/2014] [Accepted: 04/22/2014] [Indexed: 12/13/2022] Open
|
18
|
Altay MA, Tasar F, Tosun E, Kan B. Low-Level Laser Therapy Supported Surgical Treatment of Bisphosphonate Related Osteonecrosis of Jaws: A Retrospective Analysis of 11 Cases. Photomed Laser Surg 2014; 32:468-75. [DOI: 10.1089/pho.2014.3742] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mehmet Ali Altay
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| | - Ferda Tasar
- Professor Emeritus, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Hacettepe University, Ankara, Turkey
| | - Emre Tosun
- Professor Emeritus, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Hacettepe University, Ankara, Turkey
| | - Bahadir Kan
- Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Kocaeli University, Basiskele, Kocaeli, Turkey
| |
Collapse
|
19
|
Low-level laser therapy for osteonecrotic lesions: effects on osteoblasts treated with zoledronic acid. Support Care Cancer 2014; 22:2741-8. [DOI: 10.1007/s00520-014-2267-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
|
20
|
Lee JY, Kim IR, Park BS, Kim YD, Chung IK, Song JM, Shin SH. Effect of low-level laser therapy on oral keratinocytes exposed to bisphosphonate. Lasers Med Sci 2013; 30:635-43. [PMID: 23835780 DOI: 10.1007/s10103-013-1382-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/23/2013] [Indexed: 10/26/2022]
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a side effect of bisphosphonate therapy. However, its pathophysiology is not yet fully elucidated, and effective treatment of BRONJ remains unclear. The aim of this study is to investigate the effects of alendronate on oral keratinocytes and of low-level laser therapy (LLLT) on alendronate-treated keratinocytes, specifically by evaluating their viability, apoptosis, and wound healing function after irradiation. Oral keratinocyte cells (HaCaT) were exposed to 25 μM alendronate. Then, laser irradiation was performed with a low-level Ga-Al-As laser (λ = 808 ± 3 nm, 80 mW, and 80 mA; NDLux, Seoul, Korea) using 1.2 J/cm(2) energy dose. Viability was analyzed using MTT assay. Apoptosis was measured by Hoechst staining, caspase assay. Changes in secretion of IL-8, VEGF, and collagen type I were studied by ELISA and immunofluorescence microscopy. Scratch wound assays were also performed to measure cellular migration. Our results show that alendronate inhibits keratinocyte viability, expression of IL-8, VEGF, and collagen type I which are intimately related to healing events and cell migration while promoting apoptosis. Our results serve to demonstrate the utility of LLLT in partially overcoming the inhibitory effects of this bisphosphonate. From these results, the authors believe that the present study will provide an experimental basis for a fuller explanation of the clinical effects of LLLT as a BRONJ treatment modality.
Collapse
Affiliation(s)
- Jae-Yeol Lee
- Department of Oral and Maxillofacial Surgery, Pusan National University Hospital, Busan, South Korea,
| | | | | | | | | | | | | |
Collapse
|
21
|
The effects of chronic zoledronate usage on the jaw and long bones evaluated using RANKL and osteoprotegerin levels in an animal model. Int J Oral Maxillofac Surg 2013; 42:1134-9. [PMID: 23522850 DOI: 10.1016/j.ijom.2013.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/26/2012] [Accepted: 02/15/2013] [Indexed: 01/06/2023]
Abstract
The discovery of the receptor activator of nuclear factor kappaB (RANK), RANK ligand (RANKL), and osteoprotegerin (OPG) system (RANK/RANKL/OPG system) has been one of the most important advances in bone biology in the last decade. We investigated how the chronic application of bisphosphonate affects the RANKL and OPG levels in an animal model and whether this effect may be related to bisphosphonate-related osteonecrosis of the jaws (BRONJ). Thirty female Sprague-Dawley rats were used in this study. The rats were randomly divided into three groups (10 in each): Z, the zolendronate group, injected with zolendronate for 10 weeks; S, a control group, injected with saline solution for 10 weeks; and C, a control group, in which no injection was given. RANKL values in the tibia were increased in the Z group when compared with the two controls; however, the RANKL values in the mandible were decreased when compared with the controls. Although the differences did not reach statistical significance, the mandibular OPG values were increased in the Z group when compared with the C and S groups. The mechanism of RANKL negation and absence in osteoclastic activation could be a predisposing factor for the development of BRONJ.
Collapse
|