1
|
Wu J, Wu Q, Yu H. Virtual Implant Treatment Planning Using the Existing Denture With Metal Frameworks as a Radiographic Guide: A Technique Note. J ORAL IMPLANTOL 2023; 49:573-577. [PMID: 38279642 DOI: 10.1563/aaid-joi-d-23-00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Affiliation(s)
- Jiacheng Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Dental Technology, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Qin Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| |
Collapse
|
2
|
Biun J, Dudhia R, Arora H. The in-vitro accuracy of fiducial marker-based versus markerless registration of an intraoral scan with a cone-beam computed tomography scan in the presence of restoration artifact. Clin Oral Implants Res 2023; 34:1257-1266. [PMID: 37602506 DOI: 10.1111/clr.14166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVES To determine the effect of restoration artifact ('metal artifact') on registration accuracy of an intraoral scan and cone-beam computed tomography (CBCT) scan, comparing fiducial marker-based registration with markerless registration. MATERIALS AND METHODS A maxillary model was fitted with multiple configurations of zirconia crowns to simulate various states of oral rehabilitation. Intraoral scans and CBCT scans (half and full rotation) were acquired. Registration was performed using markerless (point-based registration with surface-based refinement) and fiducial marker-based registration. Each experimental condition was repeated 10 times (n = 320). The absolute deviation was measured at the canines and first molars, and the average and maximum values were analysed using multiple linear regression. RESULTS R2 was 0.874 for average error and 0.858 for maximum error. For markerless registration, there were 0.041 mm (p < .001) and 0.045 mm (p < .001) increases in average and maximum error per crown, respectively. For fiducial marker-based registration, the effect of additional crowns was not statistically significant for average (p = .067) or maximum (p = .438) error. For a full arch of crowns, the regression model predicted average and maximum errors of 0.581 and 0.697 mm for the markerless technique, and 0.185 and 0.210 mm for the fiducial marker-based technique. Overall, the fiducial marker-based technique was more accurate for four or more crowns. The half rotation scan increased average error by 0.021 mm (p = .001) and maximum error by 0.029 mm (p < .001). CONCLUSIONS Under the present study's experimental conditions, the fiducial marker-based technique should be considered if four or more full-coverage highly radiopaque restorations are present.
Collapse
Affiliation(s)
- John Biun
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Raahib Dudhia
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Himanshu Arora
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Wu Q, Wu J, Tan Y, Sun J, Yu H. A chairside digital radiographic guide for registering digital casts to cone beam computed tomography scans with strong metallic artifacts. J Prosthet Dent 2023:S0022-3913(22)00758-2. [PMID: 36610844 DOI: 10.1016/j.prosdent.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 01/06/2023]
Abstract
Accurate registration of digital casts and cone beam computed tomography (CBCT) scans with strong metallic artifacts is essential for the accuracy of guided implant surgery. This article describes a procedure for mapping digital casts onto CBCT scans containing significant scatter artifacts in the virtual implant planning stage. The technique uses a chairside segmented occlusal wing-like radiographic guide, which is constructed of digital splints fabricated using a desktop 3-dimensional printer and composite resin spheres as markers to accurately superimpose the bimaxillary digital scans onto the CBCT scans in a single procedure. This cost-effective technique is timesaving for clinicians and patients, and the digital information for implant planning can be collected in a single visit.
Collapse
Affiliation(s)
- Qin Wu
- Doctoral candidate, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Jiacheng Wu
- Graduate student, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Ying Tan
- Graduate student, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Jikui Sun
- Graduate student, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Haiyang Yu
- Professor, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.
| |
Collapse
|
4
|
Preda F, Morgan N, Van Gerven A, Nogueira-Reis F, Smolders A, Wang X, Nomidis S, Shaheen E, Willems H, Jacobs R. Deep convolutional neural network-based automated segmentation of the maxillofacial complex from cone-beam computed tomography - A validation study. J Dent 2022; 124:104238. [PMID: 35872223 DOI: 10.1016/j.jdent.2022.104238] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES The present study investigated the accuracy, consistency, and time-efficiency of a novel deep CNN-based model for the automated maxillofacial bone segmentation from CBCT images. METHOD A dataset of 144 scans was acquired from two CBCT devices and randomly divided into three subsets: training set (n= 110), validation set (n= 10) and testing set (n=24). A three-dimensional (3D) U-Net (CNN) model was developed, and the achieved automated segmentation was compared with a manual approach. RESULTS The average time required for automated segmentation was 39.1 seconds with a 204-fold decrease in time consumption compared to manual segmentation (132.7 minutes). The model is highly accurate for identification of the bony structures of the anatomical region of interest with a dice similarity coefficient (DSC) of 92.6%. Additionally, the fully deterministic nature of the CNN model was able to provide 100% consistency without any variability. The inter-observer consistency for expert-based minor correction of the automated segmentation observed an excellent DSC of 99.7%. CONCLUSION The proposed CNN model provided a time-efficient, accurate, and consistent CBCT-based automated segmentation of the maxillofacial complex. CLINICAL SIGNIFICANCE Automated segmentation of the maxillofacial complex could act as a potent alternative to the conventional segmentation techniques for improving the efficiency of the digital workflows. This approach could deliver an accurate and ready-to-print three dimensional (3D) models that are essential to patient-specific digital treatment planning for orthodontics, maxillofacial surgery, and implant placement.
Collapse
Affiliation(s)
- Flavia Preda
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer33, BE-3000 Leuven, Belgium.
| | - Nermin Morgan
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer33, BE-3000 Leuven, Belgium; Department of Oral Medicine, Faculty of Dentistry, Mansoura University, 35516 Mansoura, Dakahlia, Egypt
| | | | - Fernanda Nogueira-Reis
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer33, BE-3000 Leuven, Belgium; Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira 901, Piracicaba, São Paulo 13414‑903, Brazil
| | | | - Xiaotong Wang
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer33, BE-3000 Leuven, Belgium
| | | | - Eman Shaheen
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer33, BE-3000 Leuven, Belgium
| | | | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer33, BE-3000 Leuven, Belgium; Department of Dental Medicine, Karolinska Institutet, Box 4064, 141 04 Huddinge, Stockholm, Sweden
| |
Collapse
|
5
|
Ren J, You M, Wang H, Tang B, Liu Y. A comparative evaluation of cone beam computed tomography and multi-slice computed tomography on the volume of tooth in-vitro. 2021 IEEE INTERNATIONAL CONFERENCE ON MEDICAL IMAGING PHYSICS AND ENGINEERING (ICMIPE) 2021. [DOI: 10.1109/icmipe53131.2021.9698963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jiayin Ren
- National Clinical Research Center for Oral Diseases, Sichuan University,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology,Department of Oral Radiology,Chengdu,China
| | - Meng You
- National Clinical Research Center for Oral Diseases, Sichuan University,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology,Department of Oral Radiology,Chengdu,China
| | - Hu Wang
- National Clinical Research Center for Oral Diseases, Sichuan University,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology,Department of Oral Radiology,Chengdu,China
| | - Bei Tang
- National Clinical Research Center for Oral Diseases, Sichuan University,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology,Department of Oral Radiology,Chengdu,China
| | - Yuanyuan Liu
- National Clinical Research Center for Oral Diseases, Sichuan University,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology,Department of Oral Radiology,Chengdu,China
| |
Collapse
|
6
|
Lee SJ, Yang HJ, Choi MH, Woo SY, Huh KH, Lee SS, Heo MS, Choi SC, Hwang SJ, Yi WJ. Real-time augmented model guidance for mandibular proximal segment repositioning in orthognathic surgery, using electromagnetic tracking. J Craniomaxillofac Surg 2018; 47:127-137. [PMID: 30447987 DOI: 10.1016/j.jcms.2018.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/17/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022] Open
Abstract
It is essential to reposition the mandibular proximal segment (MPS) as close to its original position as possible during orthognathic surgery. Conventional methods cannot pinpoint the exact position of the condyle in the fossa in real time during repositioning. In this study, based on an improved registration method and a separable electromagnetic tracking tool, we developed a real-time, augmented, model-guided method for MPS surgery to reposition the condyle into its original position more accurately. After virtual surgery planning, using a complex maxillomandibular model, the final position of the virtual MPS model was simulated via 3D rotations. The displacements resulting from the MPS simulation were applied to the MPS landmarks to indicate their final postoperative positions. We designed a new registration body with 24 fiducial points for registration, and determined the optimal point group on the registration body through a phantom study. The registration between the patient's CT image and physical spaces was performed preoperatively using the optimal points. We also developed a separable frame for installing the electromagnetic tracking tool on the patient's MPS. During MPS surgery, the electromagnetic tracking tool was repeatedly attached to, and separated from, the MPS using the separable frame. The MPS movement resulting from the surgeon's manipulation was tracked by the electromagnetic tracking system. The augmented condyle model and its landmarks were visualized continuously in real time with respect to the simulated model and landmarks. Our method also provides augmented 3D coronal and sagittal views of the fossa and condyle, to allow the surgeon to examine the 3D condyle-fossa positional relationship more accurately. The root mean square differences between the simulated and intraoperative MPS models, and between the simulated and postoperative CT models, were 1.71 ± 0.63 mm and 1.89 ± 0.22 mm respectively at three condylar landmarks. Thus, the surgeons could perform MPS repositioning conveniently and accurately based on real-time augmented model guidance on the 3D condyle positional relationship with respect to the glenoid fossa, using augmented and simulated models and landmarks.
Collapse
Affiliation(s)
- Sang-Jeong Lee
- Department of Biomedical Radiation Sciences (Head: Sung-Joon Ye, PhD), Graduate School of Convergence Science and Technology, Seoul National University, South Korea
| | - Hoon Joo Yang
- Orthognathic Surgery Center (Head: Soon Jung Hwang, DDS, MD, PhD), Seoul National University Dental Hospital, South Korea
| | - Min-Hyuk Choi
- Department of Biomedical Radiation Sciences (Head: Sung-Joon Ye, PhD), Graduate School of Convergence Science and Technology, Seoul National University, South Korea
| | - Sang-Yoon Woo
- Department of Biomedical Radiation Sciences (Head: Sung-Joon Ye, PhD), Graduate School of Convergence Science and Technology, Seoul National University, South Korea
| | - Kyung-Hoe Huh
- Department of Oral and Maxillofacial Radiology (Head: Min-Suk Heo, DDS, PhD), School of Dentistry and Dental Research Institute, Seoul National University, South Korea
| | - Sam-Sun Lee
- Department of Oral and Maxillofacial Radiology (Head: Min-Suk Heo, DDS, PhD), School of Dentistry and Dental Research Institute, Seoul National University, South Korea
| | - Min-Suk Heo
- Department of Oral and Maxillofacial Radiology (Head: Min-Suk Heo, DDS, PhD), School of Dentistry and Dental Research Institute, Seoul National University, South Korea
| | - Soon-Chul Choi
- Department of Oral and Maxillofacial Radiology (Head: Min-Suk Heo, DDS, PhD), School of Dentistry and Dental Research Institute, Seoul National University, South Korea
| | - Soon Jung Hwang
- Department of Oral and Maxillofacial Surgery (Head: Jin-Young Choi, DDS, MD, PhD), School of Dentistry, Dental Research Institute, BK21 Plus, Seoul National University, South Korea.
| | - Won-Jin Yi
- Department of Biomedical Radiation Sciences (Head: Sung-Joon Ye, PhD), Graduate School of Convergence Science and Technology, Seoul National University, South Korea; Department of Oral and Maxillofacial Radiology (Head: Min-Suk Heo, DDS, PhD), School of Dentistry and Dental Research Institute, Seoul National University, South Korea.
| |
Collapse
|
7
|
The Combined Application of Database and Three-Dimensional Image Registration Technology in the Restoration of Total Nose Defect. J Craniofac Surg 2018; 29:e484-e487. [PMID: 29554069 DOI: 10.1097/scs.0000000000004500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE The purpose of this study is to present a virtual planning protocol based on the database and three-dimensional (3D) image registration technology for the restoration of the total nasal defect, and evaluate its feasibility and clinical efficacy. METHODS Patients were scanned with a FaceScan to obtain the 3D facial model which was stored in an Extensible Neuroimaging Archive Toolkit (XNAT) database. Personalized search and similarity evaluation were performed in the database to find a normal 3D facial model with the highest similarity to the patient's. Then, the 2 models were imported into the dedicated software for 3D image registration to get the 3D model of the nasal defect part and the preoperative planning 3D facial model of virtual restoration. Subsequently, the dimensionality reduction algorithm was conducted to transform the 3D model of the nasal defect to a 2D flatten one for determining the scope of the forehead flap during surgery. Four weeks after the insetting surgery of forehead flap pedicle, the postoperative 3D facial model was gained. At last, the clinical efficacy was evaluated by comparing the difference between the preoperative planning and postoperative 3D facial model. RESULTS The nasal shapes of the patients were good after the operation, and the results revealed that the maximum error was ranging from 3.12 to 4.07 mm with the mean error from 0.92 to 1.04 mm. CONCLUSION The database and 3D image registration technology provide a new approach for precisely determining the scope of total nasal defect and the forehead flap, which may be used for reference in the accurate restoration of other facial soft tissue defects.
Collapse
|
8
|
TOMITA Y, UECHI J, KONNO M, SASAMOTO S, IIJIMA M, MIZOGUCHI I. Accuracy of digital models generated by conventional impression/plaster-model methods and intraoral scanning. Dent Mater J 2018; 37:628-633. [DOI: 10.4012/dmj.2017-208] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yuki TOMITA
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido
| | | | | | - Saera SASAMOTO
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido
| | - Masahiro IIJIMA
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido
| | - Itaru MIZOGUCHI
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido
| |
Collapse
|
9
|
Lin HH, Lonic D, Lo LJ. 3D printing in orthognathic surgery − A literature review. J Formos Med Assoc 2018; 117:547-558. [DOI: 10.1016/j.jfma.2018.01.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 12/24/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
|
10
|
Malukhin K, Ehmann K. Mathematical Modeling and Virtual Reality Simulation of Surgical Tool Interactions With Soft Tissue: A Review and Prospective. ACTA ACUST UNITED AC 2018. [DOI: 10.1115/1.4039417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This is an informed assessment of the state of the art and an extensive inventory of modeling approaches and methods for soft tissue/medical cutting tool interaction and of the associated medical processes and phenomena. Modeling and simulation through numerical, theoretical, computational, experimental, and other methods was discussed in comprehensive review sections each of which is concluded with a plausible prospective discussion biased toward the development of so-called virtual reality (VR) simulator environments. The finalized prospective section reflects on the future demands in the area of soft tissue cutting modeling and simulation mostly from a conceptual angle with emphasis on VR development requirements including real-time VR simulator response, cost-effective “close-to-reality” VR implementations, and other demands. The review sections that serve as the basis for the suggested prospective needs are categorized based on: (1) Major VR simulator applications including virtual surgery education, training, operation planning, intraoperative simulation, image-guided surgery, etc. and VR simulator types, e.g., generic, patient-specific and surgery-specific and (2) Available numerical, theoretical, and computational methods in terms of robustness, time effectiveness, computational cost, error control, and accuracy of modeling of certain types of virtual surgical interventions and their experimental validation, geared toward ethically driven artificial “phantom” tissue-based approaches. Digital data processing methods used in modeling of various feedback modalities in VR environments are also discussed.
Collapse
Affiliation(s)
- Kostyantyn Malukhin
- McCormick School of Engineering, Mechanical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 e-mail:
| | - Kornel Ehmann
- Fellow ASME McCormick School of Engineering, Mechanical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 e-mail:
| |
Collapse
|
11
|
Replacement of the Distorted Dentition of the Cone-Beam Computed Tomography Scans for Orthognathic Surgery Planning. J Oral Maxillofac Surg 2018; 76:1561.e1-1561.e8. [PMID: 29572134 DOI: 10.1016/j.joms.2018.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 10/17/2022]
Abstract
PURPOSE Cone-beam computed tomography (CBCT) does not record dental morphology accurately because of the scattering produced by metallic restorations and the reported magnification of the dentition. The aim of this study was the development and evaluation of a new method for the replacement of the distorted dentition of CBCT scans with a 3-dimensional (3D) dental image captured by a digital intraoral camera. MATERIALS AND METHODS Six dried skulls with orthodontic brackets fixed on the teeth were used in this study. Three intraoral markers made of dental stone were constructed and attached to orthodontic brackets. The skulls were scanned by CBCT and the occlusal surfaces were captured using the TRIOS 3D intraoral scanner. The digital intraoral scan (IOS) was fused into the CBCT models. This produced a new composite digital model of the skull and the dentition. The skulls were scanned again using the commercially accurate Faro laser arm to produce the 3D model the skull and teeth gold standard for the assessment of the accuracy of the developed method. This was assessed by measuring the distance between the occlusal surfaces of the new composite model and the gold standard 3D laser produced model. RESULTS The results showed the errors related to the superimposition of the intraoral image on the CBCT to replace the distorted dentition were 0.11 to 0.20 mm. CONCLUSION The results of this novel method suggest that the dentition on the CBCT scan can be accurately replaced with the digital IOS image captured by an intraoral scanner to create a composite model that will improve the accuracy of digital orthognathic surgical planning and the fabrication of the guiding occlusal wafer.
Collapse
|
12
|
Rangel FA, Maal TJJ, de Koning MJJ, Bronkhorst EM, Bergé SJ, Kuijpers-Jagtman AM. Integration of digital dental casts in cone beam computed tomography scans-a clinical validation study. Clin Oral Investig 2017; 22:1215-1222. [PMID: 28932947 PMCID: PMC5866842 DOI: 10.1007/s00784-017-2203-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Images derived from cone beam computed tomography (CBCT) scans lack detailed information on the dentition and interocclusal relationships needed for proper surgical planning and production of surgical splints. To get a proper representation of the dentition, integration of a digital dental model into the CBCT scan is necessary. The aim of this study was to validate a simplified protocol to integrate digital dental models into CBCT scans using only one scan. MATERIALS AND METHODS Conventional protocol A used one combined upper and lower impression and two CBCT scans. The new protocol B included placement of ten markers on the gingiva, one CBCT scan, and two separate impressions of the upper and lower dentition. Twenty consecutive patients, scheduled for mandibular advancement surgery, were included. To validate protocol B, 3-dimensional reconstructions were made, which were compared by calculating the mean intersurface distances obtained with both protocols. RESULTS The mean distance for all patients for the upper jaw is 0.39 mm and for the lower jaw is 0.30 mm. For ten out of 20 patients, all distances were less than 1 mm. For the other ten patients, all distances were less than 2 mm. CONCLUSIONS Mean distances of 0.39 and 0.30 mm are clinically acceptable and comparable to other studies; therefore, this new protocol is clinically accurate. CLINICAL RELEVANCE This new protocol seems to be clinically accurate. It is less time consuming, gives less radiation exposure for the patient, and has a lower risk for positional errors of the impressions compared to other integration protocols.
Collapse
Affiliation(s)
- Frits A Rangel
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, 309 Dentistry, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Thomas J J Maal
- Department of Oral and Maxillofacial Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Martien J J de Koning
- Department of Oral and Maxillofacial Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ewald M Bronkhorst
- Department of Preventive and Restorative Dentistry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Stefaan J Bergé
- Department of Oral and Maxillofacial Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, 309 Dentistry, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Shirota T, Shiogama S, Watanabe H, Kurihara Y, Yamaguchi T, Maki K, Kamatani T, Kondo S. Three-dimensional virtual planning and intraoperative navigation for two-jaw orthognathic surgery. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY MEDICINE AND PATHOLOGY 2016. [DOI: 10.1016/j.ajoms.2016.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Lee SJ, Woo SY, Huh KH, Lee SS, Heo MS, Choi SC, Han JJ, Yang HJ, Hwang SJ, Yi WJ. Virtual skeletal complex model- and landmark-guided orthognathic surgery system. J Craniomaxillofac Surg 2016; 44:557-68. [PMID: 27012762 DOI: 10.1016/j.jcms.2016.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 01/30/2016] [Accepted: 02/19/2016] [Indexed: 11/26/2022] Open
Abstract
In this study, correction of the maxillofacial deformities was performed by repositioning bone segments to an appropriate location according to the preoperative planning in orthognathic surgery. The surgery was planned using the patient's virtual skeletal models fused with optically scanned three-dimensional dentition. The virtual maxillomandibular complex (MMC) model of the patient's final occlusal relationship was generated by fusion of the maxillary and mandibular models with scanned occlusion. The final position of the MMC was simulated preoperatively by planning and was used as a goal model for guidance. During surgery, the intraoperative registration was finished immediately using only software processing. For accurate repositioning, the intraoperative MMC model was visualized on the monitor with respect to the simulated MMC model, and the intraoperative positions of multiple landmarks were also visualized on the MMC surface model. The deviation errors between the intraoperative and the final positions of each landmark were visualized quantitatively. As a result, the surgeon could easily recognize the three-dimensional deviation of the intraoperative MMC state from the final goal model without manually applying a pointing tool, and could also quickly determine the amount and direction of further MMC movements needed to reach the goal position. The surgeon could also perform various osteotomies and remove bone interference conveniently, as the maxillary tracking tool could be separated from the MMC. The root mean square (RMS) difference between the preoperative planning and the intraoperative guidance was 1.16 ± 0.34 mm immediately after repositioning. After surgery, the RMS differences between the planning and the postoperative computed tomographic model were 1.31 ± 0.28 mm and 1.74 ± 0.73 mm for the maxillary and mandibular landmarks, respectively. Our method provides accurate and flexible guidance for bimaxillary orthognathic surgery based on intraoperative visualization and quantification of deviations for simulated postoperative MMC and landmarks. The guidance using simulated skeletal models and landmarks can complement and improve conventional navigational surgery for bone repositioning in the craniomaxillofacial area.
Collapse
Affiliation(s)
- Sang-Jeong Lee
- Department of Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Sang-Yoon Woo
- Department of Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Kyung-Hoe Huh
- Department of Oral and Maxillofacial Radiology, BK21, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Sam-Sun Lee
- Department of Oral and Maxillofacial Radiology, BK21, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Min-Suk Heo
- Department of Oral and Maxillofacial Radiology, BK21, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Soon-Chul Choi
- Department of Oral and Maxillofacial Radiology, BK21, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jeong Joon Han
- Department of Oral and Maxillofacial Surgery, BK21, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Hoon Joo Yang
- Department of Oral and Maxillofacial Surgery, BK21, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Soon Jung Hwang
- Department of Oral and Maxillofacial Surgery, BK21, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea.
| | - Won-Jin Yi
- Department of Oral and Maxillofacial Radiology, BK21, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea.
| |
Collapse
|
15
|
Zhou Z, Li P, Ren J, Guo J, Huang Y, Tian W, Tang W. Virtual facial reconstruction based on accurate registration and fusion of 3D facial and MSCT scans. J Orofac Orthop 2016; 77:104-11. [DOI: 10.1007/s00056-016-0014-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/28/2015] [Indexed: 11/28/2022]
|