1
|
Thomas DC, Shah SK, Chawla J, Sangalli L. Medications Affecting Outcomes and Prognosis of Dental Treatment: Part 1. Dent Clin North Am 2024; 68:767-783. [PMID: 39244256 DOI: 10.1016/j.cden.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
This article gives valuable insight into the effect of selected groups of medications on dental treatment outcome and prognosis. The review emphasizes the importance of thorough medical history, which may have an impact on the prognosis of dental treatment. We discuss drugs acting on the central nervous system, gastrointestinal tract, respiratory tract, endocrine system, and bone metabolism among others. Other pertinent drugs are discussed elsewhere in this special issue.
Collapse
Affiliation(s)
- Davis C Thomas
- Department of Diagnostic Sciences, Center for Temporomandibular Disorders and Orofacial Pain, Rutgers School of Dental Medicine, Newark, NJ, USA.
| | | | - Jitendra Chawla
- Department of Dentistry, All India Institute of Medical Sciences, Mangalagiri. Dist, Guntur, Andhra Pradesh, India
| | - Linda Sangalli
- College of Dental Medicine - Illinois, Midwestern University, 555 31st Street, Downers Grove, IL, USA
| |
Collapse
|
2
|
Baggio AMP, Bizelli VF, Delamura IF, Viotto AHA, Veras ASC, Teixeira GR, Faverani LP, Bassi APF. Systemic ozone therapy as an adjunctive treatment in guided bone regeneration: a histomorphometrical and immunohistochemical study in rats. Clin Oral Investig 2024; 28:556. [PMID: 39327318 DOI: 10.1007/s00784-024-05961-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVES To assess the effectiveness of ozone therapy in guided bone regeneration (GBR) for critical size calvarial defects in rats. MATERIALS AND METHODS 96 male Wistar rats were divided into four groups (n = 6 each). An 8 mm critical defect was created in the calvaria of each rat. The groups were: BIO (porcine collagen membrane, BioGide®), BIO + OZ (membrane with systemic ozone therapy every 2 days), COA + OZ (blood clot with ozone therapy), and COA (blood clot only). Evaluations at 7, 15, 30, and 60 days included histological, histomorphometric, inflammatory profile, Micro-CT, and immunohistochemical analyses. Statistical analysis involved two-factor ANOVA with Tukey's post-hoc test for general data, and one-factor ANOVA with Holm-Sidak post-hoc test for Micro-CT data. RESULTS The BIO + OZ group demonstrated superior bone regeneration with well-organized, mature bone tissue and significant bone formation at 30 and 60 days. The COA + OZ group showed early angiogenesis and reduced inflammation, resulting in complete defect closure by 30 days. The BIO group had good regeneration, but less mature tissue compared to BIO + OZ. The COA group exhibited limited bone formation and higher porosity. CONCLUSION Ozone therapy positively influences bone regeneration by enhancing cell proliferation and the healing response. CLINICAL RELEVANCE Improving regenerative processes with auxiliary therapies like ozone therapy can be significant for advancing dental reconstructions.
Collapse
Affiliation(s)
- Ana Maira Pereira Baggio
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), São Paulo, Brazil.
| | - Vinícius Ferreira Bizelli
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), São Paulo, Brazil
| | - Izabela Fornazari Delamura
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), São Paulo, Brazil
| | | | - Allice Santos Cruz Veras
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), São Paulo, Brazil
| | - Giovana Rampazzo Teixeira
- Multicentric Postgraduate Program in Physiological Sciences - SBFis, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
- Department of Physical Education, School of Science and Technology, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Leonardo Perez Faverani
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), São Paulo, Brazil
| | - Ana Paula Farnezi Bassi
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
3
|
Mamani-Valeriano HL, Silva NP, Nímia HH, Pereira-Silva M, Oliveira MEDFS, Rodrigues LGDS, Tavares PMH, Hadad H, de Jesus LK, Santos AFP, Barbosa DDB, Poli PP, Maiorana C, de Carvalho PSP, Okamoto R, Souza FÁ. Bone Incorporation of a Poly (L-Lactide-Co-D, L-Lactide) Internal Fixation Device in a Rat's Tibia: Microtomographic, Confocal LASER, and Histomorphometric Analysis. BIOLOGY 2024; 13:471. [PMID: 39056666 PMCID: PMC11273520 DOI: 10.3390/biology13070471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
This study evaluated the bone incorporation process of a screw-shaped internal fixation device made of poly (L-lactide-co-D, L-lactide) (PLDLLA). Thirty-two male Wistar rats received 32 fixation devices (2 mm × 6 mm) randomly assigned to either the right or left tibia and one implant in each animal. After 7, 14, 28, and 42 days, the rats were euthanized and the specimens were subjected to microtomographic computed tomography (microCT) and histomorphometric analyses to evaluate bone interface contact (BIC%) and new bone formation (NBF%) in cortical and cancellous bone areas. The animals euthanized on days 28 and 42 were treated with calcein and alizarin red, and confocal LASER microscopy was performed to determine the mineral apposition rate (MAR). Micro-CT revealed a higher percentage of bone volume (p < 0.006), trabecular separation (p < 0.001), and BIC in the cortical (p < 0.001) and cancellous (p = 0.003) areas at 28 and 42 days than at 7 and 14 days. The cortical NBF at 42 days was greater than that at 7 and 14 days (p = 0.022). No statistically significant differences were observed in cancellous NBF or MAR at 28 and 42 days. Based on these results, it can be seen that the PLDLLA internal fixation device is biocompatible and allows new bone formation around the screw thread.
Collapse
Affiliation(s)
- Harrisson Lucho Mamani-Valeriano
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16010-380, SP, Brazil; (H.L.M.-V.); (M.P.-S.); (M.E.d.F.S.O.); (L.G.d.S.R.); (P.M.H.T.); (H.H.); (L.K.d.J.); (A.F.P.S.)
| | - Nelson Padilha Silva
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16010-380, SP, Brazil; (H.L.M.-V.); (M.P.-S.); (M.E.d.F.S.O.); (L.G.d.S.R.); (P.M.H.T.); (H.H.); (L.K.d.J.); (A.F.P.S.)
| | - Heloisa Helena Nímia
- Department of Dental Materials and Prothesis, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16010-380, SP, Brazil; (H.H.N.); (D.d.B.B.)
| | - Maísa Pereira-Silva
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16010-380, SP, Brazil; (H.L.M.-V.); (M.P.-S.); (M.E.d.F.S.O.); (L.G.d.S.R.); (P.M.H.T.); (H.H.); (L.K.d.J.); (A.F.P.S.)
| | - Maria Eduarda de Freitas Santana Oliveira
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16010-380, SP, Brazil; (H.L.M.-V.); (M.P.-S.); (M.E.d.F.S.O.); (L.G.d.S.R.); (P.M.H.T.); (H.H.); (L.K.d.J.); (A.F.P.S.)
| | - Letícia Gabriella de Souza Rodrigues
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16010-380, SP, Brazil; (H.L.M.-V.); (M.P.-S.); (M.E.d.F.S.O.); (L.G.d.S.R.); (P.M.H.T.); (H.H.); (L.K.d.J.); (A.F.P.S.)
| | - Paulo Matheus Honda Tavares
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16010-380, SP, Brazil; (H.L.M.-V.); (M.P.-S.); (M.E.d.F.S.O.); (L.G.d.S.R.); (P.M.H.T.); (H.H.); (L.K.d.J.); (A.F.P.S.)
| | - Henrique Hadad
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16010-380, SP, Brazil; (H.L.M.-V.); (M.P.-S.); (M.E.d.F.S.O.); (L.G.d.S.R.); (P.M.H.T.); (H.H.); (L.K.d.J.); (A.F.P.S.)
| | - Laís Kawamata de Jesus
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16010-380, SP, Brazil; (H.L.M.-V.); (M.P.-S.); (M.E.d.F.S.O.); (L.G.d.S.R.); (P.M.H.T.); (H.H.); (L.K.d.J.); (A.F.P.S.)
| | - Ana Flávia Piquera Santos
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16010-380, SP, Brazil; (H.L.M.-V.); (M.P.-S.); (M.E.d.F.S.O.); (L.G.d.S.R.); (P.M.H.T.); (H.H.); (L.K.d.J.); (A.F.P.S.)
| | - Débora de Barros Barbosa
- Department of Dental Materials and Prothesis, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16010-380, SP, Brazil; (H.H.N.); (D.d.B.B.)
| | - Pier Paolo Poli
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (P.P.P.); (C.M.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Carlo Maiorana
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (P.P.P.); (C.M.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Paulo Sergio Perri de Carvalho
- Implant Dentistry Postgraduate Program, São Leopoldo Mandic School of Dentistry and Research Center, Campinas 13045-755, SP, Brazil;
| | - Roberta Okamoto
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-253, SP, Brazil;
| | - Francisley Ávila Souza
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16010-380, SP, Brazil; (H.L.M.-V.); (M.P.-S.); (M.E.d.F.S.O.); (L.G.d.S.R.); (P.M.H.T.); (H.H.); (L.K.d.J.); (A.F.P.S.)
| |
Collapse
|
4
|
Deng J, Van Duyn C, Cohen DJ, Schwartz Z, Boyan BD. Strategies for Improving Impaired Osseointegration in Compromised Animal Models. J Dent Res 2024; 103:467-476. [PMID: 38616679 PMCID: PMC11055505 DOI: 10.1177/00220345241231777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Implant osseointegration is reduced in patients with systemic conditions that compromise bone quality, such as osteoporosis, disuse syndrome, and type 2 diabetes. Studies using rodent models designed to mimic these compromised conditions demonstrated reduced bone-to-implant contact (BIC) or a decline in bone mineral density. These adverse effects are a consequence of disrupted intercellular communication. A variety of approaches have been developed to compensate for the altered microenvironment inherent in compromised conditions, including the use of biologics and implant surface modification. Chemical and physical modification of surface properties at the microscale, mesoscale, and nanoscale levels to closely resemble the surface topography of osteoclast resorption pits found in bone has proven to be a highly effective strategy for improving implant osseointegration. The addition of hydrophilicity to the surface further enhances osteoblast response at the bone-implant interface. These surface modifications, applied either alone or in combination, improve osseointegration by increasing proliferation and osteoblastic differentiation of osteoprogenitor cells and enhancing angiogenesis while modulating osteoclast activity to achieve net new bone formation, although the specific effects vary with surface treatment. In addition to direct effects on surface-attached cells, the communication between bone marrow stromal cells and immunomodulatory cells is sensitive to these surface properties. This article reports on the advances in titanium surface modifications, alone and in combination with novel therapeutics in animal models of human disease affecting bone quality. It offers clinically translatable perspectives for clinicians to consider when using different surface modification strategies to improve long-term implant performance in compromised patients. This review supports the use of surface modifications, bioactive coatings, and localized therapeutics as pragmatic approaches to improve BIC and enhance osteogenic activity from both structural and molecular standpoints.
Collapse
Affiliation(s)
- J. Deng
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - C. Van Duyn
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - D. J. Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Z. Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - B. D. Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
5
|
Inoue BKN, Paludetto LV, Monteiro NG, Batista FRDS, Kitagawa IL, da Silva RS, Antoniali C, Lisboa Filho PN, Okamoto R. Synergic Action of Systemic Risedronate and Local Rutherpy in Peri-implantar Repair of Ovariectomized Rats: Biomechanical and Molecular Analysis. Int J Mol Sci 2023; 24:16153. [PMID: 38003342 PMCID: PMC10671386 DOI: 10.3390/ijms242216153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Postmenopausal osteoporosis and poor dietary habits can lead to overweightness and obesity. Bisphosphonates are the first-line treatment for osteoporosis. However, some studies show that they may increase the risk of osteonecrosis of the jaw. Considering the antimicrobial, angiogenic and vasodilatory potential of nitric oxide, this study aims to evaluate the local activity of this substance during the placement of surface-treated implants. Seventy-two Wistar rats were divided into three groups: SHAM (SHAM surgery), OVX + HD (ovariectomy + cafeteria diet), and OVX + HD + RIS (ovariectomy + cafeteria diet + sodium risedronate treatment), which were further subdivided according to the surface treatment of the future implant: CONV (conventional), TE10, or TE100 (TERPY at 10 or 100 μM concentration); n = 8 per subgroup. The animals underwent surgery for implant installation in the proximal tibia metaphysis and were euthanized after 28 days. Data obtained from removal torque and RT-PCR (OPG, RANKL, ALP, IBSP and VEGF expression) were subjected to statistical analysis at 5% significance level. For biomechanical analysis, TE10 produced better results in the OVX + HD group (7.4 N/cm, SD = 0.6819). Molecular analysis showed: (1) significant increase in OPG gene expression in OVX groups with TE10; (2) decreased RANKL expression in OVX + HD + RIS compared to OVX + HD; (3) significantly increased expressions of IBSP and VEGF for OVX + HD + RIS TE10. At its lowest concentration, TERPY has the potential to improve peri-implant conditions.
Collapse
Affiliation(s)
- Bruna Kaori Namba Inoue
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015-050, SP, Brazil; (B.K.N.I.); (L.V.P.); (N.G.M.); (F.R.d.S.B.); (C.A.)
| | - Laura Vidoto Paludetto
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015-050, SP, Brazil; (B.K.N.I.); (L.V.P.); (N.G.M.); (F.R.d.S.B.); (C.A.)
| | - Naara Gabriela Monteiro
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015-050, SP, Brazil; (B.K.N.I.); (L.V.P.); (N.G.M.); (F.R.d.S.B.); (C.A.)
| | - Fábio Roberto de Souza Batista
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015-050, SP, Brazil; (B.K.N.I.); (L.V.P.); (N.G.M.); (F.R.d.S.B.); (C.A.)
| | - Igor Lebedenco Kitagawa
- Federal Institute of Education, Science and Technology of São Paulo (IFSP), Birigui 16201-407, SP, Brazil;
| | - Roberto Santana da Silva
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-403, SP, Brazil;
| | - Cristina Antoniali
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015-050, SP, Brazil; (B.K.N.I.); (L.V.P.); (N.G.M.); (F.R.d.S.B.); (C.A.)
| | - Paulo Noronha Lisboa Filho
- Department of Physics and Meteorology, Bauru Sciences School, São Paulo State University Júlio de Mesquita Filho—UNESP, Bauru 17033-360, SP, Brazil;
| | - Roberta Okamoto
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015-050, SP, Brazil; (B.K.N.I.); (L.V.P.); (N.G.M.); (F.R.d.S.B.); (C.A.)
| |
Collapse
|
6
|
DA Silva WPP, Delanora LA, Rios BR, Barbosa S, Simon MEDS, Sukotjo C, Faverani LP. Feasible low bone density condition for assessing bioactivity in ex-in vivo and in vivo studies. J Appl Oral Sci 2023; 31:e20220411. [PMID: 37436279 DOI: 10.1590/1678-7757-2022-0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/29/2023] [Indexed: 07/13/2023] Open
Abstract
OBJECTIVE To choose a critical animal model for assessments of bone repair with implant installation by comparing senile rats (SENIL) to young ovariectomized rats (OXV). METHODOLOGY For the ex-in vivo study, the femurs were precursors for bone marrow mesenchymal stem cells. Cellular responses were performed, including cell viability, gene expression of osteoblastic markers, bone sialoprotein immunolocalization, alkaline phosphatase activity, and mineralized matrix formation. For the in vivo study, the animals received implants in the region of the bilateral tibial metaphysis for histometric, microtomography, reverse torque, and confocal microscopy. RESULTS Cell viability showed that the SENIL group had lower growth than OVX. Gene expression showed more critical responses for the SENIL group (p<0.05). The alkaline phosphatase activity obtained a lower expression in the SENIL group, as for the mineralization nodules (p<0.05). The in vivo histological parameters and biomechanical analysis showed lower data for the SENIL group. The confocal microscopy indicated the presence of a fragile bone in the SENIL group. The microtomography was similar between the groups. The histometry of the SENIL group showed the lowest values (p<0.05). CONCLUSION In experimental studies with assessments of bone repair using implant installation, the senile model promotes the most critical bone condition, allowing a better investigation of the properties of biomaterials and topographic changes.
Collapse
Affiliation(s)
- William Phillip Pereira DA Silva
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Diagnóstico e Cirurgia, São Paulo, Brasil
| | - Leonardo Alan Delanora
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Diagnóstico e Cirurgia, São Paulo, Brasil
| | - Barbara Ribeiro Rios
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Diagnóstico e Cirurgia, São Paulo, Brasil
| | - Stéfany Barbosa
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Diagnóstico e Cirurgia, São Paulo, Brasil
| | - Maria Eloise de Sá Simon
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Diagnóstico e Cirurgia, São Paulo, Brasil
| | - Cortino Sukotjo
- University of Illinois at Chicago, College of Dentistry, Department of Restorative Dentistry, Chicago, Illinois, United States
| | - Leonardo P Faverani
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Diagnóstico e Cirurgia, São Paulo, Brasil
| |
Collapse
|
7
|
Gomes-Ferreira PHS, Frigério PB, de Moura J, Duarte ND, de Oliveira D, Deering J, Grandfield K, Okamoto R. Evaluation of Vitamin D isolated or Associated with Teriparatide in Peri-Implant Bone Repair in Tibia of Orchiectomized Rats. BIOLOGY 2023; 12:biology12020228. [PMID: 36829506 PMCID: PMC9952949 DOI: 10.3390/biology12020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
(1) Background: The objective of this study was to evaluate the morphometry of peri-implant bone tissue in orchiectomized rats, treated with vitamin D isolated or associated with teriparatide. (2) Methods: 24 rats were divided into 4 groups: ORQ-orchiectomy, without drug treatment, ORQ+D-orchiectomy, treated with vitamin D, ORQTERI-orchiectomy, treated with teriparatide and ORQTERI+D-orchiectomy, treated with teriparatide + vitamin D. Each animal received an implant in the tibial metaphysis. Euthanasia occurred 60 days after implant surgery. Computed microtomography (micro-CT) was performed to evaluate the parameters of volume and percentage of bone volume (BV, BV/TV), trabecular thickness (Tb.Th), number and separation of trabeculae (Tb.N, Tb.Sp) and percentage of total porosity (Po-tot). Data were subjected to 1-way ANOVA and Tukey post-test, with a significance level of 5%. (3) Results: For the parameters BV, BV/TV, Tb.Th, the ORQTERI+D group showed the highest values in relation to the other groups and for Po-tot, the lowest values were for ORQTERI+D. For Tb.Sp and Tb.N, there was no statistically significant difference when comparing intragroup results (p > 0.05). (4) Conclusions: It was possible to conclude that treatment with vitamin D associated with teriparatide increases bone volume and improves bone quality.
Collapse
Affiliation(s)
- Pedro Henrique Silva Gomes-Ferreira
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Araçatuba 16018-805, Brazil
- Correspondence: (P.H.S.G.-F.); (R.O.); Tel.: +55-18-981109555 (P.H.S.G.-F.)
| | - Paula Buzo Frigério
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Araçatuba 16018-805, Brazil
| | - Juliana de Moura
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Araçatuba 16018-805, Brazil
| | - Nathália Dantas Duarte
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Araçatuba 16018-805, Brazil
| | - Danila de Oliveira
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Araçatuba 16018-805, Brazil
| | - Joseph Deering
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Roberta Okamoto
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Araçatuba 16018-805, Brazil
- Correspondence: (P.H.S.G.-F.); (R.O.); Tel.: +55-18-981109555 (P.H.S.G.-F.)
| |
Collapse
|
8
|
Hadad H, Kawamata de Jesus L, Piquera Santos AF, Rinaldi Matheus H, de Souza Rodrigues LG, Paolo Poli P, Marcantonio Junior E, Pozzi Semeghini Guastaldi F, Maiorana C, Milanezi de Almeida J, Okamoto R, Ávila Souza F. Beta tricalcium phosphate, either alone or in combination with antimicrobial photodynamic therapy or doxycycline, prevents medication-related osteonecrosis of the jaw. Sci Rep 2022; 12:16510. [PMID: 36192619 PMCID: PMC9530223 DOI: 10.1038/s41598-022-20128-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Surgical trauma in those under a prolonged use of bisphosphonates, can lead to mediation-related osteonecrosis of the jaw (MRONJ). This study aimed to evaluate the preventive therapies for MRONJ. Following four cycles of zoledronic acid administration, Wistar rats had their molar extracted, and were organized into nine treatment groups: negative control group (NCG), treated with saline solution and blood-clot in the alveolus; positive control group (PCG), with blood-clot in the alveolus; BG, β-tricalcium phosphate-based biomaterial; DG, 10% doxycycline gel; aG, antimicrobial photodynamic therapy; and DBG, aBG, aDG, and aDBG, using combination therapy. After 28 days, the lowest bone volume (BV/TV) was reported in PCG (42.17% ± 2.65), and the highest in aDBG (69.85% ± 6.25) (p < 0.05). The higher values of daily mineral apposition rate were recorded in aDBG (2.64 ± 0.48) and DBG (2.30 ± 0.37) (p < 0.001). Moreover, aDBG presented with the highest neoformed bone area (82.44% ± 2.69) (p < 0.05). Non-vital bone was reported only in the PCG (37.94 ± 18.70%). Owing to the key role of the biomaterial, the combination approach (aDBG) was the most effective in preventing MRONJ following tooth extraction.
Collapse
Affiliation(s)
- Henrique Hadad
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifácio St, Vila Mendonça, Araçatuba, São Paulo, 16015-050, Brazil.
| | - Laís Kawamata de Jesus
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifácio St, Vila Mendonça, Araçatuba, São Paulo, 16015-050, Brazil
| | - Ana Flávia Piquera Santos
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifácio St, Vila Mendonça, Araçatuba, São Paulo, 16015-050, Brazil
| | - Henrique Rinaldi Matheus
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifácio St, Vila Mendonça, Araçatuba, São Paulo, 16015-050, Brazil
| | - Letícia Gabriella de Souza Rodrigues
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifácio St, Vila Mendonça, Araçatuba, São Paulo, 16015-050, Brazil
| | - Pier Paolo Poli
- Department of Biomedical, Surgical and Dental Sciences, Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cá Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Elcio Marcantonio Junior
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Fernando Pozzi Semeghini Guastaldi
- Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital (MGH), Harvard School of Dental Medicine, Boston, MA, USA
| | - Carlo Maiorana
- Department of Biomedical, Surgical and Dental Sciences, Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cá Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifácio St, Vila Mendonça, Araçatuba, São Paulo, 16015-050, Brazil
| | - Roberta Okamoto
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Francisley Ávila Souza
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifácio St, Vila Mendonça, Araçatuba, São Paulo, 16015-050, Brazil.
| |
Collapse
|
9
|
Jolic M, Sharma S, Palmquist A, Shah FA. The impact of medication on osseointegration and implant anchorage in bone determined using removal torque-A review. Heliyon 2022; 8:e10844. [PMID: 36276721 PMCID: PMC9582727 DOI: 10.1016/j.heliyon.2022.e10844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Permanently anchored metal implants are frequently used in dental, craniomaxillofacial, and orthopaedic rehabilitation. The success of such therapies is owed to the phenomenon of osseointegration-the direct connection between the living bone and the implant. The extent of biomechanical anchorage (i.e., physical interlocking between the implant and bone) can be assessed with removal torque (RTQ) measurement. Implant anchorage is strongly influenced by underlying bone quality, involving physicochemical and biological properties such as composition and structural organisation of extracellular matrix, extent of micro-damage, and bone turnover. In this review, we evaluated the impact of various pharmacological agents on osseointegration, from animal experiments conducting RTQ measurements. In addition to substances whose antiresorptive and/or anti-catabolic effects on bone are well-documented (e.g., alendronate, zoledronate, ibandronate, raloxifene, human parathyroid hormone, odanacatib, and the sclerostin monoclonal antibody), positive effects on RTQ have been reported for substances that do not primarily target bone (e.g., aminoguanidine, insulin, losartan, simvastatin, bone morphogenetic protein, alpha-tocopherol, and the combination of silk fibroin powder and platelet-rich fibrin). On the contrary, several substances (e.g., prednisolone, cyclosporin A, cisplatin, and enamel matrix derivative) tend to adversely impact RTQ. While morphometric parameters such as bone-implant contact appear to influence the biomechanical anchorage, increased or decreased RTQ is not always accompanied by corresponding fluctuations in bone-implant contact. This further confirms that factors such as bone quality underpin biomechanical anchorage of metal implants. Several fundamental questions on drug metabolism and bioavailability, drug dosage, animal-to-human translation, and the consequences of treatment interruption remain yet unanswered.
Collapse
Affiliation(s)
- Martina Jolic
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Sonali Sharma
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| |
Collapse
|
10
|
Improvement of Peri-Implant Repair in Estrogen-Deficient Rats Fed a Cafeteria Diet and Treated with Risedronate Sodium. BIOLOGY 2022; 11:biology11040578. [PMID: 35453776 PMCID: PMC9025115 DOI: 10.3390/biology11040578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022]
Abstract
Simple Summary Postmenopausal osteoporosis, characterized by an imbalance in the remodeling cycle in which bone resorption exceeds bone formation, affects a large part of the population seeking rehabilitation with osseointegrated implants, making the prognosis of these patients unfavorable. It is estimated that approximately 99 million people over the age of 50 were diagnosed with osteoporosis in the United States in 2010. A range of drugs are used for the treatment of postmenopausal osteoporosis, aiming to prevent skeletal fractures in individuals with this osteometabolic disorder. Bisphosphonates are widely prescribed drugs to increase bone mineral density (BMD) and decrease the risk of skeletal fractures in patients with osteoporosis, with good results in this regard. However, little attention has been paid to the impact that the mechanism of action of this drug generates on the bone repair process, and more scientific evidence is needed to better understand the role of this drug in the peri-implant repair process. Abstract (1) Background: Postmenopausal osteoporosis combined with an unhealthy lifestyle can lead to the development of metabolic syndrome, a common condition in individuals requiring oral rehabilitation. Bisphosphonates are used to increase bone mineral density. However, further studies are needed to evaluate the action of this drug on the bone repair process in the jaws. The aim of this study was to evaluate the peri-implant repair of rats with estrogen deficiency and metabolic syndrome treated with risedronate sodium. (2) Methods: Twenty-four female Wistar rats were divided into three groups: SHAM: sham surgery; OVX/SM: ovariectomy combined with a cafeteria diet; OVX/SM/RIS: ovariectomy associated with a cafeteria diet and treatment with sodium risedronate. After 30 days, the animals underwent extraction of the upper first molars. Thirty days after the extraction, an implant was installed in the same region. Sixty days after the implant was installed, the animals were euthanized for biomechanical analysis and confocal microscopic analysis. After confirming the normal distribution of the sample data, a one-way ANOVA test was performed, followed by Tukey’s post-test, with a 5% significance level. (3) Results: Significant bone preservation was observed in the risedronate-treated group. Higher removal torque values were obtained by the risedronate-treated group. (4) Conclusions: Better biomechanical performance of the implants installed in the animals treated with risedronate sodium was observed.
Collapse
|
11
|
Gomes-Ferreira PHS, Micheletti C, Frigério PB, de Souza Batista FR, Monteiro NG, Bim-júnior O, Lisboa-Filho PN, Grandfield K, Okamoto R. PTH 1-34-functionalized bioactive glass improves peri-implant bone repair in orchiectomized rats: Microscale and ultrastructural evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112688. [DOI: 10.1016/j.msec.2022.112688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 11/30/2022]
|
12
|
Park S, Heo HA, Kim KW, Pyo SW. Expression of osteogenic markers after administration of selective estrogen receptor modulators during implant placement in the osteoporotic rat maxilla. J Oral Sci 2021; 64:53-58. [PMID: 34955485 DOI: 10.2334/josnusd.21-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE This study examined the effects of raloxifene during bone formation around the dental implant in the ovariectomy-induced osteoporotic rat maxilla. METHODS Fifty-four female 10-week-old Sprague-Dawley rats were divided into three groups (n = 18 each); sham-operated (control), ovariectomized (OVX), and ovariectomized and raloxifene-administered (RAL). Eight weeks after ovariectomy, both upper first molars were extracted, and implants were placed 4 weeks post-extraction. The RAL group was given 1 mg/kg of raloxifene per day while the other groups received a vehicle. Six rats in each group were sacrificed at days 4, 7, and 14 and submitted for quantitative reverse transcription polymerase chain reaction and immunohistochemical staining, for evaluation of osteogenic genes expressions. RESULTS The alkaline phosphatase expression was upregulated in the RAL group compared to the OVX group at day 4. The osteocalcin expression was significantly higher between the RAL group and the OVX group at day 7. Immunohistochemical staining revealed increased expression during the initial bone-forming process and indicated more active bone formation in the RAL group than in the OVX group. CONCLUSION Raloxifene administration enhanced the osteogenic genes and proteins expression in the bone around the implant. Further studies are required to establish the long-term clinical effects of raloxifene administration.
Collapse
Affiliation(s)
- Suhyun Park
- Department of Dentistry, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Hyun A Heo
- Department of Dentistry, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Kyoung Wook Kim
- Department of Dentistry, Graduate School, The Catholic University of Korea
| | - Sung Woon Pyo
- Department of Dentistry, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| |
Collapse
|
13
|
Blanc-Sylvestre N, Bouchard P, Chaussain C, Bardet C. Pre-Clinical Models in Implant Dentistry: Past, Present, Future. Biomedicines 2021; 9:1538. [PMID: 34829765 PMCID: PMC8615291 DOI: 10.3390/biomedicines9111538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Biomedical research seeks to generate experimental results for translation to clinical settings. In order to improve the transition from bench to bedside, researchers must draw justifiable conclusions based on data from an appropriate model. Animal testing, as a prerequisite to human clinical exposure, is performed in a range of species, from laboratory mice to larger animals (such as dogs or non-human primates). Minipigs appear to be the animal of choice for studying bone surgery around intraoral dental implants. Dog models, well-known in the field of dental implant research, tend now to be used for studies conducted under compromised oral conditions (biofilm). Regarding small animal models, research studies mostly use rodents, with interest in rabbit models declining. Mouse models remain a reference for genetic studies. On the other hand, over the last decade, scientific advances and government guidelines have led to the replacement, reduction, and refinement of the use of all animal models in dental implant research. In new development strategies, some in vivo experiments are being progressively replaced by in vitro or biomaterial approaches. In this review, we summarize the key information on the animal models currently available for dental implant research and highlight (i) the pros and cons of each type, (ii) new levels of decisional procedures regarding study objectives, and (iii) the outlook for animal research, discussing possible non-animal options.
Collapse
Affiliation(s)
- Nicolas Blanc-Sylvestre
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Philippe Bouchard
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Catherine Chaussain
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, GHN-Université de Paris, 75018 Paris, France
| | - Claire Bardet
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
| |
Collapse
|
14
|
The effect of osteoporosis and its treatment on fracture healing a systematic review of animal and clinical studies. Bone Rep 2021; 15:101117. [PMID: 34458509 PMCID: PMC8379440 DOI: 10.1016/j.bonr.2021.101117] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/25/2021] [Accepted: 08/10/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction Osteoporosis is characterised by low bone mass and micro-architectural deterioration of bone structure. Its treatment is directed at the processes of bone formation or resorption, that are of utmost importance in fracture healing. We provide a comprehensive review of the literature aiming to summarize and clarify the effects of osteoporosis and its treatment on fracture healing. Material and methods A literature search was conducted in PubMed and Embase (OVID version). In vivo animal and human studies on long bone fractures were included. A total of 93 articles were included for this review; 23 studies on the effect of osteoporosis (18 animal and 5 clinical studies) and 70 studies on the effect of osteoporosis treatment (41 animal, 26 clinical studies and 3 meta-analyses) on fracture healing. Results In animal fracture models osteoporosis was associated with decreased callus formation and bone growth, bone mineral density, biomechanical strength and delayed cellular and differentiation processes during fracture healing. Two large databases identified osteoporosis as a risk factor for non-union whereas three other studies did not. One of those three studies however found a prolonged healing time in patients with osteoporosis. Anti-osteoporosis medication showed inconsistent effects on fracture healing in both non-osteoporotic and osteoporotic animal models. Only the parathyroid hormone and anti-resorption medication were related to improved fracture healing and delayed remodelling respectively. Clinical studies performed in predominantly hip and distal radius fracture patients showed no effect of bisphosphonates on fracture healing. Parathyroid hormone reduced time to union in several clinical trials performed in mainly hip fracture patients, but this did not result in decreased delayed or non-union rates. Conclusion Evidence that substantiates the negative influence of osteoporosis on fracture healing is predominantly from animal studies and to a lesser extent from clinical studies, since convincing clinical evidence lacks. Bisphosphonates and parathyroid hormone may be used during fracture healing, since no clear negative effect has been shown. Parathyroid hormone might even decrease time to fracture union, without decreasing union rate. Osteoporosis negatively influences fracture healing in animal models. There is no convincing evidence for a similar effect in humans. In animals, bisphosphonates delay bone remodelling In animals, parathyroid hormone improves fracture healing In humans, anti-osteoporotic drugs do not interfere with fracture healing.
Collapse
|
15
|
Osteogenesis Differences Around Titanium Implant and in Bone Defect Between Jaw Bones and Long Bones. J Craniofac Surg 2021; 31:2193-2198. [PMID: 33136853 DOI: 10.1097/scs.0000000000006795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The aim of this study is to evaluate the osteogenesis around titanium implant and in bone defect or fracture in jaw bones and long bones in ovariectomized (OVX) animal models. The literature on the osteogenesis around titanium implant and in bone defect or fracture in jaw bones and long bones was reviewed with charts. Fourty-eight rats were randomly divided into OVX group with ovariectomy and SHAM (sham-surgery) group with sham surgery. Titanium implants were inserted in the right mandibles and tibiae; bone defects were created in the left mandibles and tibiae. Two-week postoperatively, mandibles and tibiae of 8 rats were harvested and examined by hematoxylin and eosin staining and histological analysis; 4-week postoperatively, all mandibles and tibiae were harvested and examined by Micro-CT and histological analysis. A total of 52 articles were included in this literature review. Tibial osteogenesis around titanium implant and in bone defect in OVX group were significantly decreased compared with SHAM group. However, osteogenesis differences in the mandible both around titanium implant and in bone defect between groups were not statistically significant. OVX-induced osteoporosis suppresses osteogenesis around titanium implant and in the bone defect or fracture in long bones significantly while has less effect on that in the jaw bones.
Collapse
|
16
|
Bassi APF, Bizelli VF, Francatti TM, Rezende de Moares Ferreira AC, Carvalho Pereira J, Al-Sharani HM, de Almeida Lucas F, Faverani LP. Bone Regeneration Assessment of Polycaprolactone Membrane on Critical-Size Defects in Rat Calvaria. MEMBRANES 2021; 11:membranes11020124. [PMID: 33572318 PMCID: PMC7916152 DOI: 10.3390/membranes11020124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Biomaterials for use in guided bone regeneration (GBR) are constantly being investigated and developed to improve clinical outcomes. The present study aimed to comparatively evaluate the biological performance of different membranes during the bone healing process of 8 mm critical defects in rat calvaria in order to assess their influence on the quality of the newly formed bone. Seventy-two adult male rats were divided into three experimental groups (n = 24) based on the membranes used: the CG—membrane-free control group (only blood clot, negative control), BG—porcine collagen membrane group (Bio-Guide®, positive control), and the PCL—polycaprolactone (enriched with 5% hydroxyapatite) membrane group (experimental group). Histological and histometric analyses were performed at 7, 15, 30, and 60 days postoperatively. The quantitative data were analyzed by two-way ANOVA and Tukey’s test (p < 0.05). At 7 and 15 days, the inflammatory responses in the BG and PCL groups were significantly different (p < 0.05). The PCL group, at 15 days, showed a large area of newly formed bone. At 30 and 60 days postoperatively, the PCL and BG groups exhibited similar bone healing, including some specimens showing complete closure of the critical defect (p = 0.799). Thus, the PCL membrane was biocompatible, and has the potential to help with GBR procedures.
Collapse
Affiliation(s)
- Ana Paula Farnezi Bassi
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University—UNESP, Araçatuba, São Paulo 16015-050, Brazil; (V.F.B.); (T.M.F.); (A.C.R.d.M.F.); (J.C.P.); (L.P.F.)
- Correspondence: ; Tel.: +55-18-36363242
| | - Vinícius Ferreira Bizelli
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University—UNESP, Araçatuba, São Paulo 16015-050, Brazil; (V.F.B.); (T.M.F.); (A.C.R.d.M.F.); (J.C.P.); (L.P.F.)
| | - Tamires Mello Francatti
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University—UNESP, Araçatuba, São Paulo 16015-050, Brazil; (V.F.B.); (T.M.F.); (A.C.R.d.M.F.); (J.C.P.); (L.P.F.)
| | - Ana Carulina Rezende de Moares Ferreira
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University—UNESP, Araçatuba, São Paulo 16015-050, Brazil; (V.F.B.); (T.M.F.); (A.C.R.d.M.F.); (J.C.P.); (L.P.F.)
| | - Járede Carvalho Pereira
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University—UNESP, Araçatuba, São Paulo 16015-050, Brazil; (V.F.B.); (T.M.F.); (A.C.R.d.M.F.); (J.C.P.); (L.P.F.)
| | - Hesham Mohammed Al-Sharani
- School of Dentistry, Faculty of Dentistry, Ibb University, Ibb, Yemen;
- Department of Maxillofacial Surgery, School of Stomatology, Harbin Medical University, Harbin 150081, China
| | - Flavia de Almeida Lucas
- Araçatuba Veterinary Medicine School, UNESP—São Paulo State University, Araçatuba, São Paulo 16050-680, Brazil;
| | - Leonardo Perez Faverani
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University—UNESP, Araçatuba, São Paulo 16015-050, Brazil; (V.F.B.); (T.M.F.); (A.C.R.d.M.F.); (J.C.P.); (L.P.F.)
| |
Collapse
|
17
|
Mahri M, Shen N, Berrizbeitia F, Rodan R, Daer A, Faigan M, Taqi D, Wu KY, Ahmadi M, Ducret M, Emami E, Tamimi F. Osseointegration Pharmacology: A Systematic Mapping Using Artificial Intelligence. Acta Biomater 2021; 119:284-302. [PMID: 33181361 DOI: 10.1016/j.actbio.2020.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022]
Abstract
Clinical performance of osseointegrated implants could be compromised by the medications taken by patients. The effect of a specific medication on osseointegration can be easily investigated using traditional systematic reviews. However, assessment of all known medications requires the use of evidence mapping methods. These methods allow assessment of complex questions, but they are very resource intensive when done manually. The objective of this study was to develop a machine learning algorithm to automatically map the literature assessing the effect of medications on osseointegration. Datasets of articles classified manually were used to train a machine-learning algorithm based on Support Vector Machines. The algorithm was then validated and used to screen 599,604 articles identified with an extremely sensitive search strategy. The algorithm included 281 relevant articles that described the effect of 31 different drugs on osseointegration. This approach achieved an accuracy of 95%, and compared to manual screening, it reduced the workload by 93%. The systematic mapping revealed that the treatment outcomes of osseointegrated medical devices could be influenced by drugs affecting homeostasis, inflammation, cell proliferation and bone remodeling. The effect of all known medications on the performance of osseointegrated medical devices can be assessed using evidence mappings executed with highly accurate machine learning algorithms.
Collapse
|
18
|
Azami N, Chen PJ, Mehta S, Kalajzic Z, Dutra EH, Nanda R, Yadav S. Raloxifene administration enhances retention in an orthodontic relapse model. Eur J Orthod 2020; 42:371-377. [PMID: 32065225 PMCID: PMC7485273 DOI: 10.1093/ejo/cjaa008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Orthodontic relapse is a physiologic process that involves remodelling of the alveolar bone and principle periodontal ligament fibres. Raloxifene is an Food and Drug Administration (FDA)-approved selective oestrogen receptor modulator that inhibits systemic bone loss. In our study, we examined the effects of Raloxifene on alveolar bone modelling and orthodontic relapse in a rodent model. MATERIALS AND METHODS The efficacy of raloxifene was evaluated in 15-week-old male Wistar rats, 8 in each group (Control, Raloxifene, Raloxifene + 7-day relapse, Raloxifene + 14-day relapse) for a total of 42 days. All animals had 14 days of orthodontic tooth movement with a closed nickel-titanium coil spring tied from incisors to right first molar applying 5-8 gm of force. On the day of appliance removal, impression was taken with silicon material and the distance between first molar and second molar was filled with light-cured adhesive resin cement for retention phase. Raloxifene Retention, Raloxifene Retention + 7D, Raloxifene Retention + 14D groups received 14 daily doses of raloxifene (2.0 mg/kg/day) subcutaneously after orthodontic tooth movement during retention. After 14 days of retention, the retainer was removed and right first molar was allowed to relapse for a period of 14 days. Raloxifene injection continued for the Raloxifene + 14-day relapse group during relapse phase too. Control group received saline injections during retention. Animals were euthanized by CO2 inhalation. The outcome measure included percentage of relapse, bone volume fraction, tissue density, and histology analysis using tartrate-resistant acid phosphatase staining and determining receptor activator of nuclear factor-кB-ligand (RANKL) and osteoprotegerin expression. RESULTS Raloxifene Retention + 14D group had significantly less (P < 0.05) orthodontic relapse when compared with other groups. There was a significant increase (P < 0.05) in bone volume fraction and tissue density in the Raloxifene Retention + 14D group when compared with other groups. Similarly, there was significant decrease in number of osteoclasts and RANKL expression in Raloxifene Retention + 14D group when compared with Raloxifene Retention + 7D group (P < 0.05). CONCLUSION Raloxifene could decrease post-orthodontic treatment relapse by decreasing bone resorption and indirectly enhancing bone formation.
Collapse
Affiliation(s)
- Niloufar Azami
- Division of Orthodontics, UConn Health, Farmington, CT, USA
| | - Po-Jung Chen
- Division of Orthodontics, UConn Health, Farmington, CT, USA
| | - Shivam Mehta
- Division of Orthodontics, UConn Health, Farmington, CT, USA
| | - Zana Kalajzic
- Department of Oral Health and Diagnostic Sciences, Division of Oral and Maxillofacial Radiology, UConn Health, Farmington, CT, USA
| | - Eliane H Dutra
- Division of Orthodontics, UConn Health, Farmington, CT, USA
| | - Ravindra Nanda
- Division of Orthodontics, UConn Health, Farmington, CT, USA
| | - Sumit Yadav
- Division of Orthodontics, UConn Health, Farmington, CT, USA
| |
Collapse
|
19
|
Gomes-Ferreira PHS, de Oliveira D, Frigério PB, de Souza Batista FR, Grandfield K, Okamoto R. Teriparatide improves microarchitectural characteristics of peri-implant bone in orchiectomized rats. Osteoporos Int 2020; 31:1807-1815. [PMID: 32383065 DOI: 10.1007/s00198-020-05431-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022]
Abstract
UNLABELLED This study evaluated the peri-implant bone repair in orchiectomized rats receiving intermittently PTH 1-34. The treatment returned the bone quality and quantity of the animals to normal in the computerized microtomography, laser confocal microscopy, and histological analysis. The PTH 1-34 promoted marked bone formation with increased volume, improved quality, and greater bone turnover. INTRODUCTION Osteoporosis can be a problem in implant osseointegration. So this study aimed to evaluate the quantity and quality of peri-implant bone repair in orchiectomized Wistar rats receiving intermittently administered PTH 1-34. METHODS Animals (n = 24) were divided into 3 groups: healthy control (SHAM), orchiectomized (ORQ), and orchiectomized and treated with 0.5 μg/kg/day PTH 1-34 (TERI), and each received an implant in the right and left tibial metaphysis, which was allowed to repair for 60 days. The resultant bone formation was evaluated through computerized microtomography (micro-CT) to compare the percent bone volume (BV/TV), trabecular thickness (Tb.Th), trabecular number and separation (Tb.N, Tb.Sp), and bone implant contact (BIC) through the intersection surface (i.S) between groups. Laser confocal microscopy was used to evaluate fluorochrome areas for mineral apposition rate (MAR) and neoformed bone area (NBA). In addition, histological evaluation of calcified tissues with Stevenel blue and alizarin red staining was performed. RESULTS Treatment with PTH 1-34 returned the bone quality and quantity of the osteoporotic animal to normal, as the TERI group presented statistically significant higher values for BV/TV, Tb.Th, and BIC parameters compared with ORQ (p < 0.05), but when compared with SHAM (p > 0.05), no statistical difference was noted. In addition, in the bone turnover analysis (MAR, NBA) for TERI, the highest results are presented, followed by SHAM, and then ORQ (TERI × ORQ: p < 0.05). CONCLUSIONS Intermittent treatment with PTH 1-34 on orchiectomized animals promoted marked bone formation with increased volume, improved quality, and greater bone turnover in the peri-implant space, returning the bone quality and quantity to the present standard in healthy animals.
Collapse
Affiliation(s)
- P H S Gomes-Ferreira
- Department of Surgery and Integrated Clinic, Araçatuba Dental School, São Paulo State University, Rua José Bonifácio, 1193, Vila Mendonça, Aracatuba, SP, 16015-050, Brazil.
| | - D de Oliveira
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University, Araçatuba, SP, Brazil
| | - P B Frigério
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University, Araçatuba, SP, Brazil
| | - F R de Souza Batista
- Department of Surgery and Integrated Clinic, Araçatuba Dental School, São Paulo State University, Rua José Bonifácio, 1193, Vila Mendonça, Aracatuba, SP, 16015-050, Brazil
| | - K Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada
| | - R Okamoto
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University, Araçatuba, SP, Brazil
- Research Productivity Scholarship (Process: 306389/2017-7), Aracatuba, SP, Brazil
| |
Collapse
|
20
|
Polo TOB, Silva WPP, Momesso GAC, Lima-Neto TJ, Barbosa S, Cordeiro JM, Hassumi JS, da Cruz NC, Okamoto R, Barão VAR, Faverani LP. Plasma Electrolytic Oxidation as a Feasible Surface Treatment for Biomedical Applications: an in vivo study. Sci Rep 2020; 10:10000. [PMID: 32561767 PMCID: PMC7305204 DOI: 10.1038/s41598-020-65289-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/28/2020] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES In this in vivo animal study, we evaluated the effect of plasma electrolytic oxidation (PEO) coating on the topographic and biological parameters of implants installed in rats with induced osteoporosis and low-quality bones. MATERIALS AND METHODS In total 44 Wistar rats (Rattus novergicus), 6 months old, were submitted to ovariectomy (OXV group) and dummy surgery (SHAM group). After 90 days, the ELISA test was performed and the ovariectomy effectiveness was confirmed. In each tibial metaphysis, an implant with PEO coating containing Ca2+ and P5+ molecules were installed, and the other tibia received an implant with SLA acid etching and blasting (AC) (control surface). After 42 days, 16 rats from each group were euthanized, their tibias were removed for histological and immunohistochemical analysis (OPG, RANKL, OC and TRAP), as well as reverse torque biomechanics. Data were submitted to One-way ANOVA or Kruskal-Wallis tests, followed by a Tukey post-test; P < 0.05. Histological analyses showed higher bone neoformation values among the members of the PEO group, SHAM and OVX groups. Immunohistochemical analysis demonstrated equilibrium in all groups when comparing surfaces for TRAP, OC and RANKL (P > 0.05), whereas OPG showed higher PEO labeling in the OVX group (P < 0.05). Biomechanical analysis showed higher reverse torque values (N.cm) for PEO, irrespective of whether they were OVX or SHAM groups (P < 0.05). CONCLUSION The results indicated that the PEO texturing method favored bone formation and showed higher bone maturation levels during later periods in osteoporotic rats.
Collapse
Affiliation(s)
- Tárik Ocon Braga Polo
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - William Phillip Pereira Silva
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Gustavo Antonio Correa Momesso
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Tiburtino José Lima-Neto
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Stéfany Barbosa
- Undergradutate student, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Jairo Matozinho Cordeiro
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av Limeira, 901, Piracicaba, São Paulo, CEP13414-903, Brazil.,Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Sao Paulo, Brazil
| | - Jaqueline Suemi Hassumi
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Nilson Cristino da Cruz
- Technological Plasma Laboratory (LaPTec), Experimental Campus of Sorocaba, Sao Paulo State University-Unesp, Sorocaba, Brazil
| | - Roberta Okamoto
- Department of Basic Sciences, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Valentim A R Barão
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av Limeira, 901, Piracicaba, São Paulo, CEP13414-903, Brazil.,Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Sao Paulo, Brazil
| | - Leonardo P Faverani
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil.
| |
Collapse
|
21
|
Tang J, Yan D, Chen L, Shen Z, Wang B, Weng S, Wu Z, Xie Z, Fang K, Hong C, Xie J, Yang L, Shen L. Enhancement of local bone formation on titanium implants in osteoporotic rats by biomimetic multilayered structures containing parathyroid hormone (PTH)-related protein. ACTA ACUST UNITED AC 2020; 15:045011. [PMID: 32109901 DOI: 10.1088/1748-605x/ab7b3d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Osteoporosis is a severe health problem causing bone fragility and consequent fracture. Titanium (Ti) implants, used in patients with osteoporotic fractures, are prone to failure because of the decreased bone mass and strength. Therefore, it is of utmost importance to fabricate implants possessing osteogenic properties to improve implant osseointegration. To improve the long-term survival rate of Ti implants in osteoporotic patients, hyaluronic acid/ϵ-polylysine multilayers containing the parathyroid hormone (PTH)-related protein (PTHrP) were deposited on Ti implants by a layer-by-layer (LBL) electro assembly technique. The murine pre-osteoblast cell line MC3T3-E1, possessing a high potential of osteoblast differentiation, was used to evaluate the osteo-inductive effects of Ti-LBL-PTHrP in vitro. In addition, the performance of the Ti (Ti-LBL-PTHrP) implant was evaluated in vivo in a femoral intramedullary implantation in Sprague Dawley rats. The Ti-LBL-PTHrP implant regulated the release of the loaded PTHrP to increase bone formation in the early stage of implantation. The in vitro results revealed that cells on Ti-LBL-PTHrP did not show any evident proliferation, but a high level of alkaline phosphatase activity and osteoblast-related protein expression was found, compared to the uncoated Ti group (p < 0.05). In addition, in vivo micro-CT and histological analysis demonstrated that the Ti-LBL-PTHrP implants could significantly promote the formation and remodeling of new bone in osteoporotic rats at 14 d after implantation. Overall, this study established a profound and straightforward methodology for the manufacture of biofunctional Ti implants for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Jiahao Tang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, NO.109, Xueyuan West Road, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China. These authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Comparison between Plasma Electrolytic Oxidation Coating and Sandblasted Acid-Etched Surface Treatment: Histometric, Tomographic, and Expression Levels of Osteoclastogenic Factors in Osteoporotic Rats. MATERIALS 2020; 13:ma13071604. [PMID: 32244631 PMCID: PMC7178360 DOI: 10.3390/ma13071604] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023]
Abstract
Plasma electrolytic oxidation (PEO) has been a promising surface coating with better mechanical and antimicrobial parameters comparing to conventional treatment surfaces. This study evaluated the peri-implant bone repair using (PEO) surface coatings compared with sandblasted acid (SLA) treatment. For this purpose, 44 Wistar rats were ovariectomized (OVX-22 animals) or underwent simulated surgery (SS-22 animals) and received implants in the tibia with each of the surface coatings. The peri-implant bone subsequently underwent molecular, microstructural, bone turnover, and histometric analysis. Real-time PCR showed a higher expression of osteoprotegerin (OPG), receptor activator of nuclear kappa-B ligand (RANKL), and osteocalcin (OC) proteins in the SLA/OVX and PEO/SS groups (p < 0.05). Computed microtomography, confocal microscopy, and histometry showed similarity between the PEO and SLA surfaces, with a trend toward the superiority of PEO in OVX animals. Thus, PEO surfaces were shown to be promising for enhancing peri-implant bone repair in ovariectomized rats.
Collapse
|
23
|
Mulinari-Santos G, Santos JSD, Palin LP, Silva ACED, Antoniali C, Faverani LP, Okamoto R. Losartan improves alveolar bone dynamics in normotensive rats but not in hypertensive rats. J Appl Oral Sci 2019; 27:e20180574. [PMID: 31596365 PMCID: PMC6768119 DOI: 10.1590/1678-7757-2018-0574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Hypertension is one of the main causes of premature death in the world; also, it is associated with several bone alterations. Preclinical studies have demonstrated delayed alveolar bone healing in hypertensive rats. However, losartan has been favorable for consolidation of bone grafts and reduction in active periodontitis. Therefore, losartan is suggested to be effective in bone formation stages, as well as in the synthesis of matrix proteins and mineralization.
Collapse
Affiliation(s)
- Gabriel Mulinari-Santos
- Universidade Estadual Paulista - UNESP, Departmento de Cirurgia e Clínica Integrada, Faculdade de Odontologia de Araçatuba, Araçatuba, São Paulo, Brasil
| | - Jaqueline Silva Dos Santos
- Universidade Estadual Paulista - UNESP, Departamento de Ciências Básicas, Faculdade de odontologia de Araçatuba, Araçatuba, São Paulo, Brasil
| | - Letícia Pitol Palin
- Universidade Estadual Paulista - UNESP, Departamento de Ciências Básicas, Faculdade de odontologia de Araçatuba, Araçatuba, São Paulo, Brasil
| | - Ana Cláudia Ervolino da Silva
- Universidade Estadual Paulista - UNESP, Departamento de Ciências Básicas, Faculdade de odontologia de Araçatuba, Araçatuba, São Paulo, Brasil
| | - Cristina Antoniali
- Universidade Estadual Paulista - UNESP, Departamento de Ciências Básicas, Faculdade de odontologia de Araçatuba, Araçatuba, São Paulo, Brasil
| | - Leonardo Perez Faverani
- Universidade Estadual Paulista - UNESP, Departmento de Cirurgia e Clínica Integrada, Faculdade de Odontologia de Araçatuba, Araçatuba, São Paulo, Brasil
| | - Roberta Okamoto
- Universidade Estadual Paulista - UNESP, Departamento de Ciências Básicas, Faculdade de odontologia de Araçatuba, Araçatuba, São Paulo, Brasil.,Affiliated with Research productivity scholarship (Process:306389/2017-7)
| |
Collapse
|
24
|
Gomes-Ferreira PHS, Lisboa-Filho PN, da Silva AC, Bim-Júnior O, de Souza Batista FR, Ervolino-Silva AC, Garcia-Junior IR, Okamoto R. Sonochemical time standardization for bioactive materials used in periimplantar defects filling. ULTRASONICS SONOCHEMISTRY 2019; 56:437-446. [PMID: 31101282 DOI: 10.1016/j.ultsonch.2019.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was determinate the best sonochemical time in order to obtain better bone characteristics when a bioactive material (Biogran) is used in the filling periimplantar defects. In this study, 32 rats were submitted to surgical proceedings to create a periimplantar defect that was filled with Biogran receiving different sonochemical times: 15 (G1), 30 (G2), 45 (G3) or 90 min (G4). The biomaterial was characterized through X-ray diffraction and scanning electron microscopy (SEM). In vivo analysis was performed through micro CT, laser confocal microscopy, immunohistochemistry and evaluation of bone cytoarchitecture through hematoxylin and eosin (HE) staining. The data were submitted to statistical testing, considering a significance level of p < 0.05. Rx diffraction of pure bioglass showed that it is predominantly amorphous; otherwise, there are small peaks at 23° and 31°. SEM shows that the longer the sonochemical time, the less edges the biomaterial will present. Within the groups, G1 and G2 showed the best quantity and quality by micro CT (p > 0.05). The best bone turnover result was found in G1 and G2, otherwise the better results were related to neoformed bone area, bone mineral apposition rate and bone implant contact to G1 (p < 0.05). G1 had the best results in terms of bone cytoarchitectural evaluation and immunohistochemistry. It is possible to conclude that Biogran that received 15 min of sonochemical treatment (G1) presented periimplantar bone repair with the best extracellular matrix properties, including the best quality and quantity of vital bone.
Collapse
Affiliation(s)
| | | | - Ana Carolina da Silva
- Department of Physics, São Paulo State University, School of Sciences, Bauru, SP, Brazil
| | - Odair Bim-Júnior
- Department of Physics, São Paulo State University, School of Sciences, Bauru, SP, Brazil
| | | | - Ana Cláudia Ervolino-Silva
- Department of Basic Sciences, São Paulo State University, Araçatuba Dental School, Araçatuba, SP, Brazil
| | - Idelmo Rangel Garcia-Junior
- Department of Surgery and Integrated Clinic, São Paulo State University, Araçatuba Dental School, Araçatuba, SP, Brazil
| | - Roberta Okamoto
- Department of Basic Sciences, São Paulo State University, Araçatuba Dental School, Araçatuba, SP, Brazil
| |
Collapse
|
25
|
Teriparatide improves alveolar bone modelling after tooth extraction in orchiectomized rats. Arch Oral Biol 2019; 102:147-154. [DOI: 10.1016/j.archoralbio.2019.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 01/09/2023]
|
26
|
Heo HA, Park S, Jeon YS, Pyo SW. Effect of Raloxifene Administration on Bone Response Around Implant in the Maxilla of Osteoporotic Rats. IMPLANT DENT 2019; 28:272-278. [DOI: 10.1097/id.0000000000000881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Mendes V, Dos Santos GO, Calasans-Maia MD, Granjeiro JM, Moraschini V. Impact of bisphosphonate therapy on dental implant outcomes: An overview of systematic review evidence. Int J Oral Maxillofac Surg 2019; 48:373-381. [PMID: 30314708 DOI: 10.1016/j.ijom.2018.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/15/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
Abstract
The purpose of this overview was to assess the methods, quality, and outcomes of systematic reviews conducted to evaluate the impact of bisphosphonates on dental implants and the risk of developing bisphosphonate-related osteonecrosis of the jaw after dental implant surgery. An electronic search without date or language restriction was performed in the PubMed/MEDLINE, Cochrane CENTRAL, Web of Science, and LILACS databases (to January 2018). Eligibility criteria included systematic reviews that evaluated the impact of bisphosphonates on implant outcomes. The quality assessment of the included reviews was done using AMSTAR 2 guidelines. The protocol of this overview was registered in PROSPERO (CRD42018089617). The search and selection process yielded seven reviews, published between 2009 and 2017. None of the systematic reviews included in this study obtained the maximum score in the quality assessment. The scientific evidence available demonstrates that patients with a history of bisphosphonate use do not present a higher risk of dental implant failure or marginal bone loss compared to patients who have not used bisphosphonates. The literature also suggests that patients who undergo surgical trauma during the installation of dental implants may be more susceptible to bisphosphonate-related osteonecrosis of the jaw.
Collapse
Affiliation(s)
- V Mendes
- Department of Integrated Clinics, School of Dentistry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - G O Dos Santos
- Department of Integrated Clinics, School of Dentistry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - M D Calasans-Maia
- Department of Oral Surgery, School of Dentistry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - J M Granjeiro
- National Institute of Metrology, Quality and Technology, Rio de Janeiro, Brazil; Cell Therapy Centre, Clinical Research Unit and Department of Dental Techniques, School of Dentistry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - V Moraschini
- Department of Periodontology, School of Dentistry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
28
|
Dereka X, Calciolari E, Donos N, Mardas N. Osseointegration in osteoporotic-like condition: A systematic review of preclinical studies. J Periodontal Res 2018; 53:933-940. [PMID: 29845622 DOI: 10.1111/jre.12566] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 12/11/2022]
Abstract
Osteoporosis is one of the most common skeletal disorders affecting a significant percentage of people worldwide. Research data suggested that systemic diseases such as osteoporosis could act as risk factors for osseointegration, jeopardizing the healing process and thus the predictability of dental implant success on compromised patients. It is well accepted that preclinical studies in animal models reproducing the osteoporotic condition are one of the most important stages in the research of new biomaterials and therapeutic modalities. The aim of this systematic review was to investigate whether osteoporosis compromises dental implant osseointegration in experimental osteoporotic-like conditions. A 3-stage systematic literature research was conducted in MEDLINE via OVID and EMBASE up to and including March 2017. Experimental studies reporting on dental implant osseointegration on different osteoporotic animal models were assessed. The studies had to report on the percentage of bone-to-implant contact (%BIC) as the primary outcome. ARRIVE guidelines for reporting on animal research were applied to evaluate the methodological quality and risk of bias of the studies. Fifty-seven studies met the inclusion criteria and were assessed qualitatively. The most adopted animal model was the rat. A variability of %BIC values was observed, ranging from 30% to 99% and from 26% to 94% for the healthy and osteoporotic group, respectively. The great majority (47) of the included studies concluded that estrogen deficiency significantly affects BIC values, 9 studies stated that it was not possible to observe statistical differences in BIC between ovariectomized and healthy groups and 1 study did not provide a comparison between the healthy and osteoporotic group. Owing to the great heterogeneity in implant surface, study design, observation time-points, site of implant placement and reported outcomes, a meta-analysis could not be performed. An overall high risk of bias was observed, owing to the limited information on animal housing and husbandry, baseline characteristics and health status, ethical statement and allocation to the experimental groups provided. Although the available studies seem to suggest a lower osseointegration in osteoporotic-like conditions, no robust conclusions can be drawn due to the great heterogeneity and overall low quality of the available studies. Future studies with emphasis on minimizing the possible sources of bias and evaluating osseointegration of dental implants placed into jawbones instead of long bones are warranted.
Collapse
Affiliation(s)
- X Dereka
- Department of Periodontology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
- Centre for Oral Immunobiology & Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
- Centre for Clinical Oral Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| | - E Calciolari
- Centre for Oral Immunobiology & Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
- Centre for Clinical Oral Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| | - N Donos
- Centre for Oral Immunobiology & Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
- Centre for Clinical Oral Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| | - N Mardas
- Centre for Oral Immunobiology & Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| |
Collapse
|
29
|
Mulinari-Santos G, de Souza Batista FR, Kirchweger F, Tangl S, Gruber R, Okamoto R. Losartan reverses impaired osseointegration in spontaneously hypertensive rats. Clin Oral Implants Res 2018; 29:1126-1134. [DOI: 10.1111/clr.13376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 06/20/2018] [Accepted: 08/11/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Gabriel Mulinari-Santos
- Department of Oral Surgery and Integrated Clinic, Araçatuba Dental School; Universidade Estadual Paulista “Júlio de Mesquita Filho”; Araçatuba Brazil
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery, School of Dentistry; Medical University of Vienna; Vienna Austria
- Austrian Cluster for Tissue Regeneration; Vienna Austria
- Department of Oral Biology, Dental School; Medical University of Vienna; Vienna Austria
| | - Fábio Roberto de Souza Batista
- Department of Oral Surgery and Integrated Clinic, Araçatuba Dental School; Universidade Estadual Paulista “Júlio de Mesquita Filho”; Araçatuba Brazil
| | - Franziska Kirchweger
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery, School of Dentistry; Medical University of Vienna; Vienna Austria
- Austrian Cluster for Tissue Regeneration; Vienna Austria
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Department of Oral Surgery, School of Dentistry; Medical University of Vienna; Vienna Austria
- Austrian Cluster for Tissue Regeneration; Vienna Austria
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration; Vienna Austria
- Department of Oral Biology, Dental School; Medical University of Vienna; Vienna Austria
- Department of Periodontology, School of Dental Medicine; University of Bern; Bern Switzerland
| | - Roberta Okamoto
- Department of Basic Science, Araçatuba Dental School; Universidade Estadual Paulista “Júlio de Mesquita Filho”; Araçatuba Brazil
| |
Collapse
|
30
|
Palin LP, Polo TOB, Batista FRDS, Gomes-Ferreira PHS, Garcia Junior IR, Rossi AC, Freire A, Faverani LP, Sumida DH, Okamoto R. Daily melatonin administration improves osseointegration in pinealectomized rats. J Appl Oral Sci 2018; 26:e20170470. [PMID: 29995145 PMCID: PMC6025886 DOI: 10.1590/1678-7757-2017-0470] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/05/2017] [Indexed: 11/30/2022] Open
Abstract
The hypothesis of this study was that the peri-implant bone healing of the group of pinealectomized rats would differ from the control group. The samples were subjected to immunohistochemical, microtomographic (total porosity and connectivity density), and fluorochrome (mineralized surface) analyses.
Collapse
Affiliation(s)
- Letícia Pitol Palin
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Ciências Básicas, Araçatuba, São Paulo, Brasil
| | - Tarik Ocon Braga Polo
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | - Fábio Roberto de Souza Batista
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | | | - Idelmo Rangel Garcia Junior
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | - Ana Cláudia Rossi
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Área de Anatomia, Piracicaba, São Paulo, Brasil
| | - Alexandre Freire
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Área de Anatomia, Piracicaba, São Paulo, Brasil
| | - Leonardo Perez Faverani
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | - Doris Hissako Sumida
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Ciências Básicas, Araçatuba, São Paulo, Brasil
| | - Roberta Okamoto
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Ciências Básicas, Araçatuba, São Paulo, Brasil
| |
Collapse
|
31
|
Simple 3,4-Dihydroxy-L-Phenylalanine Surface Modification Enhances Titanium Implant Osseointegration in Ovariectomized Rats. Sci Rep 2017; 7:17849. [PMID: 29259343 PMCID: PMC5736607 DOI: 10.1038/s41598-017-18173-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis presents a challenge to the long-term success of osseointegration of endosseous implants. The bio-inspired 3,4-dihydroxy-L-phenylalanine (Dopa) coating is widely used as a basic layer to bind osteogenetic molecules that may improve osseointegration. To date, little attention has focused on application of Dopa alone or binding inhibitors of bone resorption in osteoporosis. Local use of a bisphosphonate such as zoledronic acid (ZA), an inhibitor of osteoclast-mediated bone resorption, has been proven to improve implant osseointegration. In this study, ovariectomized rats were divided into four groups and implanted with implants with different surface modifications: sandblasted and acid-etched (SLA), SLA modified with Dopa (SLA-Dopa), SLA modified with ZA (SLA-ZA), and SLA modified with Dopa and ZA (SLA-Dopa + ZA). Measurement of removal torque, micro-computed tomography and histology revealed a greater extent of bone formation around the three surface-modified implants than SLA-controls. No synergistic effect was observed for combined Dopa + ZA coating. Microarray analysis showed the Dopa coating inhibited expression of genes associated with osteoclast differentiation, similarly to the mechanism of action of ZA. Simple Dopa modification resulted in a similar improvement in osseointegration compared to ZA. Thus, our data suggest simple Dopa coating is promising strategy to promote osseointegration of implants in patients with osteoporosis.
Collapse
|
32
|
Does local delivery of bisphosphonates influence the osseointegration of titanium implants? A systematic review. Int J Oral Maxillofac Surg 2017; 46:1429-1436. [DOI: 10.1016/j.ijom.2017.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 11/22/2022]
|
33
|
Zheng D, Cui C, Yu M, Li X, Wang L, Chen X, Lin Y. Coenzyme Q10 promotes osteoblast proliferation and differentiation and protects against ovariectomy-induced osteoporosis. Mol Med Rep 2017; 17:400-407. [PMID: 29115467 DOI: 10.3892/mmr.2017.7907] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 09/08/2017] [Indexed: 11/06/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is a fat‑soluble vitamin‑like substance used for the treatment of a variety of disorders, including osteoporosis. The exact mechanism underlying CoQ10‑mediated protection against osteoporosis remains to be elucidated. The present study aimed to evaluate the effect of CoQ10 on osteoblastic cell proliferation and differentiation, and therapeutic effects on a rat model of osteoporosis. Following treatment with different concentrations of CoQ10, cell proliferation and differentiation of rat bone marrow stromal cells (BMSCs), and expression of osteoblastogenic markers, were measured. Rats with osteoporosis subjected to ovariectomy (OVX) were treated with different concentrations of CoQ10. Serum levels of estrogen and bone metabolism markers were measured. Micro computed tomography scans were used to analyze morphological changes in bones. In addition, mRNA and protein levels of phosphatidylinositol 3,4,5‑trisphosphate 3‑phosphatase and dual‑specificity protein phosphatase PTEN (PTEN)/phosphatidylinositol 4,5‑bisphosphate 3‑kinase (PI3K)/RAC‑alpha serine/threonine‑protein kinase(AKT), were determined. CoQ10 significantly increased the proliferation and osteogenic differentiation of BMSCs in a dose‑dependent manner, with an increased expression of osteogenic markers. CoQ10 significantly decreased bone resorption but exhibited no effect on serum E2 levels in vivo. CoQ10 markedly enhanced bone formation. Furthermore, the abundance of p‑PI3K and p‑AKT increased while PTEN levels decreased in a dose‑dependent manner following administration of CoQ10. CoQ10 stimulates the proliferation and differentiation of BMSCs and is effective for the treatment of OVX‑induced osteoporosis in rats. The above effects of CoQ10 may be mediated by activation of the PTEN/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Delu Zheng
- Department of Osteoporosis Diagnostic, Research and Treatment Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Chenli Cui
- Department of Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Meng Yu
- Department of Osteoporosis Diagnostic, Research and Treatment Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Xiang Li
- Department of Osteoporosis Diagnostic, Research and Treatment Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Lu Wang
- Department of Osteoporosis Diagnostic, Research and Treatment Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Xinyan Chen
- Department of Osteoporosis Diagnostic, Research and Treatment Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Yichen Lin
- Department of Osteoporosis Diagnostic, Research and Treatment Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
34
|
Oliveira DD, Hassumi JS, Gomes-Ferreira PHDS, Polo TOB, Ferreira GR, Faverani LP, Okamoto R. Short term sodium alendronate administration improves the peri-implant bone quality in osteoporotic animals. J Appl Oral Sci 2017; 25:42-52. [PMID: 28198975 PMCID: PMC5289399 DOI: 10.1590/1678-77572016-0165] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/30/2016] [Indexed: 12/23/2022] Open
Abstract
Sodium alendronate is a bisphosphonate drug that exerts antiresorptive action and is used to treat osteoporosis.
Collapse
Affiliation(s)
- Danila de Oliveira
- Universidade Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Ciências Básicas, Araçatuba, SP, Brasil
| | - Jaqueline Suemi Hassumi
- Universidade Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Ciências Básicas, Araçatuba, SP, Brasil
| | | | - Tárik Ocon Braga Polo
- Universidade Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Cirurgia e Clínica Integrada, Araçatuba, SP, Brasil
| | - Gabriel Ramalho Ferreira
- Universidade de São Paulo, Hospital de Reabilitação de Anomalias Craniofaciais, Bauru, SP, Brasil
| | - Leonardo Perez Faverani
- Universidade Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Cirurgia e Clínica Integrada, Araçatuba, SP, Brasil
| | - Roberta Okamoto
- Universidade Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Ciências Básicas, Araçatuba, SP, Brasil
| |
Collapse
|
35
|
Raloxifene but not alendronate can compensate the impaired osseointegration in osteoporotic rats. Clin Oral Investig 2017; 22:255-265. [DOI: 10.1007/s00784-017-2106-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
|
36
|
Apostu D, Lucaciu O, Lucaciu GDO, Crisan B, Crisan L, Baciut M, Onisor F, Baciut G, Câmpian RS, Bran S. Systemic drugs that influence titanium implant osseointegration. Drug Metab Rev 2017; 49:92-104. [PMID: 28030966 DOI: 10.1080/03602532.2016.1277737] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Titanium implants are widely used on an increasing number of patients in orthopedic and dental medicine. Despite the good survival rates of these implants, failures that lead to important socio-economic consequences still exist. Recently, research aimed at improving implant fixation, a process called osseointegration, has focused on a new, innovative field: systemic delivery of drugs. Following implant fixation, patients receive systemic drugs that could either impair or enhance osseointegration; these drugs include anabolic and anti-catabolic bone-acting agents in addition to new treatments. Anabolic bone-acting agents include parathyroid hormone (PTH) peptides, simvastatin, prostaglandin EP4 receptor antagonist, vitamin D and strontium ranelate; anti-catabolic bone-acting agents include compounds like calcitonin, biphosphonates, RANK/RANKL/OPG system and selective estrogen receptor modulators (SERM). Examples of the new therapies include DKK1- and anti-sclerostin antibodies. All classes of treatments have proven to possess positive impacts such as an increase in bone mineral density and on osseointegration. In order to prevent complications from occurring after surgery, some post-operative systemic drugs are administered; these can show an impairment in the osseointegration process. These include nonsteroidal anti-inflammatory drugs, proton pump inhibitors and selective serotonin reuptake inhibitors. The effects of aspirin, acetaminophen, opioids, adjuvants, anticoagulants and antibiotics in implant fixations are not fully understood, but studies are being carried out to investigate potential ramifications. It is currently accepted that systemic pharmacological agents can either enhance or impair implant osseointegration; therefore, proper drug selection is essential. This review aims to discuss the varying effects of three different classes of treatments on improving this process.
Collapse
Affiliation(s)
- Dragos Apostu
- a Department of Orthopaedics and Traumatology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Ondine Lucaciu
- b Department of Oral Rehabilitation , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | | | - Bogdan Crisan
- d Department of Maxillofacial Surgery and Oral Implantology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Liana Crisan
- e Department of Oral and Maxillofacial Surgery , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Mihaela Baciut
- d Department of Maxillofacial Surgery and Oral Implantology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Florin Onisor
- e Department of Oral and Maxillofacial Surgery , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Grigore Baciut
- e Department of Oral and Maxillofacial Surgery , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Radu Septimiu Câmpian
- b Department of Oral Rehabilitation , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Simion Bran
- d Department of Maxillofacial Surgery and Oral Implantology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| |
Collapse
|
37
|
Jiang N, Du P, Qu W, Li L, Liu Z, Zhu S. The synergistic effect of TiO 2 nanoporous modification and platelet-rich plasma treatment on titanium-implant stability in ovariectomized rats. Int J Nanomedicine 2016; 11:4719-4733. [PMID: 27695328 PMCID: PMC5033614 DOI: 10.2147/ijn.s113375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
For several decades, titanium and its alloys have been commonly utilized for endosseous implantable materials, because of their good mechanical properties, chemical resistance, and biocompatibility. But associated low bone mass, wear and loss characteristics, and high coefficients of friction have limited their long-term stable performance, especially in certain abnormal bone-metabolism conditions, such as postmenopausal osteoporosis. In this study, we investigated the effects of platelet-rich plasma (PRP) treatment and TiO2 nanoporous modification on the stability of titanium implants in osteoporotic bone. After surface morphology, topographical structure, and chemical changes of implant surface had been detected by scanning electron microscopy (SEM), atomic force microscopy, contact-angle measurement, and X-ray diffraction, we firstly assessed in vivo the effect of PRP treatment on osseointegration of TiO2-modified implants in ovariectomized rats by microcomputed tomography examinations, histology, biomechanical testing, and SEM observation. Meanwhile, the potential molecular mechanism involved in peri-implant osseous enhancement was also determined by quantitative real-time polymerase chain reaction. The results showed that this TiO2-modified surface was able to lead to improve bone implant contact, while PRP treatment was able to increase the implant surrounding bone mass. The synergistic effect of both was able to enhance the terminal force of implants drastically in biomechanical testing. Compared with surface modification, PRP treatment promoted earlier osteogenesis with increased expression of the RUNX2 and COL1 genes and suppressed osteoclastogenesis with increased expression of OPG and decreased levels of RANKL. These promising results show that PRP treatment combined with a TiO2-nanomodified surface can improve titanium-implant biomechanical stability in ovariectomized rats, suggesting a beneficial effect to support the success of implants in osteoporotic bone.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu; Yantai City Stomatological Hospital, Yantai, People's Republic of China
| | - Pinggong Du
- Yantai City Stomatological Hospital, Yantai, People's Republic of China
| | - Weidong Qu
- Yantai City Stomatological Hospital, Yantai, People's Republic of China
| | - Lin Li
- Yantai City Stomatological Hospital, Yantai, People's Republic of China
| | - Zhonghao Liu
- Yantai City Stomatological Hospital, Yantai, People's Republic of China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu
| |
Collapse
|
38
|
Radiological and Stereological Evaluation of the Effect of Rifampin on Bone Healing in Critical-Size Defects. J Craniofac Surg 2016; 27:1481-5. [DOI: 10.1097/scs.0000000000002762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
39
|
Effect of antiresorptive drugs in the alveolar bone healing. A histometric and immunohistochemical study in ovariectomized rats. Clin Oral Investig 2016; 21:1485-1494. [PMID: 27460567 DOI: 10.1007/s00784-016-1909-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 07/07/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The aim of this study is to evaluate the alendronate and raloxifene influence in the alveolar healing process of osteoporotic rats. MATERIALS AND METHODS Sixty-four female rats were divided in four groups: sham rats (SHAM), ovariectomized rats and no medical treatment (OVX NT), ovariectomized rats and submitted to alendronate treatment (OVX ALE), and ovariectomized and submitted to raloxifene treatment (OVX RAL). The histomorphometrical and immunohistochemical analysis was performed. The quantitative data were analyzed through Kruskal-Wallis and Dunn tests (α = 0.05). RESULTS In the longest period, SHAM and OVX RAL groups showed the better bone formation responses (P < 0.05). The worst bone formation response was observed in the group OVX NT. OVX RAL group showed the better response at 42 days. OVX ALE group showed a favorable response at 14 days, in comparison with OVX RAL group, but a reduced response at 42 days. It was possible to observe a mature bone in SHAM group at 14 days and an immature bone in the OVX NT group. An intermediate quality bone was observed in the groups OVX ALE and OVX RAL. CONCLUSION Alendronate and raloxifene treatment improved the alveolar healing process in osteoporotic rats, but not enough to achieve the histometrical and protein expression values that were observed in the SHAM group. CLINICAL RELEVANCE Alendronate is largely used as a potent antiresorptive agent. Otherwise, considering the undesirable effects in relation to the alveolar healing, other antiosteoporosis medications should be studied. Raloxifene seems to be a good candidate once its action mechanism involves the activation of osteoblasts.
Collapse
|
40
|
Kushwaha P, Khedgikar V, Haldar S, Gautam J, Mulani FA, Thulasiram HV, Trivedi R. Azadirachta indica triterpenoids promote osteoblast differentiation and mineralization in vitro and in vivo. Bioorg Med Chem Lett 2016; 26:3719-24. [PMID: 27317644 DOI: 10.1016/j.bmcl.2016.05.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/17/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Abstract
Terpenoids were isolated using chromatographic purification through solvent purification technique and identified as Azadirone (1), Epoxyazadiradione (2) Azadiradione (3) Gedunin (4) Nimbin (5) Salannin (6) Azadirachtin A (7) and Azadirachtin B (8) from Azadirachta indica. Out of eight compounds, only three compounds had osteogenic activity and enhanced osteoblast proliferation, differentiation and mineralization in osteoblast cells. Active compounds stimulated osteogenic genes ALP, RunX-2 and OCN expressions in vitro, but Azadirachtin A had a maximum ability to stimulate osteoblast differentiation and mineralization compared to other two active compounds. For in vivo study, Azadirachtin A injected subcutaneously in pups, which enhanced osteogenic gene expressions and promoted bone formation rate significantly. Here, we conclude that active compounds of Azadirachta indica have osteogenic activity and Azadirachtin A has a beneficial effects on bone.
Collapse
Affiliation(s)
- Priyanka Kushwaha
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Vikram Khedgikar
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Saikat Haldar
- Chemical Biology Unit, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Jyoti Gautam
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Fayaj A Mulani
- Chemical Biology Unit, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Hirekodathakallu V Thulasiram
- Chemical Biology Unit, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi 110007, India.
| | - Ritu Trivedi
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India.
| |
Collapse
|
41
|
Current Knowledge, Drug-Based Therapeutic Options and Future Directions in Managing Osteoporosis. Clin Rev Bone Miner Metab 2016. [DOI: 10.1007/s12018-016-9207-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Durmuşlar MC, Türer A, Ballı U, Yılmaz Z, Önger ME, Çelik HH, Vatansever A. The effect of infliximab on bone healing in osteoporotic rats. EUR J INFLAMM 2016. [DOI: 10.1177/1721727x16636889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose: The aim of this study was to evaluate the effect of the infliximab on autogenous-mediated bone regeneration and resorption of autogenous graft in the ovariectomised rat model. Materials and methods: Forty rats underwent ovariectomy and 6 weeks later the animals were randomly assigned to four groups. Critical size defects were created in each rat calvarium. In the control group (C), the flap was closed without any further action. In the only infliximab group (In), the flap was closed without any further action. After the operation, intravenous infliximab was injected. In the autogenous graft group (Ag), autogenous bone was applied in to the defect. In autogenous graft + infliximab group (Ag+In), autogenous graft was placed on the defect. After the operation, intravenous infliximab was injected. The animals were sacrificed at 4 weeks. Bone formation was assessed by micro-computed tomography (micro-CT) scans and stereological analysis. Results: The mean new bone volume was the greatest in Ag+In group (1.76 ± 0.20), followed by the Ag group (1.51 ± 0.05) (statistically significant difference at P <0.05). The lowest new bone was found in the control group (1.05 ± 0.09), however no difference was observed from the In group (1.14 ± 0.08) ( P >0.05). Besides there was a statistically significant difference between the Ag+In group (1.00 ± 0.05) and Ag group (0.74 ± 0.04) in terms of the graft volume ( P <0.05). Conclusion: This study, despite its limitations, showed that infliximab has a beneficial effect for prevent graft resorption and bone regeneration in osteoporotic rats.
Collapse
Affiliation(s)
- M Cenk Durmuşlar
- Department of Oral and Maxillofacial Surgery, Bülent Ecevit University Faculty of Dentistry, Zonguldak, Turkey
| | - Akif Türer
- Department of Oral and Maxillofacial Surgery, Bülent Ecevit University Faculty of Dentistry, Zonguldak, Turkey
| | - Umut Ballı
- Department of Periodontology, Bülent Ecevit University Faculty of Dentistry, Zonguldak, Turkey
| | - Zehra Yılmaz
- Department of Pharmacology, Harran University Faculty of Medicine, urfa, Turkey
| | - Mehmet Emin Önger
- Department of Histology and Embriology, Faculty of Medicine, Ondokuz Mayıs University, samsun, Turkey
| | - H Hamdi Çelik
- Department of Anatomy, University Faculty of Medicine, Ankara, Turkey
| | - Alper Vatansever
- Department of Anatomy, University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
43
|
Huang L, Luo Z, Hu Y, Shen X, Li M, Li L, Zhang Y, Yang W, Liu P, Cai K. Enhancement of local bone remodeling in osteoporotic rabbits by biomimic multilayered structures on Ti6Al4V implants. J Biomed Mater Res A 2016; 104:1437-51. [PMID: 26822259 DOI: 10.1002/jbm.a.35667] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/30/2015] [Accepted: 01/25/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Ling Huang
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing 400044 People's Republic of China
| | - Zhong Luo
- School of Life Science; Chongqing University; Chongqing 400044 People's Republic of China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing 400044 People's Republic of China
| | - Xinkun Shen
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing 400044 People's Republic of China
| | - Menghuan Li
- School of Life Science; Chongqing University; Chongqing 400044 People's Republic of China
| | - Liqi Li
- Department of Orthopedics; Xinqiao Hospital, Third Military Medical University; Xinqiao Street Chongqing 400037 People's Republic of China
| | - Yuan Zhang
- Department of Orthopedics; Xinqiao Hospital, Third Military Medical University; Xinqiao Street Chongqing 400037 People's Republic of China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing 400044 People's Republic of China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing 400044 People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing 400044 People's Republic of China
| |
Collapse
|