1
|
Exploration of machine learning models to predict the environmental and remote sensing risk factors of haemonchosis in sheep flocks of Rajasthan, India. Acta Trop 2022; 233:106542. [PMID: 35643184 DOI: 10.1016/j.actatropica.2022.106542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022]
Abstract
Globally haemonchosis in sheep is a known devastating disease imposing considerable economic loss. Understanding the environmental risk factors and their role is essentially required to manage the disease successfully. In this study, 14 years' disease data was analysed to predict the risk factors responsible for the occurrence of the disease. Season-wise analysis revealed high incidence during monsoon and post-monsoon and least in winter and summer seasons. The linear discriminant analysis (LDA) revealed the significant environmental and remote sensing risk factors contributing to haemonchosis incidence as enhanced vegetation index, leaf area index, potential evapotranspiration and specific humidity. Further, significant ecological and environmental risk factors identified using LDA were subjected to the climate-disease modelling and risk maps were generated. Basic reproduction number (R0) was estimated and was ranged from 0.76 to 2.08 for >1000 egg per gram of faeces (EPG) in four districts whereas R0 values of 1.09-1.69 for >2000 EPG in three districts indicating the severity of the infection. The random forest and adaptive boosting models emerged out as best fitted models for both the EPG groups. The results of the study will help to focus on high-risk areas of haemonchosis in sheep to implement the available control strategies and better animal production globally.
Collapse
|
2
|
McClure M, Diuk-Wasser MA. Climate impacts on blacklegged tick host-seeking behavior. Int J Parasitol 2018; 49:37-47. [PMID: 30447202 DOI: 10.1016/j.ijpara.2018.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 11/26/2022]
Abstract
The nymph of the blacklegged tick (Ixodes scapularis), the primary North American vector of the causative agent of Lyme disease, must attach to a host by the end of its questing season in order to feed and subsequently molt into an adult. The proper timing of this behavior is critical both for the tick's survival and for perpetuating the transmission of tick-borne pathogens. Questing also depletes limited nymphal lipid reserves and increases desiccation risk. Given this tradeoff, questing behavior and its environmental influences can be expressed in a dynamic state variable model. We develop what we believe to be the first such model for a tick, and investigate the influence of climate on nymph fitness predictions. We apply these results to the hypothesized inland migration of I. scapularis from island refugia, evaluating fitness under suboptimal questing strategies and uncertain environmental conditions.
Collapse
Affiliation(s)
- Max McClure
- Vagelos College of Physicians & Surgeons, Columbia University, New York City, NY 10032, USA
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York City, NY 10027, USA.
| |
Collapse
|
3
|
Orlofske SA, Flaxman SM, Joseph MB, Fenton A, Melbourne BA, Johnson PTJ. Experimental investigation of alternative transmission functions: Quantitative evidence for the importance of nonlinear transmission dynamics in host-parasite systems. J Anim Ecol 2018; 87:703-715. [PMID: 29111599 PMCID: PMC6849515 DOI: 10.1111/1365-2656.12783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 10/21/2017] [Indexed: 11/30/2022]
Abstract
Understanding pathogen transmission is crucial for predicting and managing disease. Nonetheless, experimental comparisons of alternative functional forms of transmission remain rare, and those experiments that are conducted are often not designed to test the full range of possible forms. To differentiate among 10 candidate transmission functions, we used a novel experimental design in which we independently varied four factors—duration of exposure, numbers of parasites, numbers of hosts and parasite density—in laboratory infection experiments. We used interactions between amphibian hosts and trematode parasites as a model system and all candidate models incorporated parasite depletion. An additional manipulation involving anaesthesia addressed the effects of host behaviour on transmission form. Across all experiments, nonlinear transmission forms involving either a power law or a negative binomial function were the best‐fitting models and consistently outperformed the linear density‐dependent and density‐independent functions. By testing previously published data for two other host–macroparasite systems, we also found support for the same nonlinear transmission forms. Although manipulations of parasite density are common in transmission studies, the comprehensive set of variables tested in our experiments revealed that variation in density alone was least likely to differentiate among competing transmission functions. Across host–pathogen systems, nonlinear functions may often more accurately represent transmission dynamics and thus provide more realistic predictions for infection.
Collapse
Affiliation(s)
- Sarah A Orlofske
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA.,Department of Biology, University of Wisconsin Stevens Point, Trainer Natural Resources Building 446, Stevens Point, WI, USA
| | - Samuel M Flaxman
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Maxwell B Joseph
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Andy Fenton
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Brett A Melbourne
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Pieter T J Johnson
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
4
|
Abstract
Parasites can evolve phenotypically plastic strategies for transmission such that a single genotype can give rise to a range of phenotypes depending on the environmental condition. State-dependent plasticity in particular can arise from individual differences in the parasite's internal state or the condition of the host. Facultative parasites serve as ideal model systems for investigating state-dependent plasticity because individuals can exhibit two life history strategies (free-living or parasitic) depending on the environment. Here, we experimentally show that the ectoparasitic mite Macrocheles subbadius is more likely to parasitize a fruit fly host if the female mite is mated; furthermore, the propensity to infect increased with the level of starvation experienced by the mite. Host condition also played an important role; hosts infected with moderate mite loads were more likely to gain additional infections in pairwise choice tests than uninfected flies. We also found that mites preferentially infected flies subjected to mechanical injury over uninjured flies. These results suggest that a facultative parasite's propensity to infect a host (i.e. switch from a free-living strategy) depends on both the parasite's internal state and host condition. Parasites often live in highly variable and changing environments, an infection strategy that is plastic is likely to be adaptive.
Collapse
|
5
|
Lacey L, Grzywacz D, Shapiro-Ilan D, Frutos R, Brownbridge M, Goettel M. Insect pathogens as biological control agents: Back to the future. J Invertebr Pathol 2015. [DOI: 10.1016/j.jip.2015.07.009] [Citation(s) in RCA: 545] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Bielby J, Fisher MC, Clare FC, Rosa GM, Garner TWJ. Host species vary in infection probability, sub-lethal effects, and costs of immune response when exposed to an amphibian parasite. Sci Rep 2015; 5:10828. [PMID: 26022346 PMCID: PMC4448222 DOI: 10.1038/srep10828] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/20/2015] [Indexed: 11/11/2022] Open
Abstract
The amphibian parasite Batrachochytrium dendrobatidis (Bd) is regarded as an extreme generalist, infecting over 500 species, but amongst these hosts there exists a great deal of variation in the susceptibility to and the costs of parasite exposure. We use two infection experiments to determine whether inter-specific variation in the sublethal and lethal effects of parasite exposure exist in two host species. We then tested the relative roles of host density and diversity on infection probability of a focal susceptible host. Our results show significant heterogeneity in host species response to parasite exposure, and that both lethal and sub-lethal costs exist in individuals that are able to resist infection, indicating that successful immune response to infection comes at a cost. Further, we show that increasing host density significantly increased the likelihood of susceptible individuals becoming infected with Bd irrespective of host diversity and variation in host susceptibility. These results suggest that populations of resistant species are likely to suffer ill-effects of exposure to Bd regardless of their infection status, and that at the stage of initial infection there was no support for the dilution of transmission events, in contrast to other studies that focus on subsequent transmission of infection.
Collapse
Affiliation(s)
- Jon Bielby
- 1] The Institute of Zoology, The Zoological Society of London, Regent's Park, London, NW1 4RY, UK [2] Department of Infectious Disease Epidemiology, Imperial College London W2 1PG, UK
| | - Matthew C Fisher
- Department of Infectious Disease Epidemiology, Imperial College London W2 1PG, UK
| | - Frances C Clare
- 1] The Institute of Zoology, The Zoological Society of London, Regent's Park, London, NW1 4RY, UK [2] Department of Infectious Disease Epidemiology, Imperial College London W2 1PG, UK
| | - Gonçalo M Rosa
- 1] The Institute of Zoology, The Zoological Society of London, Regent's Park, London, NW1 4RY, UK [2] Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK [3] Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculdade de Ciências da Universidade de Lisboa, Bloco C2, Campo Grande, 1749-016 Lisboa, Portugal
| | - Trenton W J Garner
- The Institute of Zoology, The Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| |
Collapse
|
7
|
The influence of water on the migration of infective trichostrongyloid larvae onto grass. Parasitology 2014; 138:780-8. [PMID: 24650934 DOI: 10.1017/s0031182011000308] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Detailed knowledge of the effects of water on the migration of infective larvae of economically important trichostrongyloid species is urgently needed to feed into prediction models of future epidemiology. The influence of water on the migration of the parasitic nematodes Nematodirus battus, Haemonchus contortus and Teladorsagia circumcincta from sheep dung onto grass was examined in a series of laboratory experiments. Turf plots were seeded with larvae, which were recovered from grass clippings by serial sampling. Free water was necessary for larvae to escape from dung, but not for vertical migration onto grass. When temperature and relative humidity were held constant, the proportion of a population of live larvae present on herbage reached a plateau of around 2 (1-10)% after 24 h, and then changed little over time. Larvae in soil and dung formed a reservoir, such that a similar proportion of the larval population was maintained on grass after clipping. These findings suggest continuing random movement of free larvae. Implications for the epidemiology of trichostrongyloid species are discussed in the context of trade-offs faced by the parasites.
Collapse
|
8
|
Strategic decision making for multiple-generation product lines using dynamic state variable models: The cannibalization case. COMPUT IND 2014. [DOI: 10.1016/j.compind.2013.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Santos MC, Silva BF, Amarante AFT. Environmental factors influencing the transmission of Haemonchus contortus. Vet Parasitol 2012; 188:277-84. [PMID: 22521972 DOI: 10.1016/j.vetpar.2012.03.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/20/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
Infection with the gastrointestinal nematode Haemonchus contortus causes considerable losses in the sheep industry. In this study, we evaluated the effect that climate has on third-stage larvae (L3) of H. contortus in terms of their migration from sheep feces to Brachiaria decumbens grass, as well as their distribution among the forage plants. Fecal samples containing H. contortus L3 was deposited on the soil among the herbage at an initial height of 30 cm. Sample collection began 24h after contamination and was performed on alternate days over 13 days. The L3 were recovered and quantified in three strata (heights) of grass (0-10 cm, 10-20 cm and >20 cm) as well as in the remaining feces and a superficial layer of soil, collected from beneath the feces. In order to obtain results under different environmental conditions, fecal samples containing H. contortus L3 were deposited on pasture in January (summer), in April (autumn), and July (winter). In all of the periods, the L3 were able to migrate from the feces to the herbage. However, rains, accompanied by high relative humidity and high temperatures, apparently favored migration. The highest L3 recovery rate in the pasture was in the summer observation period, which had the highest number of days with measurable precipitation, high relative humidity (>68.2%), and the highest temperatures at the soil level (minimum and maximum means of 19°C and 42°C, respectively). Under those conditions, larvae began to reach the upper stratum of the grass (>20 cm) by 24h after the deposition of fecal matter, the number of larvae having reached that stratum peaking at seven days after deposition. In the autumn observation period, there was no rainfall in the first five days post-contamination. During that period, high numbers of larvae were found in the fecal samples demonstrating that feces can act as a reservoir of larvae in the absence of rain. Except for two days in the summer observation period, when most of the L3 were recovered from the tops of blades of grass, L3 where located predominantly at the base of the herbage. In conclusion, rainfall favors the migration of L3 from feces to herbage. In addition, larval migration up and along blades of grass can occur relatively rapidly when the temperature is high.
Collapse
Affiliation(s)
- Michelle C Santos
- UNESP - Universidade Estadual Paulista, Departamento de Parasitologia, Instituto de Biociências, Caixa Postal 510, 18618-970 Botucatu, SP, Brazil
| | | | | |
Collapse
|
10
|
Ultraviolet light increases mortality of nematode larvae and can explain patterns of larval availability at pasture. Int J Parasitol 2009; 39:1151-6. [DOI: 10.1016/j.ijpara.2009.03.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/12/2009] [Accepted: 03/13/2009] [Indexed: 11/21/2022]
|
11
|
Experimental evidence for a new transmission route in a parasitic mite and its mucus-dependent orientation towards the host snail. Parasitology 2008; 135:1679-84. [PMID: 19000332 DOI: 10.1017/s0031182008005039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The route of transmission and host finding behaviour are fundamental components of a parasite's fitness. Riccardoella limacum, a haematophagous mite, lives in the mantle cavity of helicid land snails. To date it has been assumed that this parasitic mite is transmitted during courtship and mating of the host. Here we present experimental evidence for a new transmission route in the host snail Arianta arbustorum. Parasite-free snails were kept on soil on which previously infected host snails had been maintained for 6 weeks. R. limacum was successfully transmitted via soil without physical contact among hosts in 10 out of 22 (45.5%) cases. In a series of experiments we also examined the off-host locomotion of R. limacum on snail mucus and control substrates using an automated camera system. Parasitic mites showed a preference to move on fresh mucus. Our results support the hypothesis that R. limacum uses mucus trails to locate new hosts. These findings should be considered in commercial snail farming and when examining the epidemiology of wild populations.
Collapse
|
12
|
|
13
|
Hakalahti T, Karvonen A, Valtonen ET. Climate warming and disease risks in temperate regions--Argulus coregoni and Diplostomum spathaceum as case studies. J Helminthol 2007; 80:93-8. [PMID: 16768854 DOI: 10.1079/joh2006351] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The link between climate changes and disease risks from various pathogens has been increasingly recognized. The effect of climatic factors on host-parasite population dynamics is particularly evident in northern latitudes where the occurrence and transmission of parasites are strongly regulated by seasonality-driven changes in environmental temperatures. Shortened winter periods would increase growth potential of many parasite populations. The ways in which climate warming could affect life history dynamics of the directly transmitted crustacean ectoparasite Argulus coregoni and complex life cycle trematode Diplostomum spathaceum, which frequently cause problems in northern fish farming, are discussed. Increased problems for fish farming are predicted in terms of increased infection pressure from these parasites in future. This would increase problems associated with infections and increase the use of expensive management protocols with high environmental impact.
Collapse
Affiliation(s)
- T Hakalahti
- Department of Biological and Environmental Science, PO Box 35 (ya), FI-40014, University of Jyväskylä, Finland.
| | | | | |
Collapse
|
14
|
Abstract
Parasites exploit an inherently patchy resource, their hosts, which are discrete entities that may only be available for infection within a relatively short time window. However, there has been little consideration of how heterogeneities in host availability may affect the phenotypic or genotypic composition of parasite populations or how parasites may evolve to cope with them. Here we conduct a selection experiment involving an entomopathogenic nematode (Steinernema feltiae) and show for the first time that the infection rate of a parasite can evolve rapidly to maximize the chances of infecting within an environment characterized by the rate of host availability. Furthermore, we show that the parasite's infection rate trades off with other fitness traits, such as fecundity and survival. Crucially, the outcome of competition between strains with different infection strategies depends on the rate of host availability; frequently available hosts favor "fast" infecting nematodes, whereas infrequently available hosts favor "slow" infecting nematodes. A simple evolutionarily stable strategy (ESS) analysis based on classic epidemiological models fails to capture this behavior, predicting instead that the fastest infecting phenotype should always dominate. However, a novel model incorporating more realistic, discrete bouts of host availability shows that strain coexistence is highly likely. Our results demonstrate that heterogeneities in host availability play a key role in the evolution of parasite life-history traits and in the maintenance of phenotypic variability. Parasite life-history strategies are likely to evolve rapidly in response to changes in host availability induced by disease management programs or by natural dynamics in host abundance. Incorporating parasite evolution in response to host availability would therefore enhance the predictive ability of current epidemiological models of infectious disease.
Collapse
Affiliation(s)
- Jenny Crossan
- School of Biological Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | | | | |
Collapse
|
15
|
Abstract
Parasites are known to directly affect their hosts at both the individual and population level. However, little is known about their more subtle, indirect effects and how these may affect population and community dynamics. In particular, trophically transmitted parasites may manipulate the behavior of intermediate hosts, fundamentally altering the pattern of contact between these individuals and their predators. Here, we develop a suite of population dynamic models to explore the impact of such behavioral modifications on the dynamics and structure of the predator-prey community. We show that, although such manipulations do not directly affect the persistence of the predator and prey populations, they can greatly alter the quantitative dynamics of the community, potentially resulting in high amplitude oscillations in abundance. We show that the precise impact of host manipulation depends greatly on the predator's functional response, which describes the predator's foraging efficiency under changing prey availabilities. Even if the parasite is rarely observed within the prey population, such manipulations extend beyond the direct impact on the intermediate host to affect the foraging success of the predator, with profound implications for the structure and stability of the predator-prey community.
Collapse
Affiliation(s)
- A Fenton
- School of Biological Sciences, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK.
| | | |
Collapse
|
16
|
Rands SA, Johnstone RA. Statistical measures for defining an individual's degree of independence within state-dependent dynamic games. BMC Evol Biol 2006; 6:81. [PMID: 17038165 PMCID: PMC1618404 DOI: 10.1186/1471-2148-6-81] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 10/12/2006] [Indexed: 11/10/2022] Open
Abstract
Background For organisms living or interacting in groups, the decision-making processes of an individual may be based upon aspects of both its own state and the states of other organisms around it. Much research has sought to determine how group decisions are made, and whether some individuals are more likely to influence these decisions than others. State-dependent modelling techniques are a powerful tool for exploring group decision-making processes, but analyses conducted so far have lacked methods for identifying how dependent an individual's actions are on the rest of the group. Results Here, we introduce and evaluate two easy-to-calculate statistics that quantify how dependent an individual's actions are upon the state of a co-player in a two-player state-dependent dynamic game. We discuss the merits of these statistics, and situations in which they would be useful. Conclusion Our statistical measures provide a means of quantifying how independent an individual's actions are. They also allow researchers to quantify the output of state-dependent dynamic games, and quantitatively assess the predictions of these models.
Collapse
Affiliation(s)
- Sean A Rands
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- Centre for Ecology and Conservation, University of Exeter in Cornwall, Tremough Campus, Penryn, Cornwall TR10 9EZ, UK
- Centre for Behavioural Biology, Department of Clinical Veterinary Science, University of Bristol, Langford House, Langford, North Somerset BS40 5DU, UK
| | - Rufus A Johnstone
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
17
|
Hakalahti T, Bandilla M, Valtonen ET. Delayed transmission of a parasite is compensated by accelerated growth. Parasitology 2005; 131:647-56. [PMID: 16255823 DOI: 10.1017/s0031182005008279] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/02/2005] [Accepted: 05/03/2005] [Indexed: 11/07/2022]
Abstract
Compensatory or ‘catch-up’ growth following prolonged periods of food shortages is known to exist in many free-living animals. It is generally assumed that growth rates under normal circumstances are below maximum because elevated rates of growth are costly. The present paper gives experimental evidence that such compensatory growth mechanisms also exist in parasitic species. We explored the effect of periodic host unavailability on survival, infectivity and growth of the fish ectoparasiteArgulus coregoni. Survival and infectivity ofA. coregonimetanauplii deprived of a host for selected time periods were age dependent, which indicates that all metanauplii carry similar energy resources for host seeking. Following the periods off-host, metanauplii were allowed to settle on rainbow trout and were length measured until they reached gravidity. During early development on fish, body length of attachedA. coregoniwas negatively correlated with off-host period indicating a mechanism that creates size variance in an attached parasite cohort originally containing equal amounts of resources. However, over time the size differences between parasites became less pronounced and eventually parasites that were kept off-host for longest periods of time reached the length of those individuals that had been allowed to infect a host sooner.A. coregonithus appears to compensate for delayed growth resulting from an extended host searching period by elevated growth rates, although we show that such accelerated growth incurred a cost, through decreased life-expectancy.
Collapse
Affiliation(s)
- T Hakalahti
- Department of Biological and Environmental Science, P.O. Box 35 (ya), FIN-40014 University of Jyväskylä, Finland.
| | | | | |
Collapse
|