1
|
Zhao X, Zhang Y, Gao T, Song N. Spleen Transcriptome Profiling Reveals Divergent Immune Responses to LPS and Poly (I:C) Challenge in the Yellow Drum ( Nibea albiflora). Int J Mol Sci 2023; 24:ijms24097735. [PMID: 37175446 PMCID: PMC10178140 DOI: 10.3390/ijms24097735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The yellow drum (Nibea albiflora) is a marine teleost fish with strong disease resistance, yet the understanding of its immune response and key functional genes is fragmented. Here, RNA-Seq was used to investigate the regulation pathways and genes involved in the immune response to infection with lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (poly (I:C)) on the spleen of the yellow drum. There were fewer differentially expressed genes (DEGs) in the LPS-infected treatment group at either 6 or 48 h. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these DEGs were mainly significantly enriched in c5-branching dibasic acid metabolic and complement and coagulation cascades pathways. The yellow drum responded more strongly to poly (I:C) infection, with 185 and 521 DEGs obtained under 6 and 48 h treatments, respectively. These DEGs were significantly enriched in the Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, Jak-STAT signaling pathway, NOD-like signaling pathway, and cytokine-cytokine receptor interaction. The key functional genes in these pathways played important roles in the immune response and maintenance of immune system homeostasis in the yellow drum. Weighted gene co-expression network analysis (WGCNA) revealed several important hub genes. Although the functions of some genes have not been confirmed, our study still provides significant information for further investigation of the immune system of the yellow drum.
Collapse
Affiliation(s)
- Xiang Zhao
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Yuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou 510301, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Na Song
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China
| |
Collapse
|
2
|
Tepox-Vivar N, Stephenson JF, Guevara-Fiore P. Transmission dynamics of ectoparasitic gyrodactylids (Platyhelminthes, Monogenea): An integrative review. Parasitology 2022; 149:1-13. [PMID: 35481457 DOI: 10.1017/s0031182022000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Parasite transmission is the ability of pathogens to move between hosts. As a key component of the interaction between hosts and parasites, it has crucial implications for the fitness of both. Here, we review the transmission dynamics of Gyrodactylus species, which are monogenean ectoparasites of teleost fishes and a prominent model for studies of parasite transmission. Particularly, we focus on the most studied host–parasite system within this genus: guppies, Poecilia reticulata, and G. turnbulli/G. bullatarudis. Through an integrative literature examination, we identify the main variables affecting Gyrodactylus spread between hosts, and the potential factors that enhance their transmission. Previous research indicates that Gyrodactylids spread when their current conditions are unsuitable. Transmission depends on abiotic factors like temperature, and biotic variables such as gyrodactylid biology, host heterogeneity, and their interaction. Variation in the degree of social contact between hosts and sexes might also result in distinct dynamics. Our review highlights a lack of mathematical models that could help predict the dynamics of gyrodactylids, and there is also a bias to study only a few species. Future research may usefully focus on how gyrodactylid reproductive traits and host heterogeneity promote transmission and should incorporate the feedbacks between host behaviour and parasite transmission.
Collapse
Affiliation(s)
- Natalia Tepox-Vivar
- Maestría en Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72592, Mexico
| | - Jessica F Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Palestina Guevara-Fiore
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72592, Mexico
| |
Collapse
|
3
|
Ilgová J, Salát J, Kašný M. Molecular communication between the monogenea and fish immune system. FISH & SHELLFISH IMMUNOLOGY 2021; 112:179-190. [PMID: 32800986 DOI: 10.1016/j.fsi.2020.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/21/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Monogeneans parasitise mainly the outer structures of fish, such as the gills, fins, and skin, that is, tissues covered with a mucous layer. While attached by sclerotised structures to host's surface, monogeneans feed on its blood or epidermal cells and mucus. Besides being a rich source of nutrients, these tissues also contain humoral immune factors and immune cells, which are ready to launch defence mechanisms against the tegument or gastrointestinal tract of these invaders. The exploitation of hosts' resources by the Monogenea must, therefore, be accompanied by suppressive and immunomodulatory mechanisms which protect the parasites against attacks by host immune system. Elimination of hosts' cytotoxic molecules and evasion of host immune response is often mediated by proteins secreted by the parasites. The aim of this review is to summarise existing knowledge on fish immune responses against monogeneans. Results gleaned from experimental infections illustrate the various interactions between parasites and the innate and adaptive immune system of the fish. The involvement of monogenean molecules (mainly inhibitors of peptidases) in molecular communication with host immune system is discussed.
Collapse
Affiliation(s)
- Jana Ilgová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic.
| | - Jiří Salát
- Department of Virology, Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| |
Collapse
|
4
|
Zhou S, Liu Y, Dong J, Yang Q, Xu N, Yang Y, Gu Z, Ai X. Transcriptome analysis of goldfish (Carassius auratus) in response to Gyrodactylus kobayashii infection. Parasitol Res 2020; 120:161-171. [PMID: 33094386 DOI: 10.1007/s00436-020-06827-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Gyrodactylid monogeneans are widespread parasites of teleost fishes, and infection with these parasites results in high host morbidity and mortality in aquaculture. To comprehensively elucidate the immune mechanisms against Gyrodactylus kobayashii, the transcriptome profiles of goldfish (Carassius auratus) skin after challenge with G. kobayashii were first investigated using next-generation sequencing. Approximately 21 million clean reads per library were obtained, and the average percentage of these clean reads mapped to the reference genome was 82.25%. A total of 556 differentially expressed genes (DEGs), including 344 upregulated and 212 downregulated genes, were identified, and 380 DEGs were successfully annotated and assigned to 95 signaling pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, 14 pathways associated with immune response were identified mainly including mTOR signaling pathway, cytokine-cytokine receptor interaction, intestinal immune network for IgA production, toll-like receptor signaling pathway, and phagosome. Twelve genes were selected and validated using qRT-PCR. A similar trend of these genes between RNA-Seq and qRT-PCR was observed, indicating that RNA-Seq data was reliable. Besides, the ALP activity and NO content in serum were significantly higher in the infected goldfish compared with the non-infected goldfish. In summary, this study provides better understandings of immune defense mechanisms of goldfish against G. kobayashii, which will support future molecular research on gyrodactylids and facilitate the prevention and treatment of gyrodactylosis in aquaculture.
Collapse
Affiliation(s)
- Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430223, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Zemao Gu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China. .,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China.
| |
Collapse
|
5
|
Hu J, Pérez-Jvostov F, Blondel L, Barrett RDH. Genome-wide DNA methylation signatures of infection status in Trinidadian guppies (Poecilia reticulata
). Mol Ecol 2018; 27:3087-3102. [DOI: 10.1111/mec.14771] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Juntao Hu
- Redpath Museum; McGill University; Montreal Quebec Canada
- Department of Biology; McGill University; Montreal Quebec Canada
| | - Felipe Pérez-Jvostov
- Redpath Museum; McGill University; Montreal Quebec Canada
- Department of Biology; McGill University; Montreal Quebec Canada
| | - Léa Blondel
- Redpath Museum; McGill University; Montreal Quebec Canada
- Department of Biology; McGill University; Montreal Quebec Canada
| | - Rowan D. H. Barrett
- Redpath Museum; McGill University; Montreal Quebec Canada
- Department of Biology; McGill University; Montreal Quebec Canada
| |
Collapse
|
6
|
Genomic signatures of parasite-driven natural selection in north European Atlantic salmon (Salmo salar). Mar Genomics 2018; 39:26-38. [DOI: 10.1016/j.margen.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/16/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023]
|
7
|
Li H, Xu W, Zhang N, Shao C, Zhu Y, Dong Z, Wang N, Jia X, Xu H, Chen S. Two Figla homologues have disparate functions during sex differentiation in half-smooth tongue sole (Cynoglossus semilaevis). Sci Rep 2016; 6:28219. [PMID: 27313147 PMCID: PMC4911598 DOI: 10.1038/srep28219] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 06/01/2016] [Indexed: 11/22/2022] Open
Abstract
Figla is a germ-cell-specific transcription factor associated with ovary development and differentiation. In vertebrates, one transcriptional form of Figla is commonly found. However, besides the common form of this gene (named Figla_tv1), a new transcriptional form (named Figla_tv2) was identified in half-smooth tongue sole (Cynoglossus semilaevis). The full-length cDNA of Figla_tv1 was 1057 bp long with a 591-bp open reading frame encoding a predicted 196 amino acid protein, while Figla_tv2 encoded a 125 amino acid protein. Figla_tv1 and Figla_tv2 expression in various tissues was detected by qRT-PCR. Figla_tv1 was expressed mainly in ovary, skin and liver, while Figla_tv2 was expressed in all examined tissues. In the gonads, Figla_tv1 was expressed in ovary, while Figla_tv2 was predominately expressed in testis of pseudomales. Further, in situ hybridization located Figla_tv1 only in oocytes and Figla_tv2 mainly in germ cells of pseudomale testis. After knocking down Figla_tv2 in a pseudomale testis cell line, the expression of two steroid hormone-encoding genes, StAR and P450scc, was significantly up-regulated (P < 0.05). Our findings suggest that Figla_tv1 has a conserved function in folliculogenesis, as in other vertebrates, and that Figla_tv2 may have a role in the spermatogenesis of pseudomales by regulating the synthesis and metabolism of steroid hormones.
Collapse
Affiliation(s)
- Hailong Li
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266273, China
| | - Wenteng Xu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266273, China
| | - Ning Zhang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266273, China
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266273, China
| | - Ying Zhu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266273, China
| | - Zhongdian Dong
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266273, China
| | - Na Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266273, China
| | - Xiaodong Jia
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266273, China
| | - Hao Xu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266273, China
| | - Songlin Chen
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266273, China
| |
Collapse
|
8
|
Differential proteome profile of skin mucus of gilthead seabream (Sparus aurata) after probiotic intake and/or overcrowding stress. J Proteomics 2015; 132:41-50. [PMID: 26617323 DOI: 10.1016/j.jprot.2015.11.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022]
Abstract
UNLABELLED Gilthead seabream (Sparus aurata L.) is the major cultured fish species in the Mediterranean area. High density stocking causes stress and increases the impact of diseases leading to economic losses. Probiotics could represent a solution to prevent diseases through several mechanisms such as improving the immune status and/or mucosal microbiota or competing with pathogens. The probiotic Shewanella putrefaciens, also known as Pdp11, was firstly isolated from the skin of healthy gilthead seabream. Our study focuses on the skin mucus proteome after dietary probiotic Pdp11 intake in fish maintained under normal or overcrowding conditions. 2-DE of skin mucus followed by LC-MS/MS analysis was done for each experimental group and differentially expressed proteins were identified. The results showed differentially expressed proteins especially involved in immune processes, such as lysozyme, complement C3, natural killer cell enhancing factor and nonspecific cytotoxic cell receptor protein 1, whose transcript profiles were studied by qPCR. A consistency between lysozyme protein levels in the mucus and lysozyme mRNA levels in skin was found. Further research is necessary to unravel the implications of skin mucosal immunity on fish welfare and disease. BIOLOGICAL SIGNIFICANCE The present work reveals the proteomic changes, which are taking place in the skin mucus of stressed and non-stressed gilthead seabream after Pdp11 probiotic intake. The study contributes to improving the knowledge on skin mucosal immunology of this relevant farmed fish species. Furthermore, the paper shows for the first time how a suitable proteomic methodology, in this case 2-DE followed by LC-MS/MS is useful to perform a comparative study with a non-invasive technique of skin mucus of gilthead seabream.
Collapse
|
9
|
Ramírez R, Bakke TA, Harris PD. Population regulation in Gyrodactylus salaris - Atlantic salmon (Salmo salar L.) interactions: testing the paradigm. Parasit Vectors 2015. [PMID: 26205064 PMCID: PMC4513975 DOI: 10.1186/s13071-015-0981-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gyrodactylus salaris is a directly transmitted ectoparasite that reproduces in situ on its fish host. Wild Norwegian (East Atlantic) salmon stocks are thought to be especially susceptible to the parasite due to lack of co-adaptation, contrary to Baltic salmon stocks. This study i) identifies whether time- and density-dependent mechanisms in gyrodactylid population growth exist in G. salaris-Atlantic salmon interactions and ii) based on differences between Norwegian and Baltic stocks, determines whether the 'Atlantic susceptible, Baltic resistant' paradigm holds as an example of local adaptation. METHODS A total of 18 datasets of G. salaris population growth on individually isolated Atlantic salmon (12 different stocks) infected with three parasite strains were re-analysed using a Bayesian approach. Datasets included over 2000 observations of 388 individual fish. RESULTS The best fitting model of population growth was time-limited; parasite population growth rate declined consistently from the beginning of infection. We found no evidence of exponential population growth in any dataset. In some stocks, a density dependence in the size of the initial inoculum limited the maximum rate of parasite population growth. There is no evidence to support the hypothesis that all Norwegian and Scottish Atlantic salmon stocks are equally susceptible to G. salaris, while Baltic stocks control and limit infections due to co-evolution. Northern and Western Norwegian as well as the Scottish Shin stocks, support higher initial parasite population growth rates than Baltic, South-eastern Norwegian, or the Scottish Conon stocks, and several Norwegian stocks tested (Akerselva, Altaelva, Lierelva, Numedalslågen), and the Scottish stocks (i.e. Conon, Shin), were able to limit infections after 40-50 days. No significant differences in performance of the three parasite strains (Batnfjordselva, Figga, and Lierelva), or the two parasite mitochondrial haplotypes (A and F) were observed. CONCLUSIONS Our study shows a spectrum of growth rates, with some fish of the South-eastern Norwegian stocks sustaining parasite population growth rates overlapping those seen on Baltic Neva and Indalsälv stocks. This observation is inconsistent with the 'Baltic-resistant, Atlantic-susceptible' hypothesis, but suggests heterogeneity, perhaps linked to other host resistance genes driven by selection for local disease syndromes.
Collapse
Affiliation(s)
- Raúl Ramírez
- Natural History Museum, Department of Research and Collections, University of Oslo, P.O. Box 1172, NO-0318, Oslo, Norway.
| | - Tor A Bakke
- Natural History Museum, Department of Research and Collections, University of Oslo, P.O. Box 1172, NO-0318, Oslo, Norway.
| | - Philip D Harris
- Natural History Museum, Department of Research and Collections, University of Oslo, P.O. Box 1172, NO-0318, Oslo, Norway.
| |
Collapse
|
10
|
Kumar G, Abd-Elfattah A, El-Matbouli M. Identification of differentially expressed genes of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in response to Tetracapsuloides bryosalmonae (Myxozoa). Parasitol Res 2015; 114:929-39. [PMID: 25563603 PMCID: PMC4336411 DOI: 10.1007/s00436-014-4258-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/15/2014] [Indexed: 01/08/2023]
Abstract
Tetracapsuloides bryosalmonae Canning et al., 1999 (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids in Europe and North America. We have shown previously that the development and distribution of the European strain of T. bryosalmonae differs in the kidney of brown trout (Salmo trutta) Linnaeus, 1758 and rainbow trout (Oncorhynchus mykiss) Walbaum, 1792, and that intra-luminal sporogonic stages were found in brown trout but not in rainbow trout. We have now compared transcriptomes from kidneys of brown trout and rainbow trout infected with T. bryosalmonae using suppressive subtractive hybridization (SSH). The differentially expressed transcripts produced by SSH were cloned, transformed, and tested by colony PCR. Differential expression screening of PCR products was validated using dot blot, and positive clones having different signal intensities were sequenced. Differential screening and a subsequent NCBI-BLAST analysis of expressed sequence tags revealed nine clones expressed differently between both fish species. These differentially expressed genes were validated by quantitative real-time PCR of kidney samples from both fish species at different time points of infection. Expression of anti-inflammatory (TSC22 domain family protein 3) and cell proliferation (Prothymin alpha) genes were upregulated significantly in brown trout but downregulated in rainbow trout. The expression of humoral immune response (immunoglobulin mu) and endocytic pathway (Ras-related protein Rab-11b) genes were significantly upregulated in rainbow trout but downregulated in brown trout. This study suggests that differential expression of host anti-inflammatory, humoral immune and endocytic pathway responses, cell proliferation, and cell growth processes do not inhibit the development of intra-luminal sporogonic stages of the European strain of T. bryosalmonae in brown trout but may suppress it in rainbow trout.
Collapse
Affiliation(s)
- Gokhlesh Kumar
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | | | | |
Collapse
|
11
|
Kumar G, Abd-Elfattah A, El-Matbouli M. Differential modulation of host genes in the kidney of brown trout Salmo trutta during sporogenesis of Tetracapsuloides bryosalmonae (Myxozoa). Vet Res 2014; 45:101. [PMID: 25297457 PMCID: PMC4198790 DOI: 10.1186/s13567-014-0101-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/24/2014] [Indexed: 01/06/2023] Open
Abstract
Tetracapsuloides bryosalmonae (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids in Europe and North America. In Europe, spores of T. bryosalmonae develop in the kidney of infected brown trout Salmo trutta and are released via urine to infect the freshwater bryozoan Fredericella sultana. The transcriptomes of kidneys of infected and non-infected brown trout were compared by suppressive subtractive hybridization. Differential screening and a subsequent NCBI BLAST analysis of expressed sequence tags revealed 21 transcripts with functions that included cell stress and cell growth, ribonucleoprotein, signal transduction, ion transporter, immune response, hemoglobin and calcium metabolisms. Quantitative real time PCR was used to verify the presence of these selected transcripts in brown trout kidney at sporogonic stages of T. bryosalmonae development. Expression of cold-inducible RNA-binding protein, cyclin-dependent kinase inhibitor 2A, prothymosin alpha, transforming protein RhoA, immunoglobulin light chain and major histocompatibility complex class I were up-regulated significantly in infected brown trout. Expression of both the hemoglobin subunit beta and stanniocalcin precursor were down-regulated significantly in infected brown trout. This study suggests that cell stress and cell growth processes, signal transduction activities, erythropoiesis and calcium homeostasis of the host are modulated during sporogonic stages of parasite development, which may support the sporogenesis of T. bryosalmonae in the kidney of brown trout.
Collapse
Affiliation(s)
- Gokhlesh Kumar
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Ahmed Abd-Elfattah
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
12
|
Zueva KJ, Lumme J, Veselov AE, Kent MP, Lien S, Primmer CR. Footprints of directional selection in wild Atlantic salmon populations: evidence for parasite-driven evolution? PLoS One 2014; 9:e91672. [PMID: 24670947 PMCID: PMC3966780 DOI: 10.1371/journal.pone.0091672] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 02/14/2014] [Indexed: 12/15/2022] Open
Abstract
Mechanisms of host-parasite co-adaptation have long been of interest in evolutionary biology; however, determining the genetic basis of parasite resistance has been challenging. Current advances in genome technologies provide new opportunities for obtaining a genome-scale view of the action of parasite-driven natural selection in wild populations and thus facilitate the search for specific genomic regions underlying inter-population differences in pathogen response. European populations of Atlantic salmon (Salmo salar L.) exhibit natural variance in susceptibility levels to the ectoparasite Gyrodactylus salaris Malmberg 1957, ranging from resistance to extreme susceptibility, and are therefore a good model for studying the evolution of virulence and resistance. However, distinguishing the molecular signatures of genetic drift and environment-associated selection in small populations such as land-locked Atlantic salmon populations presents a challenge, specifically in the search for pathogen-driven selection. We used a novel genome-scan analysis approach that enabled us to i) identify signals of selection in salmon populations affected by varying levels of genetic drift and ii) separate potentially selected loci into the categories of pathogen (G. salaris)-driven selection and selection acting upon other environmental characteristics. A total of 4631 single nucleotide polymorphisms (SNPs) were screened in Atlantic salmon from 12 different northern European populations. We identified three genomic regions potentially affected by parasite-driven selection, as well as three regions presumably affected by salinity-driven directional selection. Functional annotation of candidate SNPs is consistent with the role of the detected genomic regions in immune defence and, implicitly, in osmoregulation. These results provide new insights into the genetic basis of pathogen susceptibility in Atlantic salmon and will enable future searches for the specific genes involved.
Collapse
Affiliation(s)
- Ksenia J. Zueva
- Department of Biology, University of Turku, Turku, Finland
- * E-mail:
| | - Jaakko Lumme
- Department of Biology, University of Oulu, Oulu, Finland
| | - Alexey E. Veselov
- Institute of Biology, Karelian Research Centre of RAS, Petrozavodsk, Russia
| | - Matthew P. Kent
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE) and Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | |
Collapse
|
13
|
Guo Y, Wang L, Zhou Z, Wang M, Liu R, Wang L, Jiang Q, Song L. An opioid growth factor receptor (OGFR) for [Met5]-enkephalin in Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1228-1235. [PMID: 23462147 DOI: 10.1016/j.fsi.2013.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/04/2013] [Accepted: 02/04/2013] [Indexed: 06/01/2023]
Abstract
Opioid growth factor receptor (OGFR) is a receptor for [Met(5)]-enkephalin and plays important roles in the regulation of cell growth and embryonic development. In the present study, a cDNA of 2381 bp for the scallop Chlamys farreri OGFR (designated as CfOGFR) was identified by rapid amplification of cDNA ends (RACE) approach and expression sequence tag (EST) analysis. The complete cDNA sequence of CfOGFR contained an open reading frame (ORF) of 1200 bp, which encoded a protein of 399 amino acids. The amino acid sequence of CfOGFR shared 33-64% similarity with other OGFRs. There was a low complexity domain and a conserved OGFR_N domain at the N-terminal of CfOGFR. The mRNA transcripts of CfOGFR were constitutively expressed in the tested tissues with the highest expression level in hepatopancreas. During the early embryonic development, the mRNA transcripts of CfOGFR could be detected in different development stages, where the expression level presented a downward trend as a whole. The stimulations of LPS, Glu and poly (I:C) significantly induced the expression of CfOGFR mRNA in hemocytes (P < 0.05), while PGN stimulation exerted no influence. Co-IP and western blot results revealed that the CfOGFR in hemocytes displayed high affinity and specificity to [Met(5)]-enkephalin. Exogenous [Met(5)]-enkephalin was observed to inhibit the proliferation of HEK293T cells transfected with pcDNA3.1(+)-CfOGFR in a time and dosage dependent manner. These results collectively indicated that CfOGFR, as a homolog of OGFRs in C. farreri, played an important role in cells proliferation, and might be involved in the immune response of scallops.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Western
- Cell Proliferation
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Electrophoresis, Polyacrylamide Gel
- Hemocytes/immunology
- Hemocytes/metabolism
- Immunity, Innate
- Molecular Sequence Data
- Organ Specificity
- Pectinidae/chemistry
- Pectinidae/genetics
- Pectinidae/immunology
- Pectinidae/metabolism
- Phylogeny
- Poly I-C/administration & dosage
- Polymerase Chain Reaction
- Polysaccharides, Bacterial/administration & dosage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Opioid/chemistry
- Receptors, Opioid/genetics
- Receptors, Opioid/immunology
- Receptors, Opioid/metabolism
- Sequence Alignment
- beta-Glucans/administration & dosage
Collapse
Affiliation(s)
- Ying Guo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Artamonova VS, Makhrov AA, Shulman BS, Khaimina OV, Yurtseva AO, Lajus DL, Shirokov VA, Shurov IL. Response of the Atlantic salmon (Salmo salar L.) population of the Keret River to the invasion of parasite Gyrodactylus salaris Malmberg. RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2011. [DOI: 10.1134/s2075111711020020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Microhabitat use, not temperature, regulates intensity of Gyrodactylus cichlidarum long-term infection on farmed tilapia--are parasites evading competition or immunity? Vet Parasitol 2011; 183:305-16. [PMID: 21840127 DOI: 10.1016/j.vetpar.2011.07.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/13/2011] [Accepted: 07/21/2011] [Indexed: 11/22/2022]
Abstract
Gyrodactylids (Monogenea) are ectoparasites of fish, some of which negatively affect commercially valuable fishes. Temperature strongly regulates population dynamics of these viviparous flatworms in farmed and wild fish populations, with most gyrodactylid species showing positive temperature-abundance associations. In agreement with epidemiological theory, numerous laboratory studies demonstrate that these parasites cannot persist in confined fish populations without periodic introduction of susceptible hosts. Extinction of gyrodactylid populations is due to host immunity, which develops in several fish species. In this one-year study, we followed populations of the recognized pathogen Gyrodactylus cichlidarum infecting four genetic groups of confined tilapia (wild type Nile tilapia Oreochromis niloticus niloticus, red O. n. niloticus, Mozambique tilapia O. mossambicus and a red synthetic population called Pargo-UNAM) kept under farming conditions and subject to natural environmental fluctuations. Based on the antecedents given, we postulated the following three hypotheses: (1) parasite abundance will be regulated by water temperature; (2) parasites will induce host mortality, particularly during periods of rapid infrapopulation growth; and (3) gyrodactylid populations will eventually become extinct on confined fish hosts. We disproved the three hypotheses: (1) parasite numbers fluctuated independently of temperature but were associated to changes in microhabitat use; (2) although gyrodactylid populations exhibited considerable growth, no evidence was found of negative effects on the hosts; and (3) infections persisted for one year on confined fish. Microhabitat use changed over time, with most worms apparently migrating anteriorly from the caudal fin and ending on the pectoral fins. Gyrodactylid populations followed similar trajectories in all fish, aggregating and dispersing repeatedly. Several instances were found where increased parasite dispersion coincided with increased intensity of infection; as well as the opposite, where increased aggregation coincided with parasite population declines. Three alternative explanations could account for these observations: that parasites (1) experience differential mortality on different anatomical regions of the fish; (2) migrate to avoid intraspecific competition; and (3) migrate to escape localized immune responses induced by infection. Our data do not allow us to demonstrate which of these alternatives is correct, so we discuss the merits of each. We provide circumstantial evidence in support of the third explanation, because as shown in other fish host-gyrodactylid interactions where immune responses have been characterized, in this study worms progressively moved away from fins with high mucus cell density to those with low density - what would be anticipated if immune defenses occur and reach the fish surface through mucus.
Collapse
|
16
|
de Boer ME, Berg S, Timmermans MJTN, den Dunnen JT, van Straalen NM, Ellers J, Roelofs D. High throughput nano-liter RT-qPCR to classify soil contamination using a soil arthropod. BMC Mol Biol 2011; 12:11. [PMID: 21362169 PMCID: PMC3060125 DOI: 10.1186/1471-2199-12-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 03/01/2011] [Indexed: 11/29/2022] Open
Abstract
Background To incorporate genomics data into environmental assessments a mechanistic perspective of interactions between chemicals and induced biological processes needs to be developed. Since chemical compounds with structural similarity often induce comparable biological responses in exposed animals, gene expression signatures can serve as a starting point for the assessment of chemicals and their toxicity, but only when relevant and stable gene panels are available. To design such a panel, we isolated differentially expressed gene fragments from the soil arthropod Folsomia candida, a species often used for ecotoxicological testing. Animals were exposed to two chemically distinct compounds, being a metal (cadmium) and a polycyclic aromatic hydrocarbon (phenanthrene). We investigated the affected molecular responses resulting from either treatment and developed and validated 44 qPCR assays for their responses using a high throughput nano-liter RT-qPCR platform for the analysis of the samples. Results Suppressive subtractive hybridization (SSH) was used to retrieve stress-related gene fragments. SSH libraries revealed pathways involved in mitochondrial dysfunction and protein degradation for cadmium and biotransformation for phenanthrene to be overrepresented. Amongst a small cluster of SSH-derived cadmium responsive markers were an inflammatory response protein and an endo-glucanase. Conversely, cytochrome P450 family 6 or 9 was specifically induced by phenanthrene. Differential expressions of these candidate biomarkers were also highly significant in the independently generated test sample set. Toxicity levels in different training samples were not reflected by any of the markers' intensity of expressions. Though, a model based on partial least squares differential analysis (PLS-DA) (with RMSEPs between 9 and 22% and R2s between 0.82 and 0.97) using gene expressions of 25 important qPCR assays correctly predicted the nature of exposures of test samples. Conclusions For the application of molecular bio-indication in environmental assessments, multivariate analyses obviously have an added value over univariate methods. Our results suggest that compound discrimination can be achieved by PLS-DA, based on a hard classification of the within-class rankings of samples from a test set. This study clearly shows that the use of high throughput RT-qPCR could be a valuable tool in ecotoxicology combining high throughput with analytical sensitivity.
Collapse
Affiliation(s)
- Muriel E de Boer
- VU University Amsterdam, Department of Ecological Science, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
17
|
Webster LMI, Mello LV, Mougeot F, Martinez-Padilla J, Paterson S, Piertney SB. Identification of genes responding to nematode infection in red grouse. Mol Ecol Resour 2010; 11:305-13. [PMID: 21429137 DOI: 10.1111/j.1755-0998.2010.02912.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The identification of genes involved in a host's response to parasite infection provides both a means for understanding the pathways involved in immune defence and a target for examining host-parasite co-evolution. Most studies rely on a candidate gene approach derived from model systems to identify gene targets of interest, and there have been a dearth of studies geared towards providing a holistic overview of immune response from natural populations. We carried out an experiment in a natural population of red grouse (Lagopus lagopus scoticus) to manipulate levels of Trichostrongylus tenuis parasite infection. The transcriptomic response of individuals was examined from standard cDNA and suppressive subtractive hybridization (SSH) libraries produced from gut, liver and spleen, enriching for genes expressed in response to T. tenuis infection. A total of 2209 and 3716 unique transcript sequences were identified from the cDNA and SSH libraries, respectively. Forty-five of these had Gene Ontology annotation associated with immune response. Some of these genes have previously been reported from laboratory-based studies of model species as important in immune response to gastrointestinal parasite infection; however, multiple novel genes were also identified. These may reveal novel pathways involved in the host response of grouse to T. tenuis and provide a resource that can be utilized as candidate genes in other species. All sequences described have been deposited in GenBank (accession numbers GW698221-GW706922)
Collapse
Affiliation(s)
- L M I Webster
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | | | | | |
Collapse
|
18
|
Xia JH, Yue GH. Identification and analysis of immune-related transcriptome in Asian seabass Lates calcarifer. BMC Genomics 2010; 11:356. [PMID: 20525308 PMCID: PMC2893601 DOI: 10.1186/1471-2164-11-356] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 06/04/2010] [Indexed: 01/21/2023] Open
Abstract
Background Fish diseases caused by pathogens are limiting their production and trade, affecting the economy generated by aquaculture. Innate immunity system is the first line of host defense in opposing pathogenic organisms or any other foreign material. For identification of immune-related genes in Asian seabass Lates calcarifer, an important marine foodfish species, we injected bacterial lipopolysaccharide (LPS), a commonly used elicitor of innate immune responses to eight individuals at the age of 35 days post-hatch and applied the suppression subtractive hybridization (SSH) technique to selectively amplify spleen cDNA of differentially expressed genes. Results Sequencing and bioinformatic analysis of 3351 ESTs from two SSH libraries yielded 1692 unique transcripts. Of which, 618 transcripts were unknown/novel genes and the remaining 1074 were similar to 743 known genes and 105 unannotated mRNA sequences available in public databases. A total of 161 transcripts were classified to the category "response to stimulus" and 115 to "immune system process". We identified 25 significantly up-regulated genes (including 2 unknown transcripts) and 4 down-regulated genes associated with immune-related processes upon challenge with LPS. Quantitative real-time PCR confirmed the differential expression of these genes after LPS challenge. Conclusions The present study identified 1692 unique transcripts upon LPS challenge for the first time in Asian seabass by using SSH, sequencing and bioinformatic analysis. Some of the identified transcripts are vertebrate homologues and others are hitherto unreported putative defence proteins. The obtained immune-related genes may allow for a better understanding of immunity in Asian seabass, carrying out detailed functional analysis of these genes and developing strategies for efficient immune protection against infections in Asian seabass.
Collapse
Affiliation(s)
- Jun Hong Xia
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, National University of Singapore, 117604 Republic of Singapore
| | | |
Collapse
|
19
|
Tonteri A, Vasemägi A, Lumme J, Primmer CR. Beyond MHC: signals of elevated selection pressure on Atlantic salmon (Salmo salar) immune-relevant loci. Mol Ecol 2010; 19:1273-82. [PMID: 20196809 DOI: 10.1111/j.1365-294x.2010.04573.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Using Atlantic salmon (Salmo salar) as a model system, we investigated whether 18 microsatellites tightly linked to immune-relevant genes have experienced different selection pressures than 76 loci with no obvious association with immune function. Immune-relevant loci were identified as outliers by two outlier tests significantly more often than nonimmune linked loci (22% vs. 1.6%). In addition, the allele frequencies of immune relevant markers were more often correlated with latitude and temperature. Combined, these results support the hypothesis that immune-relevant loci more frequently exhibit footprints of selection than other loci. They also indicate that the correlation between immune-relevant loci and latitude may be due to temperature-induced differences in pathogen-driven selection or some other environmental factor correlated with latitude.
Collapse
Affiliation(s)
- A Tonteri
- Division of Genetics and Physiology, Department of Biology, University of Turku, FIN-20014 Turku, Finland
| | | | | | | |
Collapse
|
20
|
Jørgensen TR, Raida MK, Kania PW, Buchmann K. Response of rainbow trout (Oncorhynchus mykiss) in skin and fin tissue during infection with a variant of Gyrodactylus salaris (Monogenea: Gyrodactylidae). Folia Parasitol (Praha) 2009; 56:251-8. [DOI: 10.14411/fp.2009.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Molecular and immunohistochemical studies on epidermal responses in Atlantic salmon Salmo salar L. induced by Gyrodactylus salaris Malmberg, 1957. J Helminthol 2009; 84:166-72. [PMID: 19728897 DOI: 10.1017/s0022149x09990460] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Various strains of Atlantic salmon exhibit different levels of susceptibility to infections with the ectoparasitic monogenean Gyrodactylus salaris. The basic mechanisms involved in this differential ability to respond to this monogenean were elucidated using controlled and duplicated challenge experiments. Highly susceptible East Atlantic salmon allowed parasite populations to reach up to 3000 parasites per host within 6 weeks, whereas less susceptible Baltic salmon never reached larger parasite burdens than 122 parasites per host during the same period. The present study, comprising immunohistochemistry and gene expression analyses, showed that highly susceptible salmon erected a response mainly associated with an increased expression of interleukin-1beta (IL-1beta), interferon-gamma (IFN-gamma), IL-10 and infiltration of CD3-positive cells in the epidermis of infected fins. Less susceptible salmon showed no initial response in fins but 3-6 weeks post-infection a number of other genes (encoding the immune-regulating cytokine IL-10, cell marker MHC II and the pathogen-binding protein serum amyloid A) were found to be up-regulated. No proliferation of epithelial cells was seen in the skin of less susceptible salmon, and IL-10 may play a role in this regard. It can be hypothesized that resistant salmon regulate the parasite population by restricting nutrients (sloughed epithelial cells and associated material) and thereby starve the parasites. In association with this 'scorched-earth strategy', the production of pathogen-binding effector molecules such as serum amyloid A (SAA) (or others still not detected) may contribute to the resistance status of the fish during the later infection phases.
Collapse
|
22
|
Schiøtz BL, Baekkevold ES, Poulsen LC, Mjaaland S, Gjøen T. Analysis of host- and strain-dependent cell death responses during infectious salmon anemia virus infection in vitro. Virol J 2009; 6:91. [PMID: 19566966 PMCID: PMC2715388 DOI: 10.1186/1743-422x-6-91] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 07/01/2009] [Indexed: 12/20/2022] Open
Abstract
Background Infectious salmon anemia virus (ISAV) is an aquatic orthomyxovirus and the causative agent of infectious salmon anemia (ISA), a disease of great importance in the Atlantic salmon farming industry. In vitro, ISAV infection causes cytophatic effect (CPE) in cell lines from Atlantic salmon, leading to rounding and finally detachment of the cells from the substratum. In this study, we investigated the mode of cell death during in vitro ISAV infection in different Atlantic salmon cell lines, using four ISAV strains causing different mortality in vivo. Results The results show that caspase 3/7 activity increased during the course of infection in ASK and SHK-1 cells, infected cells showed increased surface expression of phosphatidylserine and increased PI uptake, compared to mock infected cells; and morphological alterations of the mitochondria were observed. Expression analysis of immune relevant genes revealed no correlation between in vivo mortality and expression, but good correlation in expression of interferon genes. Conclusion Results from this study indicate that there is both strain and cell type dependent differences in the virus-host interaction during ISAV infection. This is important to bear in mind when extrapolating in vitro findings to the in vivo situation.
Collapse
Affiliation(s)
- Berit L Schiøtz
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway.
| | | | | | | | | |
Collapse
|
23
|
Kortner TM, Rocha E, Arukwe A. Previtellogenic oocyte growth and transcriptional changes of steroidogenic enzyme genes in immature female Atlantic cod (Gadus morhua L.) after exposure to the androgens 11-ketotestosterone and testosterone. Comp Biochem Physiol A Mol Integr Physiol 2009; 152:304-13. [DOI: 10.1016/j.cbpa.2008.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 11/29/2022]
|
24
|
Feng CY, Johnson SC, Hori TS, Rise M, Hall JR, Gamperl AK, Hubert S, Kimball J, Bowman S, Rise ML. Identification and analysis of differentially expressed genes in immune tissues of Atlantic cod stimulated with formalin-killed, atypical Aeromonas salmonicida. Physiol Genomics 2009; 37:149-63. [PMID: 19240301 DOI: 10.1152/physiolgenomics.90373.2008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Physiological changes, elicited in animal immune tissues by exposure to pathogens, may be studied using functional genomics approaches. We created and characterized reciprocal suppression subtractive hybridization (SSH) cDNA libraries to identify differentially expressed genes in spleen and head kidney tissues of Atlantic cod (Gadus morhua) challenged with intraperitoneal injections of formalin-killed, atypical Aeromonas salmonicida. Of 4,154 ESTs from four cDNA libraries, 10 genes with immune-relevant functional annotations were selected for QPCR studies using individual fish templates to assess biological variability. Genes confirmed by QPCR as upregulated by A. salmonicida included interleukin-1 beta, interleukin-8, a small inducible cytokine, interferon regulatory factor 1 (IRF1), ferritin heavy subunit, cathelicidin, and hepcidin. This study is the first large-scale discovery of bacteria-responsive genes in cod and the first to demonstrate upregulation of IRF1 in fish immune tissues as a result of bacterial antigen stimulation. Given the importance of IRF1 in vertebrate immune responses to viral and bacterial pathogens, the full-length cDNA sequence of Atlantic cod IRF1 was obtained and compared with putative orthologous sequences from other organisms. Functional annotations of assembled SSH library ESTs showed that bacterial antigen stimulation caused changes in many biological processes including chemotaxis, regulation of apoptosis, antimicrobial peptide production, and iron homeostasis. Moreover, differences in spleen and head kidney gene expression responses to the bacterial antigens pointed to a potential role for the cod spleen in blood-borne pathogen clearance. Our data show that Atlantic cod immune tissue responses to bacterial antigens are similar to those seen in other fish species and higher vertebrates.
Collapse
Affiliation(s)
- Charles Y Feng
- Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, Newfoundland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
King TA, Harris PD, Cable J. Long-Term Gyrodactylus lomi Infection on Isolated Juvenile Chub, Leuciscus cephalus. J Parasitol 2008; 94:1426-7. [DOI: 10.1645/ge-1630.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 04/14/2008] [Indexed: 11/10/2022] Open
|
26
|
Alvarez-Pellitero P. Fish immunity and parasite infections: from innate immunity to immunoprophylactic prospects. Vet Immunol Immunopathol 2008; 126:171-98. [DOI: 10.1016/j.vetimm.2008.07.013] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/22/2008] [Accepted: 07/25/2008] [Indexed: 10/21/2022]
|
27
|
Dios S, Novoa B, Buonocore F, Scapigliati G, Figueras A. Genomic Resources for Immunology and Disease of Salmonid and Non-Salmonid Fish. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802325484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Tonteri A, Vasemägi A, Lumme J, Primmer CR. Use of differential expression data for identification of novel immune relevant expressed sequence tag-linked microsatellite markers in Atlantic salmon (Salmo salar L.). Mol Ecol Resour 2008; 8:1486-90. [PMID: 21586084 DOI: 10.1111/j.1755-0998.2008.02317.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the large number of genes contributing to the immune response, wildlife immunogenetic studies have tended to focus mostly on the major histocompatibility complex-related genes. Here, we utilized previously published microarray and competitive RNA hybridization information to identify 3750 immune relevant Atlantic salmon (Salmo salar) expressed sequence tags. We then identified those expressed sequence tags containing microsatellites and subsequently designed 48 primer pairs and tested them for polymorphism in Atlantic salmon. Altogether, 16 polymorphic markers were characterized, with allele numbers ranging from two to 18, and these 16 loci were further tested in five other salmonid species.
Collapse
Affiliation(s)
- A Tonteri
- Department of Biology, University of Turku, 20014 Turku, Finland, Department of Biology, University of Oulu, 90014 Oulu, Finland
| | | | | | | |
Collapse
|
29
|
Wang C, Zhang XH, Jia A, Chen J, Austin B. Identification of immune-related genes from kidney and spleen of turbot, Psetta maxima (L.), by suppression subtractive hybridization following challenge with Vibrio harveyi. JOURNAL OF FISH DISEASES 2008; 31:505-514. [PMID: 18577100 DOI: 10.1111/j.1365-2761.2008.00914.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Suppression subtractive hybridization was used to investigate the response of turbot, Psetta maxima (L.), to Vibrio harveyi, by using a cDNA library constructed from artificially infected turbot kidney and spleen mRNA. Forty-nine expressed sequence tags were obtained. Several immune system genes were identified, including a major histocompatibility complex (MHC) class Ia gene and a heat shock protein 70 gene. Some signalling molecules were also present in the cDNA libraries, including src-family tyrosine kinase SCK, sgk-1 serine-threonine protein kinase and amyloid precursor-like protein 2. The full length of MHC class Ia cDNA was cloned from turbot cDNA by rapid amplification of cDNA ends polymerase chain reaction. The nucleotide sequence of turbot MHC class Ia has been submitted to GenBank with accession number EF032639. The turbot MHC class Ia cDNA has an open reading frame encoding 354 amino acids, and the deduced amino acid sequence of turbot MHC class Ia has 68%, 54%, 51%, 52%, 57%, 33%, 29% and 29% identities to those of olive flounder, medaka, rainbow trout, Atlantic cod, tiger puffer, chicken, mouse and human, respectively. Quantitative reverse transcriptase-PCR was performed for the MHC class Ia gene, and it was revealed that the expression level of the MHC class Ia gene in V. harveyi-challenged turbot increased to fourfold that of the controls.
Collapse
Affiliation(s)
- C Wang
- Department of Marine Biology, Ocean University of China, Qingdao, China
| | | | | | | | | |
Collapse
|
30
|
Bakke TA, Cable J, Harris PD. The biology of gyrodactylid monogeneans: the "Russian-doll killers". ADVANCES IN PARASITOLOGY 2007; 64:161-376. [PMID: 17499102 DOI: 10.1016/s0065-308x(06)64003-7] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article reviews the history of gyrodactylid research focussing on the unique anatomy, behaviour, ecology and evolution of the viviparous forms while identifying gaps in our knowledge and directions for future research. We provide the first summary of research on the oviparous gyrodactylids from South American catfish, and highlight the plesiomorphic characters shared by gyrodactylids and other primitive monogeneans. Of these, the most important are the crawling, unciliated larva and the spike sensilla of the cephalic lobes. These characters allow gyrodactylids to transfer between hosts at any stage of the life cycle, without a specific transmission stage. We emphasise the importance of progenesis in shaping the evolution of the viviparous genera and discuss the relative extent of progenesis in the different genera. The validity of the familial classification is discussed and we conclude that the most significant division within the family is between the oviparous and the viviparous genera. The older divisions into Isancistrinae and Polyclithrinae should be allowed to lapse. We discuss approaches to the taxonomy of gyrodactylids, and we emphasise the importance of adequate morphological and molecular data in new descriptions. Host specificity patterns in gyrodactylids are discussed extensively and we note the importance of host shifts, revealed by molecular data, in the evolution of gyrodactylids. To date, the most closely related gyrodactylids have not been found on closely related hosts, demonstrating the importance of host shifts in their evolution. The most closely related species pair is that of G. salaris and G. thymalli, and we provide an account of the patterns of evolution taking place in different mitochondrial clades of this species complex. The host specificity of these clades is reviewed, demonstrating that, although each clade has its preferred host, there is a range of specificity to different salmonids, providing opportunities for complex patterns of survival and interbreeding in Scandinavia. At the same time, we identify trends in systematics and phylogeny relevant to the G. salaris epidemics on Atlantic salmon in Norway, which can be applied more generally to parasite epidemiology and evolution. Although much of gyrodactylid research in the last 30 years has been directed towards salmonid parasites, there is great potential in using other experimental systems, such as the gyrodactylids of poeciliids and sticklebacks. We also highlight the role of glacial lakes and modified river systems during the ice ages in gyrodactylid speciation, and suggest that salmon infecting clades of G. salaris first arose from G. thymalli in such lakes, but failed to spread fully across Scandinavia before further dispersal was ended by rising sea levels. This dispersal has been continued by human activity, leading to the appearance of G. salaris as a pathogen in Norway. We review the history and current status of the epidemic, and current strategies for elimination of the parasite from Norway. Finally, we consider opportunities for further spread of the parasite within and beyond Europe.
Collapse
Affiliation(s)
- T A Bakke
- Department of Zoology, Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway
| | | | | |
Collapse
|