1
|
Myxozoan parasites vary in river herring according to life history stage and habitat. Parasitol Res 2021; 120:3709-3723. [PMID: 34599358 DOI: 10.1007/s00436-021-07329-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Anadromous river herring have declined in many parts of their range, leading to fisheries management efforts to help repopulate this species by improving connectivity of rivers and restoring populations by fish transfers. With data lacking on parasites in these species, this study sought to better understand myxozoans across various life stages and habitats in river herring populations in New Jersey, USA. We compared fish from riverine habitats during early-life growth and adults returning to spawn, marine-phase fish, and landlocked Alewife populations. Three myxozoan species were identified in young-of-the-year (YOY) anadromous river herring, including Kudoa clupeidae in the skeletal musculature, Myxobolus mauriensis in the rib cartilage, and an uncharacterized coelozoic myxozoan within the lumen of mesonephric tubules. In YOY river herring, Blueback Herring were 2 times more likely to be infected by K. clupeidae than Alewife (p = 0.019) and in the Maurice River, fish were 4 times more likely to be infected with M. mauriensis than fish from Great Egg Harbor River (p = 0.000) and 11 times more likely than the Delaware River (p = 0.001). Spawning adult river herring were infected with a previously undescribed myxozoan parasite infecting the kidney. Sequencing the 18S rDNA indicated this species is closely related to Ortholinea species. Myxobolus mauriensis and the Ortholinea-like species were absent from marine-phase river herring indicating that infections were linked to river environments occurring during early-life growth and spawning, respectively. No myxozoans were present in landlocked Alewife, showing that similar infections occurring in rivers were absent in lake environments in the region.
Collapse
|
2
|
Defo MA, Mercier L, Beauvais C, Brua RB, Tétreault G, Fontaine A, Couture P, Verreault J, Houde M. Time-dependent biological responses of juvenile yellow perch (Perca flavescens) exposed in situ to a major urban effluent. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112483. [PMID: 34237640 DOI: 10.1016/j.ecoenv.2021.112483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Municipal wastewater treatment plant (WWTP) effluents are significant sources of organic and inorganic pollutants to aquatic ecosystems. Several studies have shown that the health of aquatic organisms can be adversely impacted following exposure to these complex chemical mixtures. The objective of this study was to examine the effects of in situ exposure in the St. Lawrence River (QC, Canada) of juvenile yellow perch (Perca flavescens) to a major WWTP effluent. Perch were caged at a reference site in the St. Lawrence River and downstream of a WWTP effluent-influenced site for one, three, and six weeks. Fish kept in controlled laboratory setting were also examined at the beginning of the experiment to evaluate the potential effect of caging on fish. Liver metabolites and gill oxidative stress biomarkers as well as body condition of perch were investigated at four time points (zero, one, three, and six weeks). Nitrogen (δ15N) and carbon (δ13C) stable isotopes as well as tissue concentrations of halogenated flame retardants and trace metals were also analyzed. Results indicated that body condition of perch caged in the effluent increased after three and six weeks of exposure compared to that of reference fish. Perch caged at the WWTP effluent-influenced site also had higher muscle δ13C and slightly depleted muscle δ15N after three and six weeks of exposure, suggesting differences in sewage-derived nutrient assimilation between sites. Concentrations of Σ34 polybrominated diphenyl ether (PBDE) were 2-fold greater in perch exposed downstream of the WWTP compared to those caged at the reference site. Metal concentrations in kidney of perch after three weeks of exposure were significantly lower at the effluent-influenced site. Kidney concentrations of Cd, Cu, Se, As, Zn and Fe were, however, higher after six weeks of exposure, supporting that metal accumulation is time- and element-specific. The metabolomes of perch from the effluent-influenced and reference sites were similar, but were distinct from the laboratory control fish, suggesting a caging effect on fish. Seven liver metabolites (glucose, malate, fumarate, glutamate, creatinine, histamine, and oxypurinol) were significantly more abundant in perch from cages than in the laboratory control perch. The combination of metabolomics and physiological variables provides a powerful tool to improve our understanding of the mechanisms of action of complex environmental pollutant mixtures in wild fish.
Collapse
Affiliation(s)
- Michel A Defo
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill St, Montreal, QC H2Y 2E7, Canada.
| | - Laurie Mercier
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill St, Montreal, QC H2Y 2E7, Canada
| | - Conrad Beauvais
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill St, Montreal, QC H2Y 2E7, Canada
| | - Robert B Brua
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, 11 Innovation Blvd, Saskatoon, SK S7N 3H5, Canada
| | - Gerald Tétreault
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, ON L7S 1A1, Canada
| | - Anthony Fontaine
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9, Canada
| | - Patrice Couture
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9, Canada
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill St, Montreal, QC H2Y 2E7, Canada
| |
Collapse
|
3
|
Simbula G, Moltedo G, Catalano B, Martuccio G, Sebbio C, Onorati F, Stellati L, Bissattini AM, Vignoli L. Biological responses in pesticide exposed lizards (Podarcis siculus). ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1017-1028. [PMID: 34176071 PMCID: PMC8295152 DOI: 10.1007/s10646-021-02440-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 05/13/2023]
Abstract
The release of contaminants as herbicides, fungicides and insecticides into the environment has been listed as one of the six major contributors to the global decline of reptiles. Although reptiles may face severe risk from contaminants due to their ecology and physiology, they are currently less studied than other vertebrate groups. In the present work, we investigated if and how different types of field treatment (conventional and organic) affected the health status of Italian wall lizard (Podarcis siculus) individuals in central Italy. We chose a multi-biomarker approach that evaluated the biological responses of lizards to the treatment by means of AChE activity in the nervous system, biotransformation enzymes activities and oxidative stress in the liver, micronuclei frequency measured in the erythrocytes, and rate of intestinal parasitic infection. Our findings showed evidence of effects of treatment in conventional areas and between sexes with significant oxidative stress due to hydroxyl radicals, that caused DNA damage. No difference of intestinal parasite infections was found among treatments. Podarcis siculus seems to be a good bioindicator in ecotoxicological studies and potentially in risk assessment of pesticides, although further analyses in laboratory and in the field are needed to achieve more accurate quantification of specific pesticide effects in relation to known exposure history and to understand if other mechanisms were involved in the toxicity and detoxification process of pesticides for this species.
Collapse
Affiliation(s)
- Giulia Simbula
- Dipartimento di Scienze, Università Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy.
| | - Ginevra Moltedo
- Istituto Superiore per la Ricerca e la Protezione Ambientale - ISPRA, Via di Castel Romano, 100, Rome, Italy
| | - Barbara Catalano
- Istituto Superiore per la Ricerca e la Protezione Ambientale - ISPRA, Via di Castel Romano, 100, Rome, Italy
| | - Giacomo Martuccio
- Istituto Superiore per la Ricerca e la Protezione Ambientale - ISPRA, Via di Castel Romano, 100, Rome, Italy
| | - Claudia Sebbio
- Istituto Superiore per la Ricerca e la Protezione Ambientale - ISPRA, Via di Castel Romano, 100, Rome, Italy
| | - Fulvio Onorati
- Istituto Superiore per la Ricerca e la Protezione Ambientale - ISPRA, Via di Castel Romano, 100, Rome, Italy
| | - Luca Stellati
- Dipartimento di Scienze, Università Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| | | | - Leonardo Vignoli
- Dipartimento di Scienze, Università Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| |
Collapse
|
4
|
Marcogliese DJ, Cone DK. Myxozoan Communities in Two Cyprinid Fishes from Mesotrophic and Eutrophic Rivers. J Parasitol 2021; 107:39-47. [PMID: 33535231 DOI: 10.1645/20-76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Few studies have examined community structure among myxozoan species in fish. Herein myxozoan communities are described from 2 cyprinid species, the spottail shiner (Notropis hudsonius) and the common shiner (Luxilus cornutus), from mesotrophic and eutrophic localities in rivers in southwestern Quebec, Canada. Four myxozoan species were found, and total prevalence ranged from 60 to 86.7% in spottail shiners at 4 localities along the Richelieu River. Component species richness ranged from 2 to 4 and mean infracommunity richness from 0.87 to 1.47. Prevalence, component species richness, and infracommunity species richness in the spottail shiner were comparable to those from other localities in the Great Lakes and St. Lawrence River that were exposed to municipal effluents. Nine myxozoan species were found in common shiners from the Bras d'Henri micro-watershed. Component species richness varied from 6 to 8 at 4 localities, with total prevalence being 100% at all localities except 1, where it was 80%. Mean infracommunity richness ranged from 1.73 to 2.27. Prevalence, component species richness, and infracommunity species richness in the common shiner from the Bras d'Henri micro-watershed were among the highest observed for myxozoan communities from any host species to date. It is concluded that moderate levels of eutrophication are sufficient to generate species-rich communities of myxozoan parasites in fishes.
Collapse
Affiliation(s)
- David J Marcogliese
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, St. Lawrence Centre, 105 McGill Street, 7th floor, Montreal, Quebec H2Y 2E7, Canada; and St. Andrews Biological Station, 125 Marine Science Drive, St. Andrews, New Brunswick E5B 0E4, Canada
| | - David K Cone
- 83 Rhodenizer Lake Road, Dayspring, Nova Scotia B4V 5R7, Canada
| |
Collapse
|
5
|
Rehberger K, Wernicke von Siebenthal E, Bailey C, Bregy P, Fasel M, Herzog EL, Neumann S, Schmidt-Posthaus H, Segner H. Long-term exposure to low 17α-ethinylestradiol (EE2) concentrations disrupts both the reproductive and the immune system of juvenile rainbow trout, Oncorhynchus mykiss. ENVIRONMENT INTERNATIONAL 2020; 142:105836. [PMID: 32563011 DOI: 10.1016/j.envint.2020.105836] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Estrogenic endocrine disrupting compounds (EEDCs), such as ethinylestradiol (EE2), are well studied for their impact on the reproductive system of fish. EEDCs may also impact the immune system and, as a consequence, the disease susceptibility of fish. It is currently not yet known whether the low concentrations of EEDCs that are able to disrupt the reproductive system of trout are effective in disrupting the immune system and the fish host resistance towards pathogens, too, or whether such immunodisruptive effects would occur only at higher EEDC concentrations. Therefore, in the present study we compare the effect thresholds of low 17α-ethinylestradiol concentrations (1.5 and 5.5 EE2 ng/L) on the reproductive system, the immune system, the energy expenditures and the resistance of juvenile rainbow trout (Oncorhynchus mykiss) against the parasite Tetracapsuloides bryosalmonae - the etiological agent of proliferative kidney disease (PKD) of salmonids. The parasite infection was conducted without injection and under low pathogen exposure concentrations. The disease development was followed over 130 days post infection - in the presence or absence of EE2 exposure. The results show that the long-term EE2 exposure affected, at both concentrations, reproductive parameters like the mRNA levels of hepatic vitellogenin and estrogen receptors. At the same concentrations, EE2 exposure modulated the immune parameters: mRNA levels of several immune genes were altered and the parasite intensity as well as the disease severity (histopathology) were significantly reduced in EE2-exposed fish compared to infected control fish. The combination of EE2 exposure and parasite infection was energetically costly, as indicated by the decreased values of the swim tunnel respirometry. Although further substantiation is needed, our findings suggest that EE2 exerts endocrine disruptive and immunomodulating activities at comparable effect thresholds, since reproductive and immune parameters were affected by the same, low EE2 concentrations.
Collapse
Affiliation(s)
- Kristina Rehberger
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | | | - Christyn Bailey
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Patrick Bregy
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Melanie Fasel
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Elio L Herzog
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Silvia Neumann
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Heike Schmidt-Posthaus
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Liu T, Wei WY, Wang KY, Yang Q, Wang EL. Pathological and immunological analyses of Thelohanellus kitauei (Myxozoa:Myxosporea) infection in the scattered mirror carp, Cyprinus carpio. Sci Rep 2019; 9:20014. [PMID: 31882981 PMCID: PMC6934683 DOI: 10.1038/s41598-019-56752-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/04/2019] [Indexed: 11/09/2022] Open
Abstract
Thelohanellus kitauei is a spore-forming myxosporean parasite prevalent in scattered mirror carp (Cyprinus carpio) that generates numerous cysts in the intestine and causes mass mortality in fish. To investigate the infection and mortality induced by T. kitauei in pond-reared farms in Luo-Jiang (104°51’N, 31°31’E), southwest China, morphological and molecular analyses of infected fish were conducted. Natural and specific immune indicators were further evaluated to determine the immunological effects of response to parasitic infection. The infectious parasite was identified as Thelohanellus kitauei based on morphological, 18S rDNA and infectious characteristics. Scattered mirror carp was determined as the specific intermediate host of the parasite. However, T. kitauei still caused considerable damage to the fish, in particular, injury and blockage of the intestines, resulting in malnutrition and even death. The mature spores of T. kitauei colonize the intestinal submucosa of carp and form cysts of various sizes that block the intestinal tract and release spores into the enteric cavity upon rupture, leading to the next phase of T. kitauei growth. Moreover, T. kitauei-infected carp showed weaker innate immunity. IgM is involved in the fight against parasitic infection while cytokines, such as IL-6, IL-1β and TNF-α, had an impact on infection processes. To our knowledge, this is the first report to show that T. kitauei infects and causes death in scattered mirror carp. Our collective findings from systematic pathology, morphology and immunology experiments provide a foundation for further research on infections by this type of parasite and development of effective treatment strategies.
Collapse
Affiliation(s)
- Tao Liu
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Cheng'du, 611134, Sichuan, P.R. China
| | - Wen-Yan Wei
- China Institute of fisheries of chengdu agriculture and forestry academy, Cheng du, 610000, China
| | - Kai-Yu Wang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Cheng'du, 611134, Sichuan, P.R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng'du, 611134, Sichuan, P.R. China.
| | - Qian Yang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Cheng'du, 611134, Sichuan, P.R. China
| | - Er-Long Wang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Cheng'du, 611134, Sichuan, P.R. China
| |
Collapse
|
7
|
Schall MK, Blazer VS, Walsh HL, Smith GD, Wertz T, Wagner T. Spatial and temporal variability of myxozoan parasite, Myxobolus inornatus, prevalence in young of the year smallmouth bass in the Susquehanna River Basin, Pennsylvania. JOURNAL OF FISH DISEASES 2018; 41:1689-1700. [PMID: 30117566 DOI: 10.1111/jfd.12878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
A myxozoan parasite, Myxobolus inornatus, is one disease agent identified in young of the year (YOY) smallmouth bass in the Susquehanna River Basin, Pennsylvania. We investigated spatial and temporal variability in M. Inornatus prevalence across the Susquehanna River Basin and at several out-of-basin sites. We examined potential land use drivers of M. Inornatus prevalence including agricultural and developed land use. In 1,267 YOY smallmouth bass collected from 32 sites during 2013-2016, M. Inornatus was documented in 43.6% of samples. Among-site variability in parasite prevalence was greater than among-year variability. The effect of agricultural land use on M. Inornatus prevalence had a high probability of being positively correlated at multiple spatial scales (probability of positive effect > 0.80). The effect of developed land use on M. Inornatus prevalence had a relatively high probability of being negatively correlated at multiple spatial scales (probability of negative effect > 0.70). Our results suggest that land use practices could be related to M. Inornatus infection of smallmouth bass. Further study will be necessary to determine whether disease dynamics are a consequence of effects on the host, alterations of instream habitat mediating invertebrate host dynamics and/or survival and dispersal of the parasite infective stage.
Collapse
Affiliation(s)
- Megan K Schall
- Intercollege Graduate Degree Program in Ecology, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, Pennsylvania
| | - Vicki S Blazer
- U.S. Geological Survey, Fish Health Branch, Leetown Science Center, Kearneysville, West Virginia
| | - Heather L Walsh
- West Virginia University Research Corporation, Morgantown, West Virginia
| | | | - Timothy Wertz
- Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania
| | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
8
|
Rolls RJ, Heino J, Ryder DS, Chessman BC, Growns IO, Thompson RM, Gido KB. Scaling biodiversity responses to hydrological regimes. Biol Rev Camb Philos Soc 2017; 93:971-995. [DOI: 10.1111/brv.12381] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Robert J. Rolls
- Institute for Applied Ecology; University of Canberra; Canberra ACT 2601 Australia
- School of Environmental and Rural Science; University of New England; Armidale New South Wales 2351 Australia
| | - Jani Heino
- Finnish Environment Institute, Natural Environment Centre, Biodiversity; Oulu Finland
| | - Darren S. Ryder
- School of Environmental and Rural Science; University of New England; Armidale New South Wales 2351 Australia
| | | | - Ivor O. Growns
- School of Environmental and Rural Science; University of New England; Armidale New South Wales 2351 Australia
| | - Ross M. Thompson
- Institute for Applied Ecology; University of Canberra; Canberra ACT 2601 Australia
| | - Keith B. Gido
- Division of Biology; Kansas State University; Manhattan KS U.S.A
| |
Collapse
|
9
|
Reinling J, Houde M, Verreault J. Environmental exposure to a major urban wastewater effluent: Effects on the energy metabolism of northern pike. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:131-140. [PMID: 28837883 DOI: 10.1016/j.aquatox.2017.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Municipal wastewater effluents (MWWEs) consist of dynamic and complex mixtures of chemical and biological compounds that can alter the health of exposed aquatic organisms. Disturbance of energy metabolism has been reported in fish exposed to MWWEs. However, there is a scarcity of knowledge on the physiological events leading to perturbation of energy balance and thyroid regulation, and associated lipid metabolism. The objective of the present study was to use a set of biomarkers, from gene transcription to body condition, to investigate the effects of a chronic environmental exposure to a major primary MWWE on fatty acid metabolism and thyroid hormone levels in northern pike (Esox lucius) collected from the St. Lawrence River near Montreal (QC, Canada). The exposure of pike to MWWE was examined through determination of a suite of persistent and bioaccumulative halogenated flame retardants in liver as this effluent is a known regional source for these chemicals. Greater hepatic concentrations of polybrominated diphenyl ethers (PBDEs, range: 29.6-465ng/g w.w. and 88.8-823ng/g w.w. in females and males, respectively) and other halogenated flame retardants (e.g., dechlorane-related compounds) were determined in fish collected downstream of the MWWE's point of discharge relative to the upstream site. This exposure in male pike was associated with decreased acyl-coA oxidase (acox1) and fatty acid synthase (fasn) mRNA levels as well as a decreased acyl-coA oxidase (ACOX) activity in liver. In female pike, MWWE exposure was associated with lower circulating free and total triiodothyronine (T3) levels and a tendency for greater total lipid percentages in liver. Present findings provide evidence that chronic exposure of a top predator fish to MWWE can be related to gender-specific effects on fatty acid metabolism and thyroid hormone homeostasis, and highlight the need for further investigation.
Collapse
Affiliation(s)
- Julie Reinling
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Magali Houde
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada.
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| |
Collapse
|
10
|
Sures B, Nachev M, Selbach C, Marcogliese DJ. Parasite responses to pollution: what we know and where we go in 'Environmental Parasitology'. Parasit Vectors 2017; 10:65. [PMID: 28166838 PMCID: PMC5294906 DOI: 10.1186/s13071-017-2001-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/24/2017] [Indexed: 01/13/2023] Open
Abstract
Environmental parasitology deals with the interactions between parasites and pollutants in the environment. Their sensitivity to pollutants and environmental disturbances makes many parasite taxa useful indicators of environmental health and anthropogenic impact. Over the last 20 years, three main research directions have been shown to be highly promising and relevant, namely parasites as accumulation indicators for selected pollutants, parasites as effect indicators, and the role of parasites interacting with established bioindicators. The current paper focuses on the potential use of parasites as indicators of environmental pollution and the interactions with their hosts. By reviewing some of the most recent findings in the field of environmental parasitology, we summarize the current state of the art and try to identify promising ideas for future research directions. In detail, we address the suitability of parasites as accumulation indicators and their possible application to demonstrate biological availability of pollutants; the role of parasites as pollutant sinks; the interaction between parasites and biomarkers focusing on combined effects of parasitism and pollution on the health of their hosts; and the use of parasites as indicators of contaminants and ecosystem health. Therefore, this review highlights the application of parasites as indicators at different biological scales, from the organismal to the ecosystem.
Collapse
Affiliation(s)
- Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, D-45141, Essen, Germany.,Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - Milen Nachev
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, D-45141, Essen, Germany.
| | - Christian Selbach
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - David J Marcogliese
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, St. Lawrence Centre, 105 McGill Street, 7th floor, Montreal, QC, H2Y 2E7, Canada.,St. Andrews Biological Station, Fisheries and Oceans Canada, 531 Brandy Cove Road, St, Andrews, NB, E5B 2 L9, Canada
| |
Collapse
|
11
|
Wünnemann H, Holzer AS, Pecková H, Bartošová-Sojková P, Eskens U, Lierz M. Repatriation of an old fish host as an opportunity for myxozoan parasite diversity: The example of the allis shad, Alosa alosa (Clupeidae), in the Rhine. Parasit Vectors 2016; 9:505. [PMID: 27628643 PMCID: PMC5024467 DOI: 10.1186/s13071-016-1760-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/16/2016] [Indexed: 11/18/2022] Open
Abstract
Background Wildlife repatriation represents an opportunity for parasites. Reintroduced hosts are expected to accumulate generalist parasites via spillover from reservoir hosts, whereas colonization with specialist parasites is unlikely. We address the question of how myxozoan parasites, which are characterized by a complex life-cycle alternating between annelids and fish, can invade a reintroduced fish species and determine the impact of a de novo invasion on parasite diversity. We investigated the case of the anadromous allis shad, Alosa alosa (L.), which was reintroduced into the Rhine approximately 70 years after its extinction in this river system. Methods We studied parasites belonging to the Myxozoa (Cnidaria) in 196 allis shad from (i) established populations in the French rivers Garonne and Dordogne and (ii) repatriated populations in the Rhine, by screening the first adults returning to spawn in 2014. Following microscopical detection of myxozoan infections general myxozoan primers were used for SSU rDNA amplification and sequencing. Phylogenetic analyses were performed and cloned sequences were analyzed from individuals of different water sources to better understand the diversity and population structure of myxozoan isolates in long-term coexisting vs recently established host-parasite systems. Results We describe Hoferellus alosae n. sp. from the renal tubules of allis shad by use of morphological and molecular methods. A species-specific PCR assay determined that the prevalence of H. alosae n. sp. is 100 % in sexually mature fish in the Garonne/Dordogne river systems and 22 % in the first mature shad returning to spawn in the Rhine. The diversity of SSU rDNA clones of the parasite was up to four times higher in the Rhine and lacked a site-specific signature of SNPs such as in the French rivers. A second myxozoan, Ortholinea sp., was detected exclusively in allis shad from the Rhine. Conclusions Our data demonstrate that the de novo establishment of myxozoan infections in rivers is slow but of great genetic diversity, which can only be explained by the introduction of spores from genetically diverse sources, predominantly via straying fish or by migratory piscivorous birds. Long-term studies will show if and how the high diversity of a de novo introduction of host-specific myxozoans succeeds into the establishment of a local successful strain in vertebrate and invertebrate hosts. Graphical Abstract ![]()
Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1760-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hannah Wünnemann
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University, Frankfurter Str. 91, Giessen, 35392, Germany.
| | - Astrid Sybille Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Hana Pecková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Ulrich Eskens
- The Hessen State Laboratory, Schubertstraße 60, Giessen, 35392, Germany
| | - Michael Lierz
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University, Frankfurter Str. 91, Giessen, 35392, Germany
| |
Collapse
|
12
|
Parasite community similarity in Athabasca River trout-perch (Percopsis omiscomaycus) varies with local-scale land use and sediment hydrocarbons, but not distance or linear gradients. Parasitol Res 2016; 115:3853-66. [PMID: 27314231 DOI: 10.1007/s00436-016-5151-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
Parasite communities have been shown to be structured by processes at scales ranging from continental to microhabitat, but few studies have simultaneously considered spatial and environmental variables, measured at different scales, to assess their relative influences on parasite abundance, species richness, and community similarity. Parasite abundance, diversity, and community similarity in Athabasca River trout-perch (Percopsis omiscomaycus) were examined in relation to water quality, substrate profile, metal and organic compound levels in water and sediment, and landscape use patterns at different scales, as well as distance among sites and upstream-downstream position along the river. Although species richness did not differ among sites, there were significant differences in abundance of individual taxa and community structure. We observed a shift from communities dominated by larval trematodes Diplostomum spp. to domination by gill monogeneans Urocleidus baldwini, followed by a reversion further downstream. Variations in the abundance of these taxa and of overall community similarity were strongly correlated with sediment hydrocarbons (alkanes and polycyclic aromatic hydrocarbons (PAHs)) as well as landscape use within 5 km of study sites. No correlations were noted with any other predictors, indicating that parasite populations and communities in this system were likely primarily influenced by habitat level and landscape-scale filters, rather than larger-scale processes such as distance decay or river continuum effects.
Collapse
|
13
|
Marcogliese DJ. The Distribution and Abundance of Parasites in Aquatic Ecosystems in a Changing Climate: More than Just Temperature. Integr Comp Biol 2016; 56:611-9. [PMID: 27252206 DOI: 10.1093/icb/icw036] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
SynopsisEvaluation of the potential response of parasites of aquatic organisms to climate change illustrates the complexity of host-parasite relationships and the difficulty of making accurate predictions for these biological systems. In recent years, trematodes have proven to be a useful model to evaluate potential effects of climate change on host-parasite systems. In the first part of this article, I review and summarize results from the recent use of trematodes and specifically their early life cycle stages in testing effects of temperature and other climate-driven variables on life history traits and host-parasite interactions. However, metazoan parasites in aquatic systems respond directly to changes in temperature and also to changes in other climate-driven abiotic parameters that are mediated directly on the parasite or indirectly through changes in the distribution and abundance of their hosts. In addition, though most research to date has focused on the effects of temperature, it is imperative to explore effects of precipitation, eutrophication, acidification, water levels and flow rates, habitat loss and fragmentation, extreme weather, and other forms of anthropogenic interference on the distribution of both hosts and parasites, as these biotic and abiotic factors and stressors do not operate independently of climate. In the second part of this article, the effects of some of these factors derived from our own field studies, as well as other investigations both in the laboratory and the field, on the distribution, abundance, and community structure of parasites in aquatic ecosystems will be reviewed and discussed.
Collapse
Affiliation(s)
- David J Marcogliese
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, St. Lawrence Centre, 105 McGill, 7th floor, Montreal, Quebec, Canada H2Y 2E7
| |
Collapse
|
14
|
Marcogliese DJ, Locke SA, Gélinas M, Gendron AD. Variation in Parasite Communities in Spottail Shiners (Notropis hudsonius) Linked with Precipitation. J Parasitol 2015; 102:27-36. [PMID: 26465386 DOI: 10.1645/12-31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The Richelieu River, Quebec, is a highly-regulated waterway subject to numerous anthropogenic influences from municipal effluents and agricultural activities. Parasite communities in 234 spottail shiners (Notropis hudsonius) were examined from 4 localities in late spring 2003 and 2004. Component species richness varied between 15 and 18 species in 2003 but declined to 9 to 13 in 2004, while total parasite abundance was consistently lower in 2003. Parasite component community similarity among localities could not be directly linked to available upstream water quality measurements or anthropogenic activity and was best explained by precipitation. Total precipitation in May 2003 was approximately 40% more than in May 2004, presumably altering patterns of runoff, river flow rates, and water quality. This study suggests that fish parasite species composition and richness in the Richelieu River are influenced by environmental parameters which in turn ultimately are driven by a combination of climatic conditions and anthropogenic activities in the watershed.
Collapse
Affiliation(s)
- David J Marcogliese
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, St. Lawrence Centre, 105 McGill, 7th Floor Montreal, QC, Canada H2Y 2E7, Canada
| | - Sean A Locke
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, St. Lawrence Centre, 105 McGill, 7th Floor Montreal, QC, Canada H2Y 2E7, Canada
| | - Malorie Gélinas
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, St. Lawrence Centre, 105 McGill, 7th Floor Montreal, QC, Canada H2Y 2E7, Canada
| | - Andrée D Gendron
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, St. Lawrence Centre, 105 McGill, 7th Floor Montreal, QC, Canada H2Y 2E7, Canada
| |
Collapse
|
15
|
Marcogliese DJ, Blaise C, Cyr D, de Lafontaine Y, Fournier M, Gagné F, Gagnon C, Hudon C. Effects of a major municipal effluent on the St. Lawrence River: A case study. AMBIO 2015; 44:257-74. [PMID: 25416865 PMCID: PMC4392020 DOI: 10.1007/s13280-014-0577-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 10/19/2014] [Accepted: 11/01/2014] [Indexed: 05/05/2023]
Abstract
The St. Lawrence River (SLR) is the second largest waterway in North America. The discharge of the City of Montreal wastewater treatment plant (WWTP) represents the largest volume of treated wastewaters being released into the river. It also ranks as the largest sewage treatment plant of its kind in North America. Over the last decade, intensive multidisciplinary research has focused on assessing the impacts of Montreal wastewater effluents on the SLR. We describe the major findings of these investigations, including the determination of the fate of contaminants, bioaccumulation in fish and invertebrates, ecotoxicological measurements of aquatic animal health, evaluation of endocrine disruption, parasitism in fish, and combined effects of multiple stressors on the SLR. Impacts of the effluents from the WWTP on aquatic organisms from the SLR are both toxicological and ecological, demonstrating the need for an integrated view of the impacts of municipal effluents on aquatic ecosystems.
Collapse
Affiliation(s)
- David J Marcogliese
- Watershed Hydrology and Ecology Research Division, St. Lawrence Centre, Environment Canada, 105 McGill Street, Montreal, QC, H2Y 2E7, Canada,
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Arstikaitis J, Gagné F, Cyr DG. Exposure of fathead minnows to municipal wastewater effluent affects intracellular signaling pathways in the liver. Comp Biochem Physiol C Toxicol Pharmacol 2014; 164:1-10. [PMID: 24747326 DOI: 10.1016/j.cbpc.2014.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 12/12/2022]
Abstract
Municipal wastewater effluent can impact its receiving environment. In the St. Lawrence River, male fish living downstream from Montreal exhibit increased hepatic vitellogenin, intersex, delayed spermatogenesis and altered immune function. Few studies have examined genome-wide effects associated with municipal effluent exposure in fish to decipher the mechanisms of toxicity. The present objective was to identify hepatic cellular signaling pathways in fathead minnows following exposure to municipal wastewater effluent. Immature minnows were exposed for 21 days to either 0% (Control) or 20% municipal effluent, the highest concentration in the St. Lawrence River. Hepatic RNA was extracted and used to hybridize a fathead minnow oligonucleotide microarray containing approximately 15k gene sequences. A total of 1300 genes were differentially expressed, of which 309 genes had more than 2-fold change in expression level between control and MWWE-exposed fish. Of those, 118 were up-regulated and 191 were down-regulated. Altered genes grouped according to function, indicated effects on various signaling pathways, apoptosis, immune responses, and cellular metabolism. Pathway analysis software predicted at least 5 signaling pathways that were altered by treatment: cell adhesion, inflammation, various kinases, estrogen receptor signaling and WNT signaling. Various components of the canonical Wnt pathway were dramatically down-regulated, while several other genes involved in the non-canonical Wnt pathway, such as Wnt4, LRP6, and PPP2R5E, which are known to inhibit the canonical Wnt pathway, were increased. These results indicate that municipal wastewater effluent from Montreal can target and inhibit various signaling including those implicated in hepatic Wnt signaling pathway in fathead minnows.
Collapse
Affiliation(s)
- Jennifer Arstikaitis
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7,Canada
| | - François Gagné
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7,Canada; Centre Saint-Laurent, Environment Canada, Montreal, Québec H2Y 2E7, Canada
| | - Daniel G Cyr
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7,Canada.
| |
Collapse
|
17
|
Parasites as biological tags of marine, freshwater and anadromous fishes in North America from the tropics to the Arctic. Parasitology 2014; 142:68-89. [DOI: 10.1017/s0031182014000110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYParasites have been considered as natural biological tags of marine fish populations in North America for almost 75 years. In the Northwest Atlantic, the most studied species include Atlantic cod (Gadus morhua), Atlantic herring (Clupea harengus) and the redfishes (Sebastes spp.). In the North Pacific, research has centred primarily on salmonids (Oncorhynchus spp.). However, parasites have been applied as tags for numerous other pelagic and demersal species on both the Atlantic and Pacific coasts. Relatively few studies have been undertaken in the Arctic, and these were designed to discriminate anadromous and resident salmonids (Salvelinus spp.). Although rarely applied in fresh waters, parasites have been used to delineate certain fish stocks within the Great Lakes-St Lawrence River basin. Anisakid nematodes and the copepod Sphyrion lumpi frequently prove useful indicators in the Northwest Atlantic, while myxozoan parasites prove very effective on the coast and open seas of the Pacific Ocean. Relative differences in the ability of parasites to discriminate between fish stocks on the Pacific and Atlantic coasts may be due to oceanographic and bathymetric differences between regions. Molecular techniques used to differentiate populations and species of parasites show promise in future applications in the field.
Collapse
|
18
|
Scholz T, Choudhury A. Parasites of Freshwater Fishes In North America: Why So Neglected? J Parasitol 2014; 100:26-45. [DOI: 10.1645/13-394.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
19
|
Upstream-downstream gradient in infection levels by fish parasites: a common river pattern? Parasitology 2012; 140:266-74. [PMID: 23058079 DOI: 10.1017/s0031182012001527] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Physical habitat structure can influence the distribution and abundance of organisms. In rivers, stream drift, a common process originating from the unidirectional water flow, favours the displacement and downstream dispersion of invertebrates. This process could also generate a gradient in infection levels, leading to decreasing numbers of parasites per host as one moves upstream from the river mouth. We tested this hypothesis using 4 trematode species infecting the fish Gobiomorphus breviceps in the Manuherikia River (New Zealand). We analysed the abundance of each trematode infrapopulation as a function of distance from the river junction and fish size by generalized linear models. Our results supported the existence of a longitudinal gradient in trematode abundance along the river with a decreasing downstream-to-upstream continuum. This applied to 3 out of the 4 trematode species studied, suggesting that this might be a common pattern in river populations. Thus, the unidirectional river flow and a major process like drift in lotic systems, that influences the dynamics and distribution of invertebrate hosts, can also affect trematodes. Host properties like habitat preference, and parasite traits, particularly those related to transmission mode can influence the strength of the observed gradient, as may other environmental and biotic factors.
Collapse
|
20
|
Cone D, Marcogliese DJ. Description of a new species of myxozoan from Notropis hudsonius in the Great Lakes region of Canada. J Parasitol 2010; 96:1164-7. [PMID: 21158629 DOI: 10.1645/ge-2452.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Myxobolus burti n. sp. is described from striated muscle of Notropis hudsonius (Cyprinidae) collected from localities in Lake Superior, Lake Michigan, Lake Huron, Lake St. Claire, Lake Erie, Lake Ontario, and the St. Lawrence River. Myxobolus burti is intracellular, forming thin-walled, cigar-shaped plasmodia within striated muscle cells of the body. It exhibits disporoblastic, oval spores, approximately 10 µm long, 8 µm wide, and 6 µm thick, with a length-to-width ratio of 1.3 ∶ 1. They resemble most closely those of Myxobolus bellus Kudo, 1934, and Myxobolus mutabilis Kudo, 1934, but have polar capsules unequal in length (5.3 vs. 4.7 µm) and oblique filament coils. The new parasite was not encountered in routine examination of other small-bodied fishes at collection locations and thus looks to be specific to N. hudsonius. A comparative plate of similar species encountered during surveys of these fishes in the northeast is presented to contrast the uniqueness of the new species.
Collapse
Affiliation(s)
- David Cone
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
21
|
Horner D, Atkinson SD, Pratt DM, Marcquenski S, Bartholomew JL. Myxobolus notropis from emerald shiner, Notropis atherinoides Rafinesque, in Lake Superior. JOURNAL OF FISH DISEASES 2010; 33:279-282. [PMID: 19888924 DOI: 10.1111/j.1365-2761.2009.01109.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- D Horner
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|