1
|
Le Clec’h W, Chevalier FD, Jutzeler K, Anderson TJC. No evidence for schistosome parasite fitness trade-offs in the intermediate and definitive host. Parasit Vectors 2023; 16:132. [PMID: 37069704 PMCID: PMC10111729 DOI: 10.1186/s13071-023-05730-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/10/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND The trematode parasite Schistosoma mansoni uses an aquatic snail intermediate and a vertebrate definitive host to complete its life cycle. We previously showed that a key transmission trait-the number of cercariae larvae shed from infected Biomphalaria spp. snails-varies significantly within and between different parasite populations and is genetically controlled by five loci. We investigated the hypothesis that the success of parasite genotypes showing high propagative fitness in the intermediate snail host may be offset by lower reproductive fitness in the definitive vertebrate host. METHODS We investigated this trade-off hypothesis by selecting parasite progeny producing high or low number of larvae in the snail and then comparing fitness parameters and virulence in the rodent host. We infected inbred BALB/c mice using two Schistosoma mansoni parasite lines [high shedder (HS) and low shedder (LS) lines] isolated from F2 progeny generated by genetic crosses between SmLE (HS parent) and SmBRE (LS parent) parasites. We used the F3 progeny to infect two populations of inbred Biomphalaria glabrata snails. We then compared life history traits and virulence of these two selected parasite lines in the rodent host to understand pleiotropic effects of genes determining cercarial shedding in parasites infecting the definitive host. RESULTS HS parasites shed high numbers of cercariae, which had a detrimental impact on snail physiology (measured by laccase-like activity and hemoglobin rate), regardless of the snail genetic background. In contrast, selected LS parasites shed fewer cercariae and had a lower impact on snail physiology. Similarly, HS worms have a higher reproductive fitness and produced more viable F3 miracidia larvae than LS parasites. This increase in transmission is correlated with an increase in virulence toward the rodent host, characterized by stronger hepato-splenomegaly and hepatic fibrosis. CONCLUSIONS These experiments revealed that schistosome parasite propagative and reproductive fitness was positively correlated in intermediate and definitive host (positive pleiotropy). Therefore, we rejected our trade-off hypothesis. We also showed that our selected schistosome lines exhibited low and high shedding phenotype regardless of the intermediate snail host genetic background. .
Collapse
Affiliation(s)
- Winka Le Clec’h
- Host Parasite Interaction Program, Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, TX 78245 USA
| | - Frédéric D. Chevalier
- Host Parasite Interaction Program, Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, TX 78245 USA
| | - Kathrin Jutzeler
- Host Parasite Interaction Program, Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, TX 78245 USA
- UT Health, Microbiology, Immunology and Molecular Genetics, San Antonio, TX 78229 USA
| | - Timothy J. C. Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, TX 78245 USA
| |
Collapse
|
2
|
Differential Analysis of Key Proteins Related to Fibrosis and Inflammation in Soluble Egg Antigen of Schistosoma mansoni at Different Infection Times. Pathogens 2023; 12:pathogens12030441. [PMID: 36986363 PMCID: PMC10054402 DOI: 10.3390/pathogens12030441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Schistosomiasis is a major global health problem. Schistosomes secrete antigens into the host tissue that bind to chemokines or inhibit immune cell receptors, regulating the immune responses to allow schistosome development. However, the detailed mechanism of chronic schistosome infection-induced liver fibrosis, including the relationship between secreted soluble egg antigen (SEA) and hepatic stellate cell (HSC) activation, is still unknown. We used mass spectrometry to identify the SEA protein sequences from different infection weeks. In the 10th and 12th infection weeks, we focused on the SEA components and screened out the special protein components, particularly fibrosis- and inflammation-related protein sequences. Our results have identified heat shock proteins, phosphorylation-associated enzymes, or kinases, such as Sm16, GSTA3, GPCRs, EF1-α, MMP7, and other proteins linked to schistosome-induced liver fibrosis. After sorting, we found many special proteins related to fibrosis and inflammation, but studies proving their association with schistosomiasis infection are limited. Follow-up studies on MICOS, MATE1, 14-3-3 epsilon, and CDCP1 are needed. We treated the LX-2 cells with the SEA from the 8th, 10th, and 12th infection weeks to test HSC activation. In a trans-well cell model in which PBMCs and HSCs were co-cultured, the SEA could significantly induce TGF-β secretion, especially from the 12th week of infection. Our data also showed that TGF-β secreted by PBMC after the SEA treatment activates LX-2 and upregulates hepatic fibrotic markers α-SMA and collagen 1. Based on these results, the CUB domain-containing protein 1 (CDCP1) screened at the 12th infection week could be investigated further. This study clarifies the trend of immune mechanism variation in the different stages of schistosome infection. However, how egg-induced immune response transformation causes liver tissue fibrosis needs to be studied further.
Collapse
|
3
|
Skelly PJ, Da'dara AA. Schistosome secretomes. Acta Trop 2022; 236:106676. [PMID: 36113567 DOI: 10.1016/j.actatropica.2022.106676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Schistosomes are intravascular parasitic platyhelminths (blood flukes) that infect over 200 million people globally. Biomolecules secreted by the worms likely contribute to their ability to survive in the bloodstreams of immunocompetent hosts for many years. Here we review what is known about the protein composition of material released by the worms. Prominent among cercarial excretions/secretions (ES) is a ∼ 30 kDa serine protease called cercarial elastase (SmCE in Schistosoma mansoni), likely important in host invasion. Also prominent is a 117 amino acid non-glycosylated polypeptide (Sm16) that can impact several host cell-types to impinge on immunological outcomes. Similarly, components of the egg secretome (notably the 134 amino acid homodimeric glycoprotein "IL-4 inducing principle of schistosome eggs", IPSE, and the 225-amino acid monomeric T2 ribonuclease - omega-1) are capable of driving Th2-biased immune responses. A ∼36kDa chemokine binding glycoprotein SmCKBP, secreted by eggs, can negate the impact of several cytokines and can impede neutrophil migration. Of special interest is a disparate collection of classically cytosolic proteins that are surprisingly often identified in schistosome ES across life stages. These proteins, perhaps released as components of extracellular vesicles (EVs), include glycolytic enzymes, redox proteins, proteases and protease inhibitors, heat shock proteins, proteins involved in translation/turnover, histones, and others. Some such proteins may display "moonlighting" functions and, for example, impede blood clot formation around the worms. More prosaically, since several are particularly abundant soluble proteins, their appearance in the ES fraction may be indicative of worm damage ex vivo leading to protein leakage. Some bioactive schistosome ES proteins are in development as novel therapeutics against autoimmune, inflammatory, and other, non-parasitic, diseases.
Collapse
Affiliation(s)
- Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| | - Akram A Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
4
|
Yeh YT, Skinner DE, Criado-Hidalgo E, Chen NS, Garcia-De Herreros A, El-Sakkary N, Liu L, Zhang S, Kandasamy A, Chien S, Lasheras JC, del Álamo JC, Caffrey CR. Biomechanical interactions of Schistosoma mansoni eggs with vascular endothelial cells facilitate egg extravasation. PLoS Pathog 2022; 18:e1010309. [PMID: 35316298 PMCID: PMC8939816 DOI: 10.1371/journal.ppat.1010309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/26/2022] [Indexed: 12/03/2022] Open
Abstract
The eggs of the parasitic blood fluke, Schistosoma, are the main drivers of the chronic pathologies associated with schistosomiasis, a disease of poverty afflicting approximately 220 million people worldwide. Eggs laid by Schistosoma mansoni in the bloodstream of the host are encapsulated by vascular endothelial cells (VECs), the first step in the migration of the egg from the blood stream into the lumen of the gut and eventual exit from the body. The biomechanics associated with encapsulation and extravasation of the egg are poorly understood. We demonstrate that S. mansoni eggs induce VECs to form two types of membrane extensions during encapsulation; filopodia that probe eggshell surfaces and intercellular nanotubes that presumably facilitate VEC communication. Encapsulation efficiency, the number of filopodia and intercellular nanotubes, and the length of these structures depend on the egg’s vitality and, to a lesser degree, its maturation state. During encapsulation, live eggs induce VEC contractility and membranous structures formation in a Rho/ROCK pathway-dependent manner. Using elastic hydrogels embedded with fluorescent microbeads as substrates to culture VECs, live eggs induce VECs to exert significantly greater contractile forces during encapsulation than dead eggs, which leads to 3D deformations on both the VEC monolayer and the flexible substrate underneath. These significant mechanical deformations cause the VEC monolayer tension to fluctuate with the eventual rupture of VEC junctions, thus facilitating egg transit out of the blood vessel. Overall, our data on the mechanical interplay between host VECs and the schistosome egg improve our understanding of how this parasite manipulates its immediate environment to maintain disease transmission. Schistosomiasis, which infects over 200 million people, is a painful disease of poverty that is caused by inflammatory responses to the Schistosoma blood fluke’s eggs. To continue the parasite’s life cycle, eggs must escape the blood vessels and migrate through tissues of the host to the alimentary canal for exit into the environment. The biomechanical processes that help the immobile eggs to cross the blood vessel’s vascular endothelial cells (VECs) as the first step in this migration are not understood. We found that live but not dead eggs induce VECs to crawl over and encapsulate them. VECs in contact with live eggs make membranous extensions (filopodia) to explore the egg’s surface and also form long intercellular nanotubes to communicate with neighboring cells. VECs stimulate particular (Rho/ROCK) biochemical pathways to increase cell contractility and the forces generated are large enough to eventually break the junctions between cells and allow passage of the eggs into the underlying tissue. Our findings show how schistosome eggs activate and interact with VECs to initiate their escape from the bloodstream.
Collapse
Affiliation(s)
- Yi-Ting Yeh
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (YTY); (JCdA); (CRC)
| | - Danielle E. Skinner
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Ernesto Criado-Hidalgo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Natalie Shee Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Antoni Garcia-De Herreros
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Nelly El-Sakkary
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Lawrence Liu
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Shun Zhang
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Adithan Kandasamy
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle Washington, United States of America
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Juan C. Lasheras
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Juan C. del Álamo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle Washington, United States of America
- * E-mail: (YTY); (JCdA); (CRC)
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (YTY); (JCdA); (CRC)
| |
Collapse
|
5
|
Bi NN, Zhao S, Zhang JF, Cheng Y, Zuo CY, Yang GL, Yang K. Proteomics Investigations of Potential Protein Biomarkers in Sera of Rabbits Infected With Schistosoma japonicum. Front Cell Infect Microbiol 2022; 11:784279. [PMID: 35004354 PMCID: PMC8729878 DOI: 10.3389/fcimb.2021.784279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/26/2021] [Indexed: 12/05/2022] Open
Abstract
Schistosomiasis is a chronic parasitic disease that continues to be a pressing public health problem in many developing countries. The primary pathological damage from the disease is granuloma and fibrosis caused by egg aggregation, and early treatment can effectively prevent the occurrence of liver fibrosis. Therefore, it is very important to identify biomarkers that can be used for early diagnosis of Schistosoma japonicum infection. In this study, a label-free proteomics method was performed to observe the alteration of proteins before infection, 1 and 6 weeks after infection, and 5 and 7 weeks after treatment. A total of 10 proteins derived from S. japonicum and 242 host-derived proteins were identified and quantified as significantly changed. Temporal analysis was carried out to further analyze potential biomarkers with coherent changes during infection and treatment. The results revealed biological process changes in serum proteins compared to infection and treatment groups, which implicated receptor-mediated endocytosis, inflammatory response, and acute-phase response such as mannan-binding lectin serine peptidase 1, immunoglobulin, and collagen. These findings offer guidance for the in-depth analysis of potential biomarkers of schistosomiasis, host protein, and early diagnosis of S. japonicum and its pathogenesis. Data are available via ProteomeXchange with identifier PXD029635.
Collapse
Affiliation(s)
- Nian-Nian Bi
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Song Zhao
- National Health Commission (NHC) Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian-Feng Zhang
- National Health Commission (NHC) Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Ying Cheng
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chen-Yang Zuo
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Gang-Long Yang
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Kun Yang
- School of Public Health, Nanjing Medical University, Nanjing, China.,National Health Commission (NHC) Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| |
Collapse
|
6
|
Schistosoma mansoni α-N-acetylgalactosaminidase (SmNAGAL) regulates coordinated parasite movement and egg production. PLoS Pathog 2022; 18:e1009828. [PMID: 35025955 PMCID: PMC8791529 DOI: 10.1371/journal.ppat.1009828] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/26/2022] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
α-galactosidase (α-GAL) and α-N-acetylgalactosaminidase (α-NAGAL) are two glycosyl hydrolases responsible for maintaining cellular homeostasis by regulating glycan substrates on proteins and lipids. Mutations in the human genes encoding either enzyme lead to neurological and neuromuscular impairments seen in both Fabry- and Schindler/Kanzaki- diseases. Here, we investigate whether the parasitic blood fluke Schistosoma mansoni, responsible for the neglected tropical disease schistosomiasis, also contains functionally important α-GAL and α-NAGAL proteins. As infection, parasite maturation and host interactions are all governed by carefully-regulated glycosylation processes, inhibiting S. mansoni's α-GAL and α-NAGAL activities could lead to the development of novel chemotherapeutics. Sequence and phylogenetic analyses of putative α-GAL/α-NAGAL protein types showed Smp_089290 to be the only S. mansoni protein to contain the functional amino acid residues necessary for α-GAL/α-NAGAL substrate cleavage. Both α-GAL and α-NAGAL enzymatic activities were higher in females compared to males (p<0.05; α-NAGAL > α-GAL), which was consistent with smp_089290's female biased expression. Spatial localisation of smp_089290 revealed accumulation in parenchymal cells, neuronal cells, and the vitellaria and mature vitellocytes of the adult schistosome. siRNA-mediated knockdown (>90%) of smp_089290 in adult worms significantly inhibited α-NAGAL activity when compared to control worms (siLuc treated males, p<0.01; siLuc treated females, p<0.05). No significant reductions in α-GAL activities were observed in the same extracts. Despite this, decreases in α-NAGAL activities correlated with a significant inhibition in adult worm motility as well as in egg production. Programmed CRISPR/Cas9 editing of smp_089290 in adult worms confirmed the egg reduction phenotype. Based on these results, Smp_089290 was determined to act predominantly as an α-NAGAL (hereafter termed SmNAGAL) in schistosome parasites where it participates in coordinating movement and oviposition processes. Further characterisation of SmNAGAL and other functionally important glycosyl hydrolases may lead to the development of a novel anthelmintic class of compounds.
Collapse
|
7
|
Borvinskaya EV, Kochneva AA, Drozdova PB, Balan OV, Zgoda VG. Temperature-induced reorganisation of Schistocephalus solidus (Cestoda) proteome during the transition to the warm-blooded host. Biol Open 2021; 10:bio058719. [PMID: 34787304 PMCID: PMC8609239 DOI: 10.1242/bio.058719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/10/2021] [Indexed: 11/30/2022] Open
Abstract
The protein composition of the cestode Schistocephalus solidus was measured in an experiment simulating the trophic transmission of the parasite from a cold-blooded to a warm-blooded host. The first hour of host colonisation was studied in a model experiment, in which sticklebacks Gasterosteus aculeatus infected with S. solidus were heated at 40°C for 1 h. As a result, a decrease in the content of one tegument protein was detected in the plerocercoids of S. solidus. Sexual maturation of the parasites was initiated in an experiment where S. solidus larvae were taken from fish and cultured in vitro at 40°C for 48 h. Temperature-independent changes in the parasite proteome were investigated by incubating plerocercoids at 22°C for 48 h in culture medium. Analysis of the proteome allowed us to distinguish the temperature-induced genes of S. solidus, as well as to specify the molecular markers of the plerocercoid and adult worms. The main conclusion of the study is that the key enzymes of long-term metabolic changes (glycogen consumption, protein production, etc.) in parasites during colonisation of a warm-blooded host are induced by temperature.
Collapse
Affiliation(s)
| | - Albina A. Kochneva
- Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, 11 Pushkinskaya Street, 185910 Petrozavodsk, Karelia, Russia
| | - Polina B. Drozdova
- Institute of Biology, Irkutsk State University, 3 Lenin St, 664025 Irkutsk, Russia
| | - Olga V. Balan
- Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, 11 Pushkinskaya Street, 185910 Petrozavodsk, Karelia, Russia
| | - Victor G. Zgoda
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry (IBMC), 10 Pogodinskaya street, 119121 Moscow, Russia
| |
Collapse
|
8
|
Alwan SN, LoVerde PT. The effect of fs800 on female egg production in Schistosoma mansoni. Mol Biochem Parasitol 2021; 245:111412. [PMID: 34492240 PMCID: PMC10838108 DOI: 10.1016/j.molbiopara.2021.111412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/27/2022]
Abstract
During schistosomiasis, the paired Schistosoma mansoni female produces about 300 eggs each day. These eggs are responsible for the clinical picture and the transmission of the disease. During female development and egg production, fs800 is expressed only in female vitelline cells. Blast search of fs800 did not show similarities with any published sequences by NCBI. We hypothesize that the product of this gene plays a role in S. mansoni egg production. By using RNA interference to knockdown fs800 and quantitative PCR to measure the gene expression in the female schistosomes, we were able to demonstrate that fs800 product is crucial for viable egg production, it has no effect on worm health or male-female pairing. Our data suggest fs800 inhibition as a potential target to prevent transmission and pathology of schistosomiasis.
Collapse
Affiliation(s)
- Sevan N Alwan
- Departments of Biochemistry and Structural Biology, UT Health at San Antonio, San Antonio, TX 78229, USA.
| | - Philip T LoVerde
- Departments of Biochemistry and Structural Biology, UT Health at San Antonio, San Antonio, TX 78229, USA; Pathology and Laboratory Medicine, UT Health at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
9
|
Takaki KK, Rinaldi G, Berriman M, Pagán AJ, Ramakrishnan L. Schistosoma mansoni Eggs Modulate the Timing of Granuloma Formation to Promote Transmission. Cell Host Microbe 2020; 29:58-67.e5. [PMID: 33120115 PMCID: PMC7815046 DOI: 10.1016/j.chom.2020.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/28/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023]
Abstract
Schistosome eggs provoke the formation of granulomas, organized immune aggregates, around them. For the host, the granulomatous response can be both protective and pathological. Granulomas are also postulated to facilitate egg extrusion through the gut lumen, a necessary step for parasite transmission. We used zebrafish larvae to visualize the granulomatous response to Schistosomamansoni eggs and inert egg-sized beads. Mature eggs rapidly recruit macrophages, which form granulomas within days. Beads also induce granulomas rapidly, through a foreign body response. Strikingly, immature eggs do not recruit macrophages, revealing that the eggshell is immunologically inert. Our findings suggest that the eggshell inhibits foreign body granuloma formation long enough for the miracidium to mature. Then parasite antigens secreted through the eggshell trigger granulomas that facilitate egg extrusion into the environment. In support of this model, we find that only mature S. mansoni eggs are shed into the feces of mice and humans. Foreign bodies are walled off by immune structures called granulomas Schistosoma mansoni eggshells prevent the formation of granulomas around immature parasites Secreted antigens from mature parasites induce granulomas that promote egg shedding S. mansoni modulates granuloma formation to selectively shed mature eggs into feces
Collapse
Affiliation(s)
- Kevin K Takaki
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Antonio J Pagán
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| | - Lalita Ramakrishnan
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
10
|
Favero V, Veríssimo CDM, Piovesan AR, Morassutti AL, Souto AA, Bittencourt HR, Pascoal VF, Lindholz CG, Jones MK, Souza RP, Rigo FDV, Carlini CR, Graeff-Teixeira C. A new diagnostic strategy which uses a luminol-H2O2 system to detect helminth eggs in fecal sediments processed by the Helmintex method. PLoS Negl Trop Dis 2020; 14:e0008500. [PMID: 32730339 PMCID: PMC7437924 DOI: 10.1371/journal.pntd.0008500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/19/2020] [Accepted: 06/18/2020] [Indexed: 11/19/2022] Open
Abstract
Schistosomiasis remains a serious public health problem in tropical regions, affecting more than 250 million people. Sensitive diagnostic methods represent key tools for disease elimination, in particular in areas with low endemicity. Advances in the use of luminol-based chemiluminescent techniques have enabled greater sensitivity and speed in obtaining results in different diagnostic settings. In this study, we developed a luminol-H2O2 chemiluminescence (CL) method to detect Schistosoma mansoni eggs in human fecal sediments processed by the Helmintex (HTX) method. After S. mansoni eggs were incubated with a solution of luminol-H2O2 the light emission was detected and measured by spectrophotometry at 431 nm for 5 min, using detection and counts of eggs by bright field optical microscopy as a reference. CL intensity was found to correlate with different sources and numbers of eggs. Furthermore, our results showed that the CL method can distinguish positive from negative samples with 100% sensitivity and 71% specificity. To our knowledge, this is the first study to report the use of CL for the diagnosis of helminths from fecal samples. The combination of the HTX method with CL represents an important advance in providing a reference method with the highest standards of sensitivity. Schistosomiasis, the infection caused by parasites of the genus Schistosoma, is still a significant health problem in many countries, despite some successful control efforts. In areas where parasite load is low and few eggs are released in feces, most diagnostic tests fail to detect the infections. Helmintex is a very sensitive, but time consuming, egg-detection method, with most time being consumed in observations of samples at the microscope. Here we report standardization of an innovative luminol-H2O2 chemiluminescence reaction triggered by Schistosoma mansoni eggs that may improve their detection in feces. Improved diagnostic tests are urgently required as part of the schistosomiasis elimination efforts.
Collapse
Affiliation(s)
- Vivian Favero
- Research Group on Biomedical Parasitology, School of health and life sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Neurotoxins Laboratory (LaNeuroTox), School of Medicine, Brain Institute and School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- * E-mail:
| | - Carolina De Marco Veríssimo
- Research Group on Biomedical Parasitology, School of health and life sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Angela R. Piovesan
- Neurotoxins Laboratory (LaNeuroTox), School of Medicine, Brain Institute and School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alessandra L. Morassutti
- Research Group on Biomedical Parasitology, School of health and life sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - André A. Souto
- Polytechnic School, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Hélio R. Bittencourt
- Polytechnic School, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanessa F. Pascoal
- Research Group on Biomedical Parasitology, School of health and life sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Catieli G. Lindholz
- Research Group on Biomedical Parasitology, School of health and life sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Qld, Australia, 4072
| | - Renata P. Souza
- Research Group on Biomedical Parasitology, School of health and life sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Francine De Vargas Rigo
- Research Group on Biomedical Parasitology, School of health and life sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Célia R. Carlini
- Neurotoxins Laboratory (LaNeuroTox), School of Medicine, Brain Institute and School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Graeff-Teixeira
- Research Group on Biomedical Parasitology, School of health and life sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Infectious Diseases Unit, Center for Health Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| |
Collapse
|
11
|
Huang W, Gu M, Cheng W, Zhao QP, Ming Z, Dong H. Characteristics and function of cathepsin L3 from Schistosoma japonicum. Parasitol Res 2020; 119:1619-1628. [PMID: 32185481 DOI: 10.1007/s00436-020-06647-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/04/2020] [Indexed: 01/18/2023]
Abstract
Schistosomiasis is still prevalent and seriously endangering the health of people and livestock in many countries. There have been great efforts to develop vaccines against schistosomiasis for prolonged protection in epidemic areas. Molecules from lung-stage schistosomula have been regarded as potential vaccine candidates against schistosomiasis. Our previous work has shown that cathepsin L3 from Schistosoma japonicum (SjCL3) is expressed in lung-stage schistosomula, but its role is not well known. In the present study, we characterized SjCL3 and detected its effect as a possible vaccine in vivo and in vitro. From the results of quantitative PCR (qPCR) and western blot, SjCL3 was present throughout the lifecycle of the worm, and its relative expressed level was higher in the liver eggs and adult worms than other stages. Additionally, immunofluorescence assay showed that SjCL3 was mainly concentrated in the eggshell, alimentary canal, and musculature of worms. Compared with the adjuvant group, the immunization of SjCL3 in mice resulted in a 28.9% decrease in worm burden and a 29.2% reduction in egg number in the host liver. In antibody-dependent cell-mediated cytotoxicity (ADCC) insecticidal experiments in vitro, the existence of SjCL3 could in part suppress adherence between macrophages and worm. The above results indicated that the immunization of SjCL3 could induce limited immune protection against S. japonicum infection in mice, and this protease played a role in breaking the process of ADCC, which was beneficial to the survival of worms.
Collapse
Affiliation(s)
- Wenling Huang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Mengjie Gu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Wenjun Cheng
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Qin Ping Zhao
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Zhenping Ming
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Huifen Dong
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
12
|
Luo F, Yin M, Mo X, Sun C, Wu Q, Zhu B, Xiang M, Wang J, Wang Y, Li J, Zhang T, Xu B, Zheng H, Feng Z, Hu W. An improved genome assembly of the fluke Schistosoma japonicum. PLoS Negl Trop Dis 2019; 13:e0007612. [PMID: 31390359 PMCID: PMC6685614 DOI: 10.1371/journal.pntd.0007612] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/08/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Schistosoma japonicum is a parasitic flatworm that causes human schistosomiasis, which is a significant cause of morbidity in China and the Philippines. A single draft genome was available for S. japonicum, yet this assembly is very fragmented and only covers 90% of the genome, which make it difficult to be applied as a reference in functional genome analysis and genes discovery. FINDINGS In this study, we present a high-quality assembly of the fluke S. japonicum genome by combining 20 G (~53X) long single molecule real time sequencing reads with 80 G (~ 213X) Illumina paired-end reads. This improved genome assembly is approximately 370.5 Mb, with contig and scaffold N50 length of 871.9 kb and 1.09 Mb, representing 142.4-fold and 6.2-fold improvement over the released WGS-based assembly, respectively. Additionally, our assembly captured 85.2% complete and 4.6% partial eukaryotic Benchmarking Universal Single-Copy Orthologs. Repetitive elements account for 46.80% of the genome, and 10,089 of the protein-coding genes were predicted from the improved genome, of which 96.5% have been functionally annotated. Lastly, using the improved assembly, we identified 20 significantly expanded gene families in S. japonicum, and those genes were primarily enriched in functions of proteolysis and protein glycosylation. CONCLUSIONS Using the combination of PacBio and Illumina Sequencing technologies, we provided an improved high-quality genome of S. japonicum. This improved genome assembly, as well as the annotation, will be useful for the comparative genomics of the flukes and more importantly facilitate the molecular studies of this important parasite in the future.
Collapse
Affiliation(s)
- Fang Luo
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Mingbo Yin
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Xiaojin Mo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Chengsong Sun
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Qunfeng Wu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Bingkuan Zhu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Manyu Xiang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jipeng Wang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Wang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jian Li
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ting Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Zheng Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Wei Hu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| |
Collapse
|
13
|
Simanon N, Adisakwattana P, Thiangtrongjit T, Limpanont Y, Chusongsang P, Chusongsang Y, Anuntakarun S, Payungporn S, Ampawong S, Reamtong O. Phosphoproteomics analysis of male and female Schistosoma mekongi adult worms. Sci Rep 2019; 9:10012. [PMID: 31292487 PMCID: PMC6620315 DOI: 10.1038/s41598-019-46456-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/28/2019] [Indexed: 02/02/2023] Open
Abstract
Schistosoma mekongi is one of the major causative agents of human schistosomiasis in Southeast Asia. Praziquantel is now the only drug available for treatment and there are serious concerns about parasite resistance to it. Therefore, a dataset of schistosome targets is necessary for drug development. Phosphorylation regulates signalling pathways to control cellular processes that are important for the parasite's growth and reproduction. Inhibition of key phosphoproteins may reduce the severity of schistosomiasis. In this research, we studied the phosphoproteomes of S. mekongi male and female adult worms by using computational and experimental approaches. Using a phosphoproteomics approach, we determined that 88 and 44 phosphoproteins were male- and female-biased, respectively. Immunohistochemistry using anti-phosphoserine antibodies demonstrated phosphorylation on the tegument and muscle of male S. mekongi worms and on the vitelline gland and gastrointestinal tract of female worms. This research revealed S. mekongi sex-dependent phosphoproteins. Our findings provide a better understanding of the role of phosphorylation in S. mekongi and could be integrated with information from other Schistosoma species to facilitate drug and vaccine development.
Collapse
Affiliation(s)
- Nattapon Simanon
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Phiraphol Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Yupa Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Songtham Anuntakarun
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
14
|
De Marco Verissimo C, Potriquet J, You H, McManus DP, Mulvenna J, Jones MK. Qualitative and quantitative proteomic analyses of Schistosoma japonicum eggs and egg-derived secretory-excretory proteins. Parasit Vectors 2019; 12:173. [PMID: 30992086 PMCID: PMC6469072 DOI: 10.1186/s13071-019-3403-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Schistosome parasites lay up to a thousand eggs per day inside the veins of their mammalian hosts. The immature eggs deposited by females against endothelia of venules will embryonate within days. Approximately 30% of the eggs will migrate to the lumen of the intestine to continue the parasite life-cycle. Many eggs, however, are trapped in the liver and intestine causing the main pathology associated with schistosomiasis mansoni and japonica, the liver granulomatous response. Excretory-secretory egg proteins drive much of egg-induced pathogenesis of schistosomiasis mansoni, and Schistosoma japonicum induce a markedly distinct granulomatous response to that of S. mansoni. METHODS To explore the basis of variations in this responsiveness, we investigated the proteome of eggs of S. japonicum. Using mass spectrometry qualitative and quantitative (SWATH) analyses, we describe the protein composition of S. japonicum eggs secretory proteins (ESP), and the differential expression of proteins by fully mature and immature eggs, isolated from faeces and ex vivo adults. RESULTS Of 957 egg-related proteins identified, 95 were exclusively found in S. japonicum ESP which imply that they are accessible to host immune system effector elements. An in-silico analysis implies that ESP are able of stimulating the innate and adaptive immune system through several different pathways. While quantitative SWATH analysis revealed 124 proteins that are differentially expressed by mature and immature S. japonicum eggs, illuminating some important aspects of eggs biology and infection, we also show that mature eggs are more likely than immature eggs to stimulate host immune responses. CONCLUSIONS Here we present a list of potential targets that can be used to develop better strategies to avoid severe morbidity during S. japonicum infection, as well as improving diagnosis, treatment and control of schistosomiasis japonica.
Collapse
Affiliation(s)
- Carolina De Marco Verissimo
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia. .,Medical Biological Centre, Queen's University Belfast, Belfast, UK.
| | - Jeremy Potriquet
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Hong You
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Donald P McManus
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jason Mulvenna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Malcolm K Jones
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Elliott AM, Roestenberg M, Wajja A, Opio C, Angumya F, Adriko M, Egesa M, Gitome S, Mfutso-Bengo J, Bejon P, Kapulu M, Seager Z, Lutalo T, Nazziwa WB, Muwumuza A, Yazdanbakhsh M, Kaleebu P, Kabatereine N, Tukahebwa E. Ethical and scientific considerations on the establishment of a controlled human infection model for schistosomiasis in Uganda: report of a stakeholders' meeting held in Entebbe, Uganda. AAS Open Res 2018; 1:2. [PMID: 30714021 PMCID: PMC6358001 DOI: 10.12688/aasopenres.12841.2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2018] [Indexed: 02/02/2023] Open
Abstract
Controlled human infection (CHI) models are gaining recognition as an approach to accelerating vaccine development, for use in both non-endemic and endemic populations: they can facilitate identification of the most promising candidate vaccines for further trials and advance understanding of protective immunity. Helminths present a continuing health burden in sub-Saharan Africa. Vaccine development for these complex organisms is particularly challenging, partly because protective responses are akin to mechanisms of allergy. A CHI model for Schistosoma mansoni (CHI-S) has been developed at Leiden University Medical Centre, the Netherlands. However, responses to schistosome infections, and candidate vaccines, are likely to be different among people from endemic settings compared to schistosome-naïve Dutch volunteers. Furthermore, among volunteers from endemic regions who have acquired immune responses through prior exposure, schistosome challenge can be used to define responses associated with clinical protection, and thus to guide vaccine development. To explore the possibility of establishing the CHI-S in Uganda, a Stakeholders' Meeting was held in Entebbe in 2017. Regulators, community members, researchers and policy-makers discussed implementation challenges and recommended preparatory steps: risk assessment; development of infrastructure and technical capacity to produce the infectious challenge material in Uganda; community engagement from Parliamentary to grass-roots level; pilot studies to establish approaches to assuring fully informed consent and true voluntariness, and strategies for selection of volunteers who can avoid natural infection during the 12-week CHI-S; the building of regulatory capacity; and the development of study protocols and a product dossier in close consultation with ethical and regulatory partners. It was recommended that, on completion, the protocol and product dossier be reviewed for approval in a joint meeting combining ethical, regulatory and environment management authorities. Most importantly, representatives of schistosomiasis-affected communities emphasised the urgent need for an effective vaccine and urged the research community not to delay in the development process.
Collapse
Affiliation(s)
- Alison M. Elliott
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, P.O. Box 49, Uganda,
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne Wajja
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, P.O. Box 49, Uganda
| | - Christopher Opio
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, P.O. Box 7072, Uganda
| | - Francis Angumya
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, P.O. Box 7072, Uganda
| | - Moses Adriko
- Vector Control Division, Ministry of Health of Uganda, Kampala, Uganda
| | - Moses Egesa
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, P.O. Box 49, Uganda,Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Serah Gitome
- Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Joseph Mfutso-Bengo
- Centre for Bioethics for Eastern and Southern Africa, School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | - Tom Lutalo
- Uganda Virus Research Institute, Entebbe, Uganda
| | | | | | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, P.O. Box 49, Uganda,Uganda Virus Research Institute, Entebbe, Uganda
| | - Narcis Kabatereine
- Vector Control Division, Ministry of Health of Uganda, Kampala, Uganda,Schistosomiasis Control Initiative, Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| | - Edridah Tukahebwa
- Vector Control Division, Ministry of Health of Uganda, Kampala, Uganda
| |
Collapse
|
16
|
Elliott AM, Roestenberg M, Wajja A, Opio C, Angumya F, Adriko M, Egesa M, Gitome S, Mfutso-Bengo J, Bejon P, Kapulu M, Seager Z, Lutalo T, Nazziwa WB, Muwumuza A, Yazdanbakhsh M, Kaleebu P, Kabatereine N, Tukahebwa E. Ethical and scientific considerations on the establishment of a controlled human infection model for schistosomiasis in Uganda: report of a stakeholders' meeting held in Entebbe, Uganda. AAS Open Res 2018; 1:2. [PMID: 30714021 PMCID: PMC6358001 DOI: 10.12688/aasopenres.12841.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Controlled human infection (CHI) models are gaining recognition as an approach to accelerating vaccine development, for use in both non-endemic and endemic populations: they can facilitate identification of the most promising candidate vaccines for further trials and advance understanding of protective immunity. Helminths present a continuing health burden in sub-Saharan Africa. Vaccine development for these complex organisms is particularly challenging, partly because protective responses are akin to mechanisms of allergy. A CHI model for Schistosoma mansoni (CHI-S) has been developed at Leiden University Medical Centre, the Netherlands. However, responses to schistosome infections, and candidate vaccines, are likely to be different among people from endemic settings compared to schistosome-naïve Dutch volunteers. Furthermore, among volunteers from endemic regions who have acquired immune responses through prior exposure, schistosome challenge can be used to define responses associated with clinical protection, and thus to guide vaccine development. To explore the possibility of establishing the CHI-S in Uganda, a Stakeholders' Meeting was held in Entebbe in 2017. Regulators, community members, researchers and policy-makers discussed implementation challenges and recommended preparatory steps: risk assessment; development of infrastructure and technical capacity to produce the infectious challenge material in Uganda; community engagement from Parliamentary to grass-roots level; pilot studies to establish approaches to assuring fully informed consent and true voluntariness, and strategies for selection of volunteers who can avoid natural infection during the 12-week CHI-S; the building of regulatory capacity; and the development of study protocols and a product dossier in close consultation with ethical and regulatory partners. It was recommended that, on completion, the protocol and product dossier be reviewed for approval in a joint meeting combining ethical, regulatory and environment management authorities. Most importantly, representatives of schistosomiasis-affected communities emphasised the urgent need for an effective vaccine and urged the research community not to delay in the development process.
Collapse
Affiliation(s)
- Alison M. Elliott
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, P.O. Box 49, Uganda,
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne Wajja
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, P.O. Box 49, Uganda
| | - Christopher Opio
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, P.O. Box 7072, Uganda
| | - Francis Angumya
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, P.O. Box 7072, Uganda
| | - Moses Adriko
- Vector Control Division, Ministry of Health of Uganda, Kampala, Uganda
| | - Moses Egesa
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, P.O. Box 49, Uganda,Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Serah Gitome
- Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Joseph Mfutso-Bengo
- Centre for Bioethics for Eastern and Southern Africa, School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | - Tom Lutalo
- Uganda Virus Research Institute, Entebbe, Uganda
| | | | | | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, P.O. Box 49, Uganda,Uganda Virus Research Institute, Entebbe, Uganda
| | - Narcis Kabatereine
- Vector Control Division, Ministry of Health of Uganda, Kampala, Uganda,Schistosomiasis Control Initiative, Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| | - Edridah Tukahebwa
- Vector Control Division, Ministry of Health of Uganda, Kampala, Uganda
| |
Collapse
|
17
|
Thiangtrongjit T, Adisakwattana P, Limpanont Y, Dekumyoy P, Nuamtanong S, Chusongsang P, Chusongsang Y, Reamtong O. Proteomic and immunomic analysis of Schistosoma mekongi egg proteins. Exp Parasitol 2018; 191:88-96. [PMID: 30009810 DOI: 10.1016/j.exppara.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 12/29/2022]
Abstract
Schistosomiasis remains a global health problem. In the Mekong river basin, approximately 80,000 people are at risk of infection by Schistosoma mekongi. The parasite's eggs become entrapped in the host's organs and induce massive inflammation, contributing to the pathogenesis of schistosomiasis. In addition, egg antigens are important in circumoval precipitin tests (COPTs) and other diagnostic techniques. Little is known regarding the egg proteins of S. mekongi, and so we applied immunoblotting and mass spectrometry-based proteomic approaches to study these proteins and their antigenicity. A total of 360 unique proteins were identified in S. mekongi eggs using proteomic analyses. The major protein components of S. mekongi eggs were classified into several groups by functions, including proteins of unknown function, structural proteins, and regulators of transcription and translation. The most abundant proteins in S. mekongi eggs were antioxidant proteins, potentially reflecting the need to neutralize reactive oxidative species released from host immune cells. Immunomic analyses revealed that only DNA replication factor Cdt1 and heat shock protein 70 overlap between the proteins recognized by sera of infected mice and humans, illustrating the challenges of knowledge transfer from animal models to human patients. Forty-one immunoreactive protein bands were recognized by either mouse or patient sera. Phosphoglycerate kinase, fructose-1,6-bisphosphate aldolase and elongation factor 1 appeared to be interesting immunogens of S. mekongi eggs as these proteins were recognized by polyclonal IgMs and IgGs in patient sera. Our findings provide new information on the protein composition of S. mekongi eggs as well as the beginnings of a S. mekongi immunogen dataset. These data may help us better understand the pathology of schistosomiasis as well as natural antibody responses against S. mekongi egg proteins, both of which may be useful in including S. mekongi to other schistosoma diagnostic, vaccine and immunotherapy development.
Collapse
Affiliation(s)
- Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Paron Dekumyoy
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Supaporn Nuamtanong
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Phiraphol Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Yupa Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
18
|
Stroehlein AJ, Young ND, Gasser RB. Advances in kinome research of parasitic worms - implications for fundamental research and applied biotechnological outcomes. Biotechnol Adv 2018; 36:915-934. [PMID: 29477756 DOI: 10.1016/j.biotechadv.2018.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 12/17/2022]
Abstract
Protein kinases are enzymes that play essential roles in the regulation of many cellular processes. Despite expansions in the fields of genomics, transcriptomics and bioinformatics, there is limited information on the kinase complements (kinomes) of most eukaryotic organisms, including parasitic worms that cause serious diseases of humans and animals. The biological uniqueness of these worms and the draft status of their genomes pose challenges for the identification and classification of protein kinases using established tools. In this article, we provide an account of kinase biology, the roles of kinases in diseases and their importance as drug targets, and drug discovery efforts in key socioeconomically important parasitic worms. In this context, we summarise methods and resources commonly used for the curation, identification, classification and functional annotation of protein kinase sequences from draft genomes; review recent advances made in the characterisation of the worm kinomes; and discuss the implications of these advances for investigating kinase signalling and developing small-molecule inhibitors as new anti-parasitic drugs.
Collapse
Affiliation(s)
- Andreas J Stroehlein
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Neil D Young
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
19
|
Candido RRF, Morassutti AL, Graeff-Teixeira C, St Pierre TG, Jones MK. Exploring Structural and Physical Properties of Schistosome Eggs: Potential Pathways for Novel Diagnostics? ADVANCES IN PARASITOLOGY 2018; 100:209-237. [PMID: 29753339 DOI: 10.1016/bs.apar.2018.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this era of increasing demand for sensitive techniques to diagnose schistosomiasis, there is a need for an increased focus on the properties of the parasite eggs. The eggs are not only directly linked to the morbidity of chronic infection but are also potential key targets for accurate diagnostics. Eggs were the primary target of diagnostic tools in the past and we argue they could be the target of highly sensitive tools in the future if we focus on characteristics of their structure and shell surface that could be exploited for enhanced detection. In this review, we discuss the current state of knowledge of the physical structures of schistosome eggs and eggshells with a view to identifying pathways to a comprehensive understanding of their role in the host-parasite relationship and pathogenesis of infection, and pathways to new strategies for development of diagnostics.
Collapse
Affiliation(s)
- Renata R F Candido
- School of Physics, The University of Western Australia, Crawley, WA, Australia.
| | - Alessandra L Morassutti
- School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Graeff-Teixeira
- School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Timothy G St Pierre
- School of Physics, The University of Western Australia, Crawley, WA, Australia
| | - Malcolm K Jones
- School of Veterinary Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Understanding host-parasite relationship: the immune central nervous system microenvironment and its effect on brain infections. Parasitology 2017; 145:988-999. [PMID: 29231805 DOI: 10.1017/s0031182017002189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The central nervous system (CNS) has been recognized as an immunologically specialized microenvironment, where immune surveillance takes a distinctive character, and where delicate neuronal networks are sustained by anti-inflammatory factors that maintain local homeostasis. However, when a foreign agent such as a parasite establishes in the CNS, a set of immune defences is mounted and several immune molecules are released to promote an array of responses, which ultimately would control the infection and associated damage. Instead, a host-parasite relationship is established, in the context of which a close biochemical coevolution and communication at all organization levels between two complex organisms have developed. The ability of the parasite to establish in its host is associated with several evasion mechanisms to the immune response and its capacity for exploiting host-derived molecules. In this context, the CNS is deeply involved in modulating immune functions, either protective or pathogenic, and possibly in parasitic activity as well, via interactions with evolutionarily conserved molecules such as growth factors, neuropeptides and hormones. This review presents available evidence on some examples of CNS parasitic infections inducing different morbi-mortality grades in low- or middle-income countries, to illustrate how the CNS microenvironment affect pathogen establishment, growth, survival and reproduction in immunocompetent hosts. A better understanding of the influence of the CNS microenvironment on neuroinfections may provide relevant insights into the mechanisms underlying these pathologies.
Collapse
|
21
|
H-IPSE Is a Pathogen-Secreted Host Nucleus-Infiltrating Protein (Infiltrin) Expressed Exclusively by the Schistosoma haematobium Egg Stage. Infect Immun 2017; 85:IAI.00301-17. [PMID: 28923894 PMCID: PMC5695104 DOI: 10.1128/iai.00301-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/03/2017] [Indexed: 11/20/2022] Open
Abstract
Urogenital schistosomiasis, caused by the parasitic trematode Schistosoma haematobium, affects over 112 million people worldwide. As with Schistosoma mansoni infections, the pathology of urogenital schistosomiasis is related mainly to the egg stage, which induces granulomatous inflammation of affected tissues. Schistosoma eggs and their secretions have been studied extensively for the related organism S. mansoni, which is more amenable to laboratory studies. Indeed, we have shown that IPSE/alpha-1 (here M-IPSE), a major protein secreted from S. mansoni eggs, can infiltrate host cells. Although the function of M-IPSE is unknown, its ability to translocate to the nuclei of host cells and bind DNA suggests a possible role in immune modulation of host cell tissues. Whether IPSE homologs are expressed in other schistosome species has not been investigated. Here, we describe the cloning of two paralog genes, H03-IPSE and H06-IPSE, which are orthologs of M-IPSE, from egg cDNA of S. haematobium Using PCR and immunodetection, we confirmed that the expression of these genes is restricted to the egg stage and female adult worms, while the H-IPSE protein is detectable only in mature eggs and not adults. We show that both H03-IPSE and H06-IPSE proteins can infiltrate HTB-9 bladder cells when added exogenously to culture medium. Monopartite C-terminal nuclear localization sequence (NLS) motifs conserved in H03-IPSE, SKRRRKY, and H06-IPSE SKRGRKY, are responsible for targeting the proteins to the nucleus of HTB-9 cells, as demonstrated by site-directed mutagenesis and green fluorescent protein (GFP) tagging. Thus, S. haematobium eggs express IPSE homologs that appear to perform similar functions in infiltrating host cells.
Collapse
|
22
|
Onile OS, Calder B, Soares NC, Anumudu CI, Blackburn JM. Quantitative label-free proteomic analysis of human urine to identify novel candidate protein biomarkers for schistosomiasis. PLoS Negl Trop Dis 2017; 11:e0006045. [PMID: 29117212 PMCID: PMC5695849 DOI: 10.1371/journal.pntd.0006045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/20/2017] [Accepted: 10/17/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Schistosomiasis is a chronic neglected tropical disease that is characterized by continued inflammatory challenges to the exposed population and it has been established as a possible risk factor in the aetiology of bladder cancer. Improved diagnosis of schistosomiasis and its associated pathology is possible through mass spectrometry to identify biomarkers among the infected population, which will influence early detection of the disease and its subtle morbidity. METHODOLOGY A high-throughput proteomic approach was used to analyse human urine samples for 49 volunteers from Eggua, a schistosomiasis endemic community in South-West, Nigeria. The individuals were previously screened for Schistosoma haematobium and structural bladder pathologies via microscopy and ultrasonography respectively. Samples were categorised into schistosomiasis, schistosomiasis with bladder pathology, bladder pathology, and a normal healthy control group. These samples were analysed to identify potential protein biomarkers. RESULTS A total of 1306 proteins and 9701 unique peptides were observed in this study (FDR = 0.01). Fifty-four human proteins were found to be potential biomarkers for schistosomiasis and bladder pathologies due to schistosomiasis by label-free quantitative comparison between groups. Thirty-six (36) parasite-derived potential biomarkers were also identified, which include some existing putative schistosomiasis biomarkers that have been previously reported. Some of these proteins include Elongation factor 1 alpha, phosphopyruvate hydratase, histone H4 and heat shock proteins (HSP 60, HSP 70). CONCLUSION These findings provide an in-depth analysis of potential schistosoma and human host protein biomarkers for diagnosis of chronic schistosomiasis caused by Schistosoma haematobium and its pathogenesis.
Collapse
Affiliation(s)
- Olugbenga Samson Onile
- Biotechnology Programme, Department of Biological Sciences, Elizade University, Ilara-Mokin, Nigeria
| | - Bridget Calder
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Nelson C. Soares
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Chiaka I. Anumudu
- Cellular Parasitology Programme, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Jonathan M. Blackburn
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
23
|
Candido RRF, Pierre TGS, Jones MK, Graeff-Teixeira C. Evaluation of the immunogenicity of Schistosoma mansoni egg surface. Rev Soc Bras Med Trop 2017; 50:652-657. [DOI: 10.1590/0037-8682-0040-2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/26/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | - Carlos Graeff-Teixeira
- Pontifícia Universidade Católica do Rio Grande do Sul, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| |
Collapse
|
24
|
Sotillo J, Doolan D, Loukas A. Recent advances in proteomic applications for schistosomiasis research: potential clinical impact. Expert Rev Proteomics 2016; 14:171-183. [DOI: 10.1080/14789450.2017.1271327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Denise Doolan
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
25
|
Driguez P, McManus DP, Gobert GN. Clinical implications of recent findings in schistosome proteomics. Expert Rev Proteomics 2015; 13:19-33. [PMID: 26558506 DOI: 10.1586/14789450.2016.1116390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Schistosomiasis is a neglected tropical disease of clinical significance that, despite years of research, still requires an effective vaccine and improved diagnostics for surveillance, control and potential elimination. Furthermore, the causes of host pathology during schistosomiasis are still not completely understood. The recent sequencing of the genomes of the three key schistosome species has enabled the discovery of many new possible vaccine and drug targets, as well as diagnostic biomarkers, using high-throughput and sensitive proteomics methods. This review focuses on the literature of the last 5 years that has reported on the use of proteomics to both better understand the biology of the schistosome parasites and the disease they cause in definitive mammalian hosts.
Collapse
Affiliation(s)
- Patrick Driguez
- a QIMR Berghofer Medical Research Institute, Infectious Disease Division , Brisbane , Queensland , Australia
| | - Donald P McManus
- a QIMR Berghofer Medical Research Institute, Infectious Disease Division , Brisbane , Queensland , Australia
| | - Geoffrey N Gobert
- a QIMR Berghofer Medical Research Institute, Infectious Disease Division , Brisbane , Queensland , Australia
| |
Collapse
|
26
|
van der Ree AM, Mutapi F. The helminth parasite proteome at the host-parasite interface - Informing diagnosis and control. Exp Parasitol 2015; 157:48-58. [PMID: 26116863 DOI: 10.1016/j.exppara.2015.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/16/2015] [Accepted: 06/15/2015] [Indexed: 12/27/2022]
Abstract
Helminth parasites are a significant health burden for humans in the developing world and also cause substantial economic losses in livestock production across the world. The combined lack of vaccines for the major human and veterinary helminth parasites in addition to the development of drug resistance to anthelmintics in sheep and cattle mean that controlling helminth infection and pathology remains a challenge. However, recent high throughput technological advances mean that screening for potential drug and vaccine candidates is now easier than in previous decades. A better understanding of the host-parasite interactions occurring during infection and pathology and identifying pathways that can be therapeutically targeted for more effective and 'evolution proof' interventions is now required. This review highlights some of the advances that have been made in understanding the host-parasite interface in helminth infections using studies of the temporal expression of parasite proteins, i.e. the parasite proteome, and discuss areas for potential future research and translation.
Collapse
Affiliation(s)
- Anna M van der Ree
- Institute of Immunology & Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Francisca Mutapi
- Institute of Immunology & Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
27
|
Mucin-Type O-Glycosylation in Invertebrates. Molecules 2015; 20:10622-40. [PMID: 26065637 PMCID: PMC6272458 DOI: 10.3390/molecules200610622] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
O-Glycosylation is one of the most important posttranslational modifications of proteins. It takes part in protein conformation, protein sorting, developmental processes and the modulation of enzymatic activities. In vertebrates, the basics of the biosynthetic pathway of O-glycans are already well understood. However, the regulation of the processes and the molecular aspects of defects, especially in correlation with cancer or developmental abnormalities, are still under investigation. The knowledge of the correlating invertebrate systems and evolutionary aspects of these highly conserved biosynthetic events may help improve the understanding of the regulatory factors of this pathway. Invertebrates display a broad spectrum of glycosylation varieties, providing an enormous potential for glycan modifications which may be used for the design of new pharmaceutically active substances. Here, overviews of the present knowledge of invertebrate mucin-type O-glycan structures and the currently identified enzymes responsible for the biosynthesis of these oligosaccharides are presented, and the few data dealing with functional aspects of O-glycans are summarised.
Collapse
|
28
|
Markakpo US, Armah GE, Fobil JN, Asmah RH, Anim-Baidoo I, Dodoo AK, Madjitey P, Essuman EE, Kojima S, Bosompem KM. Immunolocalization of the 29 kDa Schistosoma haematobium species-specific antigen: a potential diagnostic marker for urinary schistosomiasis. BMC Infect Dis 2015; 15:198. [PMID: 25927905 PMCID: PMC4416236 DOI: 10.1186/s12879-015-0931-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 29 kDa Schistosoma haematobium species-specific antigen (ShSSA) is of remarkable interest in the diagnosis of urinary schistosomiasis although it had not been fully characterized. METHOD To determine the biological importance of ShSSA in S. haematobium and pathogenesis of the disease, we immunolocalized ShSSA in schistosome eggshells, miracidia and adult worm sections using indirect fluorescent antibody test (IFAT). RESULTS ShSSA was strongly immunolocalized in the schistosome eggshells, selective regions of the miracidia body and walls of internal organs such as oviduct, ovary, vitelline duct and gut of the adult worm. CONCLUSION The strong immunolocalization of ShSSA in schistosome eggshells and adult worm internal organs suggests that the antigens involved in the pathogenesis of urinary schistosomiasis could have originated from the eggs and adult worms of the parasite. The findings also indicate that ShSSA may play a mechanical protective role in the survival of the parasite.
Collapse
Affiliation(s)
- Uri S Markakpo
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, P. O. Box LG13, Legon, Accra, Ghana.
| | - George E Armah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Accra, Ghana.
| | - Julius N Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, P. O. Box LG13, Legon, Accra, Ghana.
| | - Richard H Asmah
- School of Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana.
| | - Isaac Anim-Baidoo
- School of Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana.
| | - Alfred K Dodoo
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Accra, Ghana.
| | - Parnor Madjitey
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, P. O. Box LG13, Legon, Accra, Ghana.
| | - Edward E Essuman
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, P. O. Box LG13, Legon, Accra, Ghana.
| | - Somei Kojima
- Asian Centre for International Parasite Control, Mahidol University, Bankok, Thailand.
| | - Kwabena M Bosompem
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Accra, Ghana.
| |
Collapse
|
29
|
Smit CH, van Diepen A, Nguyen DL, Wuhrer M, Hoffmann KF, Deelder AM, Hokke CH. Glycomic Analysis of Life Stages of the Human Parasite Schistosoma mansoni Reveals Developmental Expression Profiles of Functional and Antigenic Glycan Motifs. Mol Cell Proteomics 2015; 14:1750-69. [PMID: 25883177 PMCID: PMC4587318 DOI: 10.1074/mcp.m115.048280] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 11/30/2022] Open
Abstract
Glycans present on glycoproteins and glycolipids of the major human parasite Schistosoma mansoni induce innate as well as adaptive immune responses in the host. To be able to study the molecular characteristics of schistosome infections it is therefore required to determine the expression profiles of glycans and antigenic glycan-motifs during a range of critical stages of the complex schistosome lifecycle. We performed a longitudinal profiling study covering schistosome glycosylation throughout worm- and egg-development using a mass spectrometry-based glycomics approach. Our study revealed that during worm development N-glycans with Galβ1–4(Fucα1–3)GlcNAc (LeX) and core-xylose motifs were rapidly lost after cercariae to schistosomula transformation, whereas GalNAcβ1–4GlcNAc (LDN)-motifs gradually became abundant and predominated in adult worms. LeX-motifs were present on glycolipids up to 2 weeks of schistosomula development, whereas glycolipids with mono- and multifucosylated LDN-motifs remained present up to the adult worm stage. In contrast, expression of complex O-glycans diminished to undetectable levels within days after transformation. During egg development, a rich diversity of N-glycans with fucosylated motifs was expressed, but with α3-core fucose and a high degree of multifucosylated antennae only in mature eggs and miracidia. N-glycan antennae were exclusively LDN-based in miracidia. O-glycans in the mature eggs were also diverse and contained LeX- and multifucosylated LDN, but none of these were associated with miracidia in which we detected only the Galβ1–3(Galβ1–6)GalNAc core glycan. Immature eggs also exhibited short O-glycan core structures only, suggesting that complex fucosylated O-glycans of schistosome eggs are derived primarily from glycoproteins produced by the subshell envelope in the developed egg. Lipid glycans with multifucosylated GlcNAc repeats were present throughout egg development, but with the longer highly fucosylated stretches enriched in mature eggs and miracidia. This global analysis of the developing schistosome's glycome provides new insights into how stage-specifically expressed glycans may contribute to different aspects of schistosome-host interactions.
Collapse
Affiliation(s)
- Cornelis H Smit
- From the ‡Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Angela van Diepen
- From the ‡Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - D Linh Nguyen
- From the ‡Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- §Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Karl F Hoffmann
- ¶Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais Campus, Aberystwyth SY23 3FG, United Kingdom
| | - André M Deelder
- §Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Cornelis H Hokke
- From the ‡Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
30
|
Imatinib treatment causes substantial transcriptional changes in adult Schistosoma mansoni in vitro exhibiting pleiotropic effects. PLoS Negl Trop Dis 2014; 8:e2923. [PMID: 24921634 PMCID: PMC4055459 DOI: 10.1371/journal.pntd.0002923] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/17/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Schistosome parasites cause schistosomiasis, one of the most important infectious diseases worldwide. For decades Praziquantel (PZQ) is the only drug widely used for controlling schistosomiasis. The absence of a vaccine and fear of PZQ resistance have motivated the search for alternatives. Studies on protein kinases (PKs) demonstrated their importance for diverse physiological processes in schistosomes. Among others two Abl tyrosine kinases, SmAbl1 and SmAbl2, were identified in Schistosoma mansoni and shown to be transcribed in the gonads and the gastrodermis. SmAbl1 activity was blocked by Imatinib, a known Abl-TK inhibitor used in human cancer therapy (Gleevec/Glivec). Imatinib exhibited dramatic effects on the morphology and physiology of adult schistosomes in vitro causing the death of the parasites. METHODOLOGY/PRINCIPAL FINDINGS Here we show modeling data supporting the targeting of SmAbl1/2 by Imatinib. A biochemical assay confirmed that SmAbl2 activity is also inhibited by Imatinib. Microarray analyses and qRT-PCR experiments were done to unravel transcriptional processes influenced by Imatinib in adult schistosomes in vitro demonstrating a wide influence on worm physiology. Surface-, muscle-, gut and gonad-associated processes were affected as evidenced by the differential transcription of e.g. the gynecophoral canal protein gene GCP, paramyosin, titin, hemoglobinase, and cathepsins. Furthermore, transcript levels of VAL-7 and egg formation-associated genes such as tyrosinase 1, p14, and fs800-like were affected as well as those of signaling genes including a ribosomal protein S6 kinase and a glutamate receptor. Finally, a comparative in silico analysis of the obtained microarray data sets and previous data analyzing the effect of a TGFβR1 inhibitor on transcription provided first evidence for an association of TGFβ and Abl kinase signaling. Among others GCP and egg formation-associated genes were identified as common targets. CONCLUSIONS/SIGNIFICANCE The data affirm broad negative effects of Imatinib on worm physiology substantiating the role of PKs as interesting targets.
Collapse
|
31
|
Molecular and biochemical characterizations of three fructose-1,6-bisphosphate aldolases from Clonorchis sinensis. Mol Biochem Parasitol 2014; 194:36-43. [DOI: 10.1016/j.molbiopara.2014.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/13/2014] [Accepted: 04/15/2014] [Indexed: 11/20/2022]
|
32
|
Binding of von Willebrand factor and plasma proteins to the eggshell of Schistosoma mansoni. Int J Parasitol 2014; 44:263-8. [PMID: 24560918 DOI: 10.1016/j.ijpara.2013.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/05/2013] [Accepted: 12/10/2013] [Indexed: 11/21/2022]
Abstract
Schistosoma mansoni eggs have to cross the endothelium and intestinal wall to leave the host and continue the life cycle. Mechanisms involved in this essential step are largely unknown. Here we describe direct binding to the S. mansoni eggshell of von Willebrand factor and other plasma proteins involved in haemostasis. Using deletion-mutants, we demonstrated that it is the A1 domain of von Willebrand factor that binds to the eggshell. Our results suggest that binding of plasma proteins to the eggshell promotes binding to the endothelium, initiating the passage of the egg through the blood-vessel wall to be excreted in the end.
Collapse
|
33
|
Buro C, Oliveira KC, Lu Z, Leutner S, Beckmann S, Dissous C, Cailliau K, Verjovski-Almeida S, Grevelding CG. Transcriptome analyses of inhibitor-treated schistosome females provide evidence for cooperating Src-kinase and TGFβ receptor pathways controlling mitosis and eggshell formation. PLoS Pathog 2013; 9:e1003448. [PMID: 23785292 PMCID: PMC3681755 DOI: 10.1371/journal.ppat.1003448] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 05/07/2013] [Indexed: 11/18/2022] Open
Abstract
Schistosome parasites cause schistosomiasis, one of the most prevalent parasitemias worldwide affecting humans and animals. Constant pairing of schistosomes is essential for female sexual maturation and egg production, which causes pathogenesis. Female maturation involves signaling pathways controlling mitosis and differentiation within the gonads. In vitro studies had shown before that a Src-specific inhibitor, Herbimycin A (Herb A), and a TGFβ receptor (TβR) inhibitor (TRIKI) have physiological effects such as suppressed mitoses and egg production in paired females. As one Herb A target, the gonad-specifically expressed Src kinase SmTK3 was identified. Here, we comparatively analyzed the transcriptome profiles of Herb A- and TRIKI-treated females identifying transcriptional targets of Src-kinase and TβRI pathways. After demonstrating that TRIKI inhibits the schistosome TGFβreceptor SmTβRI by kinase assays in Xenopus oocytes, couples were treated with Herb A, TRIKI, or both inhibitors simultaneously in vitro. RNA was isolated from females for microarray hybridizations and transcription analyses. The obtained data were evaluated by Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA), but also by manual classification and intersection analyses. Finally, extensive qPCR experiments were done to verify differential transcription of candidate genes under inhibitor influence but also to functionally reinforce specific physiological effects. A number of genes found to be differentially regulated are associated with mitosis and differentiation. Among these were calcium-associated genes and eggshell-forming genes. In situ hybridization confirmed transcription of genes coding for the calcium sensor hippocalcin, the calcium transporter ORAI-1, and the calcium-binding protein calmodulin-4 in the reproductive system pointing to a role of calcium in parasite reproduction. Functional qPCR results confirmed an inhibitor-influenced, varying dependence of the transcriptional activities of Smp14, Smp48, fs800, a predicted eggshell precursor protein and SmTYR1. The results show that eggshell-formation is regulated by at least two pathways cooperatively operating in a balanced manner to control egg production. As one of the most prevalent parasitic infections worldwide, schistosomiasis is caused by blood-flukes of the genus Schistosoma. Pathology coincides with egg production, which is started upon pairing of the dioeciously living adults. A constant pairing contact is required to induce mitoses and differentiation processes in the female leading to the development of the gonads. Although long known, the molecular processes controlling gonad development or egg-production in schistosomes or other platyhelminths are largely unknown. Using an established in vitro-culture system and specific, chemical inhibitors we have obtained first evidence in previous studies for the participation of signal transduction processes playing essential roles in controlling mitoses, differentiation and egg production. In the present study we applied combinatory inhibitor treatments combined with subsequent microarray and qPCR analyses and demonstrate for the first time that cooperating Src-Kinase- und TGFβ-signaling pathways control mitoses and egg formation processes. Besides direct evidence for managing transcription of eggshell-forming genes, new target molecules of these pathways were identified. Among these are calcium-associated genes providing a first hint towards a role of this ion for reproduction. Our finding shed first light on the signaling mechanisms controlling egg formation, which is important for life-cycling and pathology.
Collapse
Affiliation(s)
- Christin Buro
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Katia C. Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Zhigang Lu
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Silke Leutner
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Svenja Beckmann
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Colette Dissous
- CIIL - Center of Infection and Immunity of Lille, Université Lille Nord de France, Inserm U1019, CNRS-UMR 8204, Institut Pasteur de Lille, Lille, France
| | - Katia Cailliau
- Laboratoire de Régulation des Signaux de Division, Université Lille 1 Sciences et Technology, EA 4479, IFR 147, Villeneuve d'Ascq, France
| | | | | |
Collapse
|
34
|
Karl S, Gutiérrez L, Lucyk-Maurer R, Kerr R, Candido RRF, Toh SQ, Saunders M, Shaw JA, Suvorova A, Hofmann A, House MJ, Woodward RC, Graeff-Teixera C, St Pierre TG, Jones MK. The iron distribution and magnetic properties of schistosome eggshells: implications for improved diagnostics. PLoS Negl Trop Dis 2013; 7:e2219. [PMID: 23696910 PMCID: PMC3656142 DOI: 10.1371/journal.pntd.0002219] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Schistosoma mansoni and Schistosoma japonicum are the most frequent causative agents of human intestinal schistosomiasis. Approximately 200 million people in the world are infected with schistosomes. Diagnosis of schistosomiasis is often difficult. High percentages of low level infections are missed in routine fecal smear analysis and current diagnostic methodologies are inadequate to monitor the progress of parasite control, especially in areas with low transmission. Improved diagnostic methods are urgently needed to evaluate the success of elimination programs. Recently, a magnetic fractionation method for isolation of parasite eggs from feces was described, which uses magnetic microspheres to form parasite egg - magnetic microsphere conjugates. This approach enables screening of larger sample volumes and thus increased diagnostic sensitivity. The mechanism of formation of the conjugates remains unexplained and may either be related to specific surface characteristics of eggs and microspheres or to their magnetic properties. METHODS/PRINCIPAL FINDINGS Here, we investigated iron localization in parasite eggs, specifically in the eggshells. We determined the magnetic properties of the eggs, studied the motion of eggs and egg-microsphere conjugates in magnetic fields and determined species specific affinity of parasite eggs to magnetic microspheres. Our study shows that iron is predominantly localized in pores in the eggshell. Parasite eggs showed distinct paramagnetic behaviour but they did not move in a magnetic field. Magnetic microspheres spontaneously bound to parasite eggs without the presence of a magnetic field. S. japonicum eggs had a significantly higher affinity to bind microspheres than S. mansoni eggs. CONCLUSIONS/SIGNIFICANCE Our results suggest that the interaction of magnetic microspheres and parasite eggs is unlikely to be magnetic in origin. Instead, the filamentous surface of the eggshells may be important in facilitating the binding. Modification of microsphere surface properties may therefore be a way to optimize magnetic fractionation of parasite eggs.
Collapse
Affiliation(s)
- Stephan Karl
- School of Physics, The University of Western Australia, Crawley, Western Australia, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Schistosome infections in humans are characterized by the development of chronic disease and high re-infection rates after treatment due to the slow development of immunity. It appears that anti-schistosome antibodies are at least partially mediating protective mechanisms. Efforts to develop a vaccine based on immunization with surface-exposed or secreted larval or worm proteins are ongoing. Schistosomes also express a large number of glycans as part of their glycoprotein and glycolipid repertoire, and antibody responses to those glycans are mounted by the infected host. This observation raises the question if glycans might also form novel vaccine targets for immune intervention in schistosomiasis. This review summarizes current knowledge of antibody responses and immunity in experimental and natural infections with Schistosoma, the expression profiles of schistosome glycans (the glycome), and antibody responses to individual antigenic glycan motifs. Future directions to study anti-glycan responses in schistosomiasis in more detail in order to address more precisely the possible role of glycans in antibody-mediated immunity are discussed.
Collapse
|
36
|
deWalick S, Tielens AGM, van Hellemond JJ. Schistosoma mansoni: the egg, biosynthesis of the shell and interaction with the host. Exp Parasitol 2011; 132:7-13. [PMID: 21840309 DOI: 10.1016/j.exppara.2011.07.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 07/07/2011] [Accepted: 07/30/2011] [Indexed: 11/15/2022]
Abstract
The schistosome eggshell is a hardened and tanned structure made from cross-linked proteins. It is synthesized within the female worm from many different kinds of proteins and glycoproteins. Once the egg is released in the circulation, the outer surface of the eggshell is exposed and hence a direct site of interaction between the parasite and the host. The major eggshell protein is p14, but about one third of the eggshell is made from common cellular proteins, some of which are known to be immunogenic. This has many consequences for parasite-host interactions. However, so far, the eggshell has gained little attention from researchers. We will discuss the structure of the eggshell and its role in granuloma formation, host factor binding and egg excretion.
Collapse
Affiliation(s)
- Saskia deWalick
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | | | | |
Collapse
|
37
|
Meevissen MHJ, Yazdanbakhsh M, Hokke CH. Schistosoma mansoni egg glycoproteins and C-type lectins of host immune cells: molecular partners that shape immune responses. Exp Parasitol 2011; 132:14-21. [PMID: 21616068 DOI: 10.1016/j.exppara.2011.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/22/2011] [Accepted: 05/10/2011] [Indexed: 01/13/2023]
Abstract
Schistosome eggs and egg-derived molecules are potent immunomodulatory agents. There is increasing evidence that the interplay between egg glycoproteins and host C-type lectins plays an important role in shaping immune responses during schistosomiasis. As most experiments in this field so far have been performed using complex protein/glycoprotein mixtures or synthetic model glycoconjugates, it is still largely unclear which individual moieties of schistosome eggs are immunologically active. In this review we will discuss molecular aspects of Schistosoma mansoni egg glycoproteins, their interactions with C-type lectins, and the relevance to schistosome egg immunobiology.
Collapse
Affiliation(s)
- Moniek H J Meevissen
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
38
|
Boukli NM, Delgado B, Ricaurte M, Espino AM. Fasciola hepatica and Schistosoma mansoni: identification of common proteins by comparative proteomic analysis. J Parasitol 2011; 97:852-61. [PMID: 21506812 DOI: 10.1645/ge-2495.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
It is not unusual to find common molecules among parasites of different species, genera, or phyla. When those molecules are antigenic, they may be used for developing drugs or vaccines that simultaneously target different species or genera of parasite. In the present study, we used a proteomic-based approach to identify proteins that are common to adult Fasciola hepatica and Schistosoma mansoni. Whole-worm extracts from each parasite were separated by 2-dimensional electrophoresis (2-DE), and digital images of both proteomes were superimposed using imaging software to identify proteins with identical isoelectric points and molecular weights. Protein identities were determined by mass spectrometry. Imaging and immunoblot analyses identified 28 immunoreactive proteins that are common to both parasites. Among these molecules are antioxidant proteins (thioredoxin and glutathione-S-transferase), glycolytic enzymes (glyceraldehyde 6-phosphate dehydrogenase and enolase), proteolytic enzymes (cathepsin-L and -D), inhibitors (Kunitz-type, Stefin-1), proteins with chaperone activity (heat shock protein 70 and fatty acid-binding protein), and structural proteins (calcium-binding protein, actin, and myosin). Some of the identified proteins could be used to develop drugs and vaccines against fascioliasis and schistosomiasis.
Collapse
Affiliation(s)
- Nawal M Boukli
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | | | | | | |
Collapse
|