1
|
Liu C, Peng B, Zou P, Jia X, Zou Z, Zhang J, Zhang Z, Wang Y. The Masculinizing gene is a candidate male pathway developmental factor in the mud crab Scylla paramamosain. Gene 2025; 935:149083. [PMID: 39527991 DOI: 10.1016/j.gene.2024.149083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/12/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The Masculinizer (Masc) gene plays a crucial role in masculinization during insect embryonic gonadal development. Nevertheless, the Masc expression pattern and function in crabs remain largely unknown. In the present study, we screened and validated the Masc gene from transcriptome data of mud crab S. paramamosain. The Masc relative transcript level in the testis was significantly higher than that of ovaries and other tissues, as measured by quantitative real-time PCR. In situ hybridization showed that Masc exhibited a significant signal throughout all stages of testicular development. The phylogenetic analysis revealed conservation in the evolution of crustaceans, potentially indicating its functional importance. Masc RNA interference showed that the expression of testis bias-related genes decreased significantly while the ovary bias-related genes increased significantly. Transcriptome data suggested that Masc regulates several signaling pathways, including the mTOR, Wnt, insulin, and other sex-related pathways. These results indicate that Masc may play a role in mud crab male development with possible application in sex control in aquaculture.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Bohao Peng
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Pengfei Zou
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiwei Jia
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Zhihua Zou
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Jiaxi Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yilei Wang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
2
|
Liu Q, Liu B, Sun T, Wang P, Sun W, Pan B. Vitellogenin and its upstream gene TOR play essential roles in the reproduction of Dermanyssus gallinae. Exp Parasitol 2024; 260:108746. [PMID: 38513972 DOI: 10.1016/j.exppara.2024.108746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
In Dermanyssus gallinae, a hematophagous mite, the initiation of vitellogenesis induced by blood feeding is essential for its reproduction. However, the precise gene structures and physiological functions of Vg in D. gallinae and its upstream gene, Target of Rapamycin (TOR), have not been fully understood. This study revealed the presence of four homologous genes within D. gallinae, named Dg-Vg1, Dg-Vg1-like, Dg-Vg2, and Dg-Vg2-like, especially, Dg-Vg2-like was firstly identified in the mites. The expression levels of all these Vg genes were significantly higher in adult females than other stages. Following blood feeding, the expression levels of these genes increased significantly, followed by a subsequent decrease, aligning with egg production. Silencing Dg-Vgs by RNA interference (RNAi) led to decreased fecundity and egg hatching rates, as well as abnormal embryonic development, suggesting a vital role for Dg-Vgs in both egg formation and embryonic development. Furthermore, the knockdown of Dg-TOR significantly reduced the expression of Dg-Vgs and negatively impacted the reproductive capabilities of PRMs, indicating that TOR influences PRM reproduction by regulating the expression of Dg-Vgs. In summary, these findings demonstrated the crucial roles of Dg-Vgs and Dg-TOR in PRM reproduction, highlighting their potential as targets for pest control.
Collapse
Affiliation(s)
- Qi Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Boxing Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Tiancong Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Penglong Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Weiwei Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China.
| | - Baoliang Pan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China.
| |
Collapse
|
3
|
Adegoke A, Ribeiro JMC, Brown S, Smith RC, Karim S. Rickettsia parkeri hijacks tick hemocytes to manipulate cellular and humoral transcriptional responses. Front Immunol 2023; 14:1094326. [PMID: 36845157 PMCID: PMC9950277 DOI: 10.3389/fimmu.2023.1094326] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Blood-feeding arthropods rely on robust cellular and humoral immunity to control pathogen invasion and replication. Tick hemocytes produce factors that can facilitate or suppress microbial infection and pathogenesis. Despite the importance of hemocytes in regulating microbial infection, understanding of their basic biology and molecular mechanisms remains limited. Methods Here we combined histomorphology and functional analysis to identify five distinct phagocytic and non-phagocytic hemocyte populations circulating within the Gulf Coast tick Amblyomma maculatum. Results and discussion Depletion of phagocytic hemocytes using clodronate liposomes revealed their function in eliminating bacterial infection. We provide the first direct evidence that an intracellular tick-borne pathogen, Rickettsia parkeri, infects phagocytic hemocytes in Am. maculatum to modify tick cellular immune responses. A hemocyte-specific RNA-seq dataset generated from hemocytes isolated from uninfected and R. parkeri-infected partially blood-fed ticks generated ~40,000 differentially regulated transcripts, >11,000 of which were immune genes. Silencing two differentially regulated phagocytic immune marker genes (nimrod B2 and eater-two Drosophila homologs), significantly reduced hemocyte phagocytosis. Conclusion Together, these findings represent a significant step forward in understanding how hemocytes regulate microbial homeostasis and vector competence.
Collapse
Affiliation(s)
- Abdulsalam Adegoke
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Jose M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Sidney Brown
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
4
|
Yuan Q, Sun X, Lu R, Qu Z, Ding X, Dai T, Qiu J, Tan Y, Zhu R, Pan Z, Xu S, Sima Y. The LIM Domain Protein BmFHL2 Inhibits Egg Production in Female Silkworm, Bombyx mori. Cells 2023; 12:cells12030452. [PMID: 36766794 PMCID: PMC9913792 DOI: 10.3390/cells12030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/11/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
The female Bombyx mori accumulates a large amount of egg proteins, mainly Vg and 30K, during egg formation to provide nutrition for embryo development. The synthesis and transport of Vg have been extensively studied, particularly the regulation of Vg transcription induced by 20E; however, the mechanism of 30K protein synthesis is poorly studied. As a model organism of the order Lepidoptera, B. mori has high reproduction potential. In the present study, we found that the FHL2 homologous gene (BmFhl2) in B. mori is involved in inhibiting female egg formation by influencing the synthesis of 30K protein. Interference of BmFhl2 expression in silkworm females increased 30K protein synthesis, accelerated ovarian development, and significantly increased the number of eggs produced and laid; however, the 20E pathway was inhibited. The transcription levels of Vg and 30Kc19 were significantly downregulated following BmFhl2 overexpression in the silkworm ovarian cell line BmN. The Co-IP assay showed that the potential binding protein of BmFHL2 included three types of 30K proteins (30Kc12, 30Kc19, and 30Kc21). These results indicate that BmFHL2 participates in egg formation by affecting 30K protein in female B. mori.
Collapse
Affiliation(s)
- Qian Yuan
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xiaoning Sun
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Riming Lu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Zhigang Qu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xueyan Ding
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Taiming Dai
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Jianfeng Qiu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Yumei Tan
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Ruihong Zhu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Zhonghua Pan
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Shiqing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Yanghu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
- Correspondence: ; Tel.: +86-138-6201-8502
| |
Collapse
|
5
|
Wang J, Yu S, Wang L, Liu T, Yang X, Hu X, Wang Y. Capsaicin decreases fecundity in the Asian malaria vector Anopheles stephensi by inhibiting the target of rapamycin signaling pathway. Parasit Vectors 2022; 15:458. [PMID: 36510333 PMCID: PMC9743593 DOI: 10.1186/s13071-022-05593-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mosquito-borne diseases threaten human health, but mosquito control faces various challenges, such as resistance to chemical insecticides. Thus, there is an urgent need for more effective and environment-friendly control agents. Capsaicin can downregulate the mTOR signaling pathway of tumor cells. The TOR signaling pathway can mediate the expression of vitellogenin (Vg) to regulate the fecundity of insects. Whether capsaicin has the potential to inhibit fecundity of mosquitoes by regulating TOR pathway and Vg expression is currently unclear. METHODS Anopheles stephensi were fed with blood of mice administered capsaicin by gavage or sugar containing capsaicin followed by a blood feeding with normal mice. Then, the engorged female mosquitoes were tubed individually and underwent oviposition. The eggs and individuals in the subsequent development stages, including larvae, pupae, and emerging adults, were counted and compared between the capsaicin treatment and control groups. Additionally, total RNA and protein were extracted from the engorged mosquitoes at 24 h post blood feeding. Real-time PCR and western blot were performed to detect the transcriptional level and protein expression of the key fecundity-related molecules of mosquitoes. Finally, TOR signaling pathway was inhibited via rapamycin treatment, and changes in fecundity and the key molecule transcription and protein expression levels were examined to verify the role of TOR signaling pathway in the effect of capsaicin on mosquito fecundity. RESULTS The laid and total eggs (laid eggs plus retained eggs) of An. stephensi were significantly reduced by feeding on the blood of capsaicin-treated mice (P < 0.01) or capsaicin-containing sugar (P < 0.01) compared with those in the control group. Moreover, the transcription and protein expression or phosphorylation levels of fecundity-related molecules, such as Akt, TOR, S6K, and Vg, were significantly decreased by capsaicin treatment. However, the effects disappeared between control group and CAP group after the TOR signaling pathway was inhibited by rapamycin. CONCLUSIONS Capsaicin can decrease the fecundity of An. stephensi by inhibiting the TOR signaling pathway. These data can help us to not only understand the effect of capsaicin on the reproductive ability of An. stephensi and its underlying mechanism, but also develop new efficient, safe, and pollution-free mosquito vector control agents.
Collapse
Affiliation(s)
- Jing Wang
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Shasha Yu
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Luhan Wang
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Tingting Liu
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Xuesen Yang
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Xiaobing Hu
- Centers for Disease Control and Prevention of Western Theater Command, Lanzhou, 730020 China
| | - Ying Wang
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| |
Collapse
|
6
|
Behri M, Teshima H, Kutsuwada K, Nakatake S, Ogihara MH, Taylor D. Production of the yolk protein precursor vitellogenin is mediated by target of rapamycin (TOR) in the soft tick Ornithodoros moubata (Acari: Argasidae). INSECT SCIENCE 2022; 29:1299-1308. [PMID: 35254737 DOI: 10.1111/1744-7917.13025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Initiation of vitellogenesis by blood feeding is essential for egg maturation in ticks. Nutrients derived from the blood meal are utilized by female ticks to synthesize the yolk protein precursor vitellogenin (Vg). Engorged Ornithodoros moubata ticks can synthesize Vg whether mated or virgin, thus O. moubata is an excellent model for studying the relative roles of blood feeding and mating in tick vitellogenesis. Injection of rapamycin into engorged O. moubata resulted in a reduction of ovarian growth and yolk accumulation in the oocytes of mated females. OmVg expression in the midgut and fat body and protein concentrations in the hemolymph significantly decreased in mated ticks after injection with rapamycin, indicating that inhibition of the nutrient-sensing target of rapamycin (TOR) pathway disrupts egg maturation at the levels of Vg expression and synthesis. These results suggest that the TOR-signaling pathway induces vitellogenesis in response to nutritional stimulation after a blood meal in O. moubata and is functionally independent of the mating-induced pathway.
Collapse
Affiliation(s)
- Meryem Behri
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruki Teshima
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keisuke Kutsuwada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shoko Nakatake
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mari H Ogihara
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - DeMar Taylor
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Zhang Q, Dou W, Taning CNT, Yu SS, Yuan GR, Shang F, Smagghe G, Wang JJ. miR-309a is a regulator of ovarian development in the oriental fruit fly Bactrocera dorsalis. PLoS Genet 2022; 18:e1010411. [PMID: 36112661 PMCID: PMC9518882 DOI: 10.1371/journal.pgen.1010411] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/28/2022] [Accepted: 09/04/2022] [Indexed: 11/21/2022] Open
Abstract
Fecundity is arguably one of the most important life history traits, as it is closely tied to fitness. Most arthropods are recognized for their extreme reproductive capacity. For example, a single female of the oriental fruit fly Bactrocera dorsalis, a highly invasive species that is one of the most destructive agricultural pests worldwide, can lay more than 3000 eggs during its life span. The ovary is crucial for insect reproduction and its development requires further investigation at the molecular level. We report here that miR-309a is a regulator of ovarian development in B. dorsalis. Our bioinformatics and molecular studies have revealed that miR-309a binds the transcription factor pannier (GATA-binding factor A/pnr), and this activates yolk vitellogenin 2 (Vg 2) and vitellogenin receptor (VgR) advancing ovarian development. We further show that miR-309a is under the control of juvenile hormone (JH) and independent from 20-hydroxyecdysone. Thus, we identified a JH-controlled miR-309a/pnr axis that regulates Vg2 and VgR to control the ovarian development. This study has further enhanced our understanding of molecular mechanisms governing ovarian development and insect reproduction. It provides a background for identifying targets for controlling important Dipteran pests. The ovary is a very critical organ for insect reproduction. Especially, many insect pests are famous for their large reproductive capacity. Therefore, understanding the molecular mechanisms involved in ovarian development could significantly contribute in the development of new insect pest control strategies. In this study, we report that miR-309a regulates the development of the ovary in an important dipteran pest, B. dorsalis, through a transcriptional factor, pannier (GATA-binding factor A/pnr), which in turn directly mediates the expression of yolk vitellogenin 2 (Vg 2) and vitellogenin receptor (VgR). Moreover, miR-309a is under the upstream control of juvenile hormone (JH). Here, in Dipterans, a novel JH-miR-309a-pnr-Vg-related genes regulatory pathway was found in ovarian development. This finding advances our understanding of a mechanism regulating insect ovarian development and provides new insights for potential targets to control dipteran pests through the reproductive strategy.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Chongqing, China
| | - Clauvis Nji Tizi Taning
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Chongqing, China
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Shan-Shan Yu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Chongqing, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Chongqing, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Chongqing, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Chongqing, China
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Ghent, Belgium
- * E-mail: (GS); (J-JW)
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Chongqing, China
- * E-mail: (GS); (J-JW)
| |
Collapse
|
8
|
Kuniyori M, Sato N, Yokoyama N, Kawazu SI, Xuan X, Suzuki H, Fujisaki K, Umemiya-Shirafuji R. Vitellogenin-2 Accumulation in the Fat Body and Hemolymph of Babesia-Infected Haemaphysalis longicornis Ticks. Front Cell Infect Microbiol 2022; 12:908142. [PMID: 35800383 PMCID: PMC9253295 DOI: 10.3389/fcimb.2022.908142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The protozoan parasite Babesia spp. invades into tick oocytes and remains in the offspring. The transovarial transmission phenomenon of Babesia in ticks has been demonstrated experimentally, but the molecular mechanisms remain unclear. Babesia invasion into oocytes occurs along with the progression of oogenesis. In the present study, to find the key tick factor(s) for Babesia transmission, we focused on molecules involved in yolk protein precursor (vitellogenin, Vg) synthesis and Vg uptake, which are crucial events in tick oogenesis. With a Haemaphysalis longicornis tick–Babesia ovata experimental model, the expression profiles of Akt, target of rapamycin, S6K, GATA, and Vg, Vg synthesis-related genes, and Vg receptor (VgR) and autophagy-related gene 6 (ATG6), Vg uptake-related genes, were analyzed using real-time PCR using tissues collected during the preovipositional period in Babesia-infected ticks. The expression levels of H. longicornis Vg-2 (HlVg-2) and HlVg-3 decreased in the fat body of Babesia-infected ticks 1 day after engorgement. In the ovary, HlVg-2 mRNA expression was significantly higher in Babesia-infected ticks than in uninfected ticks 1 and 2 days after engorgement and decreased 3 days after engorgement. HlVgR expression was significantly lower in Babesia-infected ticks than in uninfected ticks 2 and 4 days after engorgement. HlATG6 had a lower gene expression in Babesia-infected ticks compared to uninfected ticks 2 days after engorgement. Additionally, western blot analysis using protein extracts from each collected tissue revealed that H. longicornis Vg-2 (HlVg-2) accumulate in the fat body and hemolymph of Babesia-infected ticks. These results suggest that Vg uptake from the hemolymph to the ovary was suppressed in the presence of B. ovata. Moreover, HlVg-2 knockdown ticks had a lower detection rate of B. ovata DNA in the ovary and a significant reduction of B. ovata DNA in the hemolymph compared with control ticks. Taken together, our results suggest that accumulated HlVg-2 is associated with Babesia infection or transmission in the tick body. These findings, besides previous reports on VgR, provide important information to elucidate the transovarial transmission mechanisms of pathogens in tick vectors.
Collapse
Affiliation(s)
- Maki Kuniyori
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Nariko Sato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Shin-ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Kozo Fujisaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- National Agricultural and Food Research Organization, Tsukuba, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- *Correspondence: Rika Umemiya-Shirafuji,
| |
Collapse
|
9
|
|
10
|
Kozelková T, Doležel D, Grunclová L, Kučera M, Perner J, Kopáček P. Functional characterization of the insulin signaling pathway in the hard tick Ixodes ricinus. Ticks Tick Borne Dis 2021; 12:101694. [PMID: 33706210 DOI: 10.1016/j.ttbdis.2021.101694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/21/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022]
Abstract
Ticks are blood-feeding arachnids transmitting a variety of pathogens to humans and animals. A unique trait in tick physiology is their ability to engorge and digest large amounts of host blood, ensuring their high reproductive potential. Activation of the blood digestive machinery in the tick gut, as well as processes controlling maturation of ovaries, are triggered upon blood meal uptake by still largely unknown mechanisms. Sensing of the nutritional status in metazoan organisms is facilitated by the evolutionarily conserved Insulin Signaling Pathway (ISP) and the interlinked Target of Rapamycin (TOR) pathway. Recently, we have identified three components of these pathways in the hard tick Ixodes ricinus midgut transcriptome, namely a putative insulin receptor (InR), and the downstream intracellular serine/threonine kinases AKT and TOR. In this study, we primarily focus on the molecular and functional characterization of the I. ricinus insulin receptor (IrInR), the first InR characterized in Chelicerates. A phylogenetic analysis across the major Arthropod lineages demonstrated that ticks possess only one gene encoding an InR-related molecule. Tissue expression profiling by quantitative PCR in semi-engorged I. ricinus females revealed that the IrInR, as well as AKT (IrAKT) and TOR (IrTOR) are expressed in various organs, with the highest expression being detected in ovaries. We have further evaluated the impact of RNAi-mediated knock-down (KD) of IrInR, IrAKT, and IrTOR on tick blood-feeding and reproductive capacity. Weights of engorged IrInR KD females and laid egg clutches were reduced compared to the control group, and these quantitative parameters clearly correlated with the efficiency of RNAi-KD achieved in individual ticks. The most striking phenotype was observed for IrAKT KD that impaired tick feeding and completely aborted egg production. A recombinant extracellular fragment of the IrInR α-subunit was used to produce antibodies in experimental rabbits to assess its potential as a protective antigen against tick feeding and reproduction. Our data clearly indicate the functionality of the ISP in ticks and demonstrate the need for further investigation of specific roles played by the endogenous insulin-like peptides in tick physiological processes.
Collapse
Affiliation(s)
- Tereza Kozelková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - David Doležel
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Lenka Grunclová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Matěj Kučera
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
11
|
FoxO directly regulates the expression of TOR/S6K and vitellogenin to modulate the fecundity of the brown planthopper. SCIENCE CHINA-LIFE SCIENCES 2020; 64:133-143. [PMID: 32567002 DOI: 10.1007/s11427-019-1734-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/29/2020] [Indexed: 01/03/2023]
Abstract
As a conserved transcription factor, FoxO plays a crucial role in multiple physiological processes in vivo, including stress resistance, longevity, growth and reproduction. Previous studies on FoxO have focused on human, mouse, Drosophila melanogaster and Caenorhabditis elegans, while there are few reports on agricultural pests and little is known about how FoxO modulates insect fecundity. In Asia, the brown planthopper (BPH) Nilaparvata lugens (Stål) is one of the most serious pests in rice production and high fecundity is the basis of the outbreak of BPH. Here, using the genome-wide ChIP-seq of NlFoxO in BPH, we found that NlFoxO binds to the promoters of ribosomal proteinS6 kinase (NlS6K) and serine/threonine-protein kinase mTOR (NlTOR) and increases their expression levels. We also found that NlFoxO directly binds to the exon of vitellogenin (NlVg) and has a specific inhibitory effect on its expression. In addition, the number of eggs laid and their hatching rate decreased significantly after injection of NlFoxO double-stranded RNA into BPH adults. Our findings provide direct evidence that FoxO modulates insect fecundity through binding to the promoters of NlS6K, NlTOR and the exon of NlVg and affecting their gene expression in the Vg network.
Collapse
|
12
|
Wang F, Wang Y, Wang G, Zhang H, Kuang C, Zhou Y, Cao J, Zhou J. Ovary Proteome Analysis Reveals RH36 Regulates Reproduction via Vitellin Uptake Mediated by HSP70 Protein in Hard Ticks. Front Cell Infect Microbiol 2020; 10:93. [PMID: 32211346 PMCID: PMC7076983 DOI: 10.3389/fcimb.2020.00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/21/2020] [Indexed: 11/13/2022] Open
Abstract
Ticks are blood-sucking vector arthropods, which play an important role in transmitting pathogens between humans and animals. RH36 is an immunomodulatory protein expressed in the salivary glands, but not other organs, of partially fed Rhipicephalus haemaphysaloides ticks, and it reaches its peak on the day of tick engorgement. RH36 gene silencing inhibited tick blood feeding and induced a significant decrease in tick oviposition, indicating that another function of immunosuppressor RH36 was regulating tick reproduction. Why did RH36 protein expressed uniquely in the salivary gland regulate tick reproduction? RH36 regulated positively the expression of vitellogenin in ovary, which indicated RH36 protein played an important role in the integration of nutrition and reproduction. According to proteomic analysis, heat shock protein 70 (HSP70) was significantly down-regulated in the immature ovary of post-engorged ticks. In addition, gene silencing of HSP70 not only inhibited tick blood-sucking and the expression of vitellogenin, but also increased tick death rate. These results suggested RH36 affected tick vitellogenin uptake and then regulated ovary cell maturation by modulating the expression of HSP70 protein, and finally controlled tick oviposition.
Collapse
Affiliation(s)
- Fangfang Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guanghua Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ceyan Kuang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
13
|
Waltero C, de Abreu LA, Alonso T, Nunes-da-Fonseca R, da Silva Vaz I, Logullo C. TOR as a Regulatory Target in Rhipicephalus microplus Embryogenesis. Front Physiol 2019; 10:965. [PMID: 31417424 PMCID: PMC6684781 DOI: 10.3389/fphys.2019.00965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Embryogenesis is a metabolically intensive process carried out under tightly controlled conditions. The insulin signaling pathway regulates glucose homeostasis and is essential for reproduction in metazoan model species. Three key targets are part of this signaling pathway: protein kinase B (PKB, or AKT), glycogen synthase kinase 3 (GSK-3), and target of rapamycin (TOR). While the role of AKT and GSK-3 has been investigated during tick embryonic development, the role of TOR remains unknown. In this study, TOR and two other downstream effectors, namely S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), were investigated in in vitro studies using the tick embryonic cell line BME26. First, we show that exogenous insulin can stimulate TOR transcription. Second, TOR chemical inhibition led to a decrease in BME26 cell viability, loss of membrane integrity, and downregulation of S6K and 4E-BP1 transcription. Conversely, treating BME26 cells with chemical inhibitors of AKT or GSK-3 did not affect S6K and 4E-BP1 transcription, showing that TOR is specifically required to activate its downstream targets. To address the role of TOR in tick reproduction, in vivo studies were performed. Analysis of relative transcription during different stages of tick embryonic development showed different levels of transcription for TOR, and a maternal deposition of S6K and 4E-BP1 transcripts. Injection of TOR double-stranded RNA (dsRNA) into partially fed females led to a slight delay in oviposition, an atypical egg external morphology, decreased vitellin content in eggs, and decreased larval hatching. Taken together, our data show that the TOR signaling pathway is important for tick reproduction, that TOR acts as a regulatory target in Rhipicephalus microplus embryogenesis and represents a promising target for the development of compounds for tick control.
Collapse
Affiliation(s)
- Camila Waltero
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Leonardo Araujo de Abreu
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Thayná Alonso
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Rodrigo Nunes-da-Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
- Centro de Biotecnologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Umemiya-Shirafuji R, Mihara R, Fujisaki K, Suzuki H. Intracellular localization of vitellogenin receptor mRNA and protein during oogenesis of a parthenogenetic tick, Haemaphysalis longicornis. Parasit Vectors 2019; 12:205. [PMID: 31060579 PMCID: PMC6501394 DOI: 10.1186/s13071-019-3469-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vitellogenin (Vg), a key molecule for oocyte development synthesized in the fat body during blood-feeding, is released into the hemolymph and then taken into the oocytes via Vg receptor (VgR) in ticks. Previously, we showed that VgR mRNA is expressed in the ovary at the adult stage of parthenogenetic Haemaphysalis longicornis ticks and its expression increases after blood-feeding. However, intracellular localization of VgR mRNA and protein at each developmental stage of oocytes during oogenesis remains largely unclear. METHODS mRNA and protein expression profiles of H. longicornis VgR (HlVgR) in the oocytes from the unfed to oviposition periods were analyzed by real-time PCR, in situ hybridization, and immunostaining. To elucidate the timing of the onset of Vg uptake, RNA interference (RNAi)-mediated gene silencing of HlVgR was performed. RESULTS In situ hybridization revealed that HlVgR mRNA was detected in the cytoplasm of stage I-III oocytes, and weaker positive signals for HlVgR mRNA were found in the cell periphery of stage IV and V oocytes. Likewise, HlVgR protein was detected by immunostaining in the cytoplasm of stage I-III oocytes and in the cell periphery of stage IV and V oocytes. Each developmental stage of the oocytes showed distinct patterns of mRNA and protein expression of HlVgR. Moreover, RNAi of HlVgR caused delayed or arrested development in the oocytes. The ovaries of control ticks showed all developmental stages of oocytes, whereas stage I-III oocytes were found in the ovaries of HlVgR-RNAi ticks at 5 days after engorgement. CONCLUSIONS These results suggest that active uptake of Vg is required for development from stage III to stage IV during oogenesis. Our data clearly revealed an apparent shift in the intracellular localization of VgR for both mRNA and protein level in oocytes during oogenesis.
Collapse
Affiliation(s)
- Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Ryo Mihara
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Kozo Fujisaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.,National Agricultural and Food Research Organization, Kannondai 3-1-5, Tsukuba, Ibaraki, 305-0856, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
15
|
Gao J, Guo H, Sun Y, Ge F. Differential accumulation of leucine and methionine in red and green pea aphids leads to different fecundity in response to nitrogen fertilization. PEST MANAGEMENT SCIENCE 2018; 74:1779-1789. [PMID: 29384253 DOI: 10.1002/ps.4875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/12/2018] [Accepted: 01/23/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Nitrogen fertilization affects plants directly and herbivorous insects indirectly. Although insect species and even genotypes are known to differ in their responses to nitrogen fertilization, the physiological and molecular mechanisms remain unclear. This study assessed the fecundity and related regulatory signaling pathways in the green and red morphs of pea aphid (Acyrthosiphon pisum) feeding on Medicago truncatula with and without nitrogen fertilization. RESULTS Nitrogen fertilization significantly increased foliar amino acid concentrations and consequently increased the concentrations of several individual essential amino acids in body tissue of the green morph. The increased concentration of Leu, Ile, Met and Val was consistent with enhanced biosynthesis of these amino acids in the endosymbiont Buchnera. Under nitrogen fertilization, Leu and Met accumulated in the green morph enhanced the target of rapamycin (TOR) signaling pathway, which consequently increased fecundity by promoting vitellogenin synthesis. In the red morph, however, nitrogen fertilization did not change the concentration of essential amino acids, TOR signaling or fecundity. CONCLUSION Specific amino acids accumulation and the nutrient transduction pathway in pea aphids are responsible for genotype-specific fecundity in response to nitrogen fertilization, which could be used as potential target for pest control. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Sandlund L, Kongshaug H, Nilsen F, Dalvin S. Molecular characterization and functional analysis of components of the TOR pathway of the salmon louse, Lepeophtheirus salmonis (Krøyer, 1838). Exp Parasitol 2018; 188:83-92. [PMID: 29625096 DOI: 10.1016/j.exppara.2018.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/16/2018] [Accepted: 04/02/2018] [Indexed: 11/27/2022]
Abstract
The salmon louse Lepeophtheirus salmonis (Copepods, Caligida) is a marine ectoparasite infecting salmonid fishes in the northern hemisphere. At present, salmon lice infections are the most severe disease problem in the salmon farming industry causing significant economic losses. Due to development of resistance towards available chemotherapeutants, it is clear that new chemotherapeutants or non-chemical control methods are essential to manage the parasite in the future. The TOR signaling pathway is present in all metazoans and is a major regulator of cellular activity according to nutrient availability. In this study, we identified the TOR pathway genes in salmon louse; LsTSC1, LsTSC2, LsRheb, LsTOR, LsRaptor and LsRictor. RNA interference mediated gene silencing was performed to elucidate the functional role of each member of the pathway. Our results show that interference of the TOR signaling pathway either directly or indirectly inhibits many biological processes including egg maturation. In addition, the effect of gene knock-down results in more comprehensive physiological defects when targeting TORC1 and the upstream regulator Rheb. This is the first report on the TOR pathway in the salmon louse and that our research contributes to the basic knowledge of the parasite that could lead to development of novel treatment methods.
Collapse
Affiliation(s)
- Liv Sandlund
- SLRC-Sea Lice Research Center, Institute of Marine Research, 5817 Bergen, Norway
| | - Heidi Kongshaug
- SLRC-Sea Lice Research Center, Department of Biology, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Frank Nilsen
- SLRC-Sea Lice Research Center, Department of Biology, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Sussie Dalvin
- SLRC-Sea Lice Research Center, Institute of Marine Research, 5817 Bergen, Norway.
| |
Collapse
|
17
|
Huang X, Feng B, Huang H, Ye H. In vitro stimulation of vitellogenin expression by insulin in the mud crab, Scylla paramamosain, mediated through PI3K/Akt/TOR pathway. Gen Comp Endocrinol 2017. [PMID: 28647319 DOI: 10.1016/j.ygcen.2017.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Vitellogenin (vtg) synthesis, known as vitellogenesis, is one of most important processes in the ovarian development of oviparous animals. Recently, multiple insulin-like peptides (ILPs) have been reported in crustacean species due to the application of transcriptome sequencing. In this context, the present study reports that the addition of an exogenous ILP, bovine insulin, stimulates vtg (termed Sp-vtg) expression in hepatopancreatic explants from the mud crab, Scylla paramamosain, by in vitro experiments. Homologous genes of key factors in ILP signaling, Sp-PI3K, Sp-Akt, Sp-Rheb and Sp-TOR, have been isolated in S. paramamosain based on a transcriptome database. Further experiments reveal that the RNAi-mediated Sp-Akt gene knockdown and the inhibitors of Sp-PI3K and Sp-TOR block the stimulation of Sp-vtg expression by insulin. The combined results implicate the endogenous ILP and its corresponding signaling in the regulation of Sp-vtg synthesis in S. paramamosain.
Collapse
Affiliation(s)
- Xiaoshuai Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Biyun Feng
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Collaborative Innovation Center for Development and Utilization of Marine Biological Resources, Xiamen 361102, China.
| |
Collapse
|
18
|
Wang F, Lu X, Guo F, Gong H, Zhang H, Zhou Y, Cao J, Zhou J. The immunomodulatory protein RH36 is relating to blood-feeding success and oviposition in hard ticks. Vet Parasitol 2017; 240:49-59. [PMID: 28449954 DOI: 10.1016/j.vetpar.2017.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 11/30/2022]
Abstract
An immunomodulatory protein designated RH36 was identified in the tick Rhipicephalus haemaphysaloides. The cDNA sequence of RH36 has 844bp and encodes a deduced protein with a predicted molecular weight of 24kDa. Bioinformatics analysis indicated that RH36 presented a degree of similarity of 34.36% with the immunomodulatory protein p36 from the tick Dermacentor andersoni. The recombinant RH36 (rRH36) expressed in Sf9 insect cells suppressed the T-lymphocyte mitogen-driven in vitro proliferation of splenocytes and the expression of several cytokines such as IL-2, IL-12, and TNF-α. Furthermore, the proliferation of splenocytes isolated from rRH36-inoculated mice was significantly lower than that in control mice, suggesting that rRH36 could directly suppress immune responses in vivo. In addition, microarray analysis of splenocytes indicated that the expression of several immunomodulatory genes was downregulated by rRH36. The silencing of the RH36 gene by RNAi led to a 37.5% decrease in the tick attachment rate 24h after placement into the rabbit ears, whereas vaccination with RH36 caused a 53.06% decrease in the tick engorgement rate. Unexpectedly, RNAi induced a significant decrease in the oviposition rate, ovary weight at day 12 after engorgement, and egg-hatching rate. The effects of RH36 on blood feeding and oviposition were further confirmed by vaccination tests using the recombinant protein. These results indicate that RH36 is a novel member of immunosuppressant proteins and affects tick blood feeding and oviposition.
Collapse
Affiliation(s)
- Fangfang Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiaojuan Lu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Fengxun Guo
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
19
|
TORC1 Regulates Developmental Responses to Nitrogen Stress via Regulation of the GATA Transcription Factor Gaf1. mBio 2015; 6:e00959. [PMID: 26152587 PMCID: PMC4488950 DOI: 10.1128/mbio.00959-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The TOR (target of rapamycin [sirolimus]) is a universally conserved kinase that couples nutrient availability to cell growth. TOR complex 1 (TORC1) in Schizosaccharomyces pombe positively regulates growth in response to nitrogen availability while suppressing cellular responses to nitrogen stress. Here we report the identification of the GATA transcription factor Gaf1 as a positive regulator of the nitrogen stress-induced gene isp7+, via three canonical GATA motifs. We show that under nitrogen-rich conditions, TORC1 positively regulates the phosphorylation and cytoplasmic retention of Gaf1 via the PP2A-like phosphatase Ppe1. Under nitrogen stress conditions when TORC1 is inactivated, Gaf1 becomes dephosphorylated and enters the nucleus. Gaf1 was recently shown to negatively regulate the transcription induction of ste11+, a major regulator of sexual development. Our findings support a model of a two-faceted role of Gaf1 during nitrogen stress. Gaf1 positively regulates genes that are induced early in the response to nitrogen stress, while inhibiting later responses, such as sexual development. Taking these results together, we identify Gaf1 as a novel target for TORC1 signaling and a step-like mechanism to modulate the nitrogen stress response. TOR complex 1 (TORC1) is an evolutionary conserved protein complex that positively regulates growth and proliferation, while inhibiting starvation responses. In fission yeast, the activity of TORC1 is downregulated in response to nitrogen starvation, and cells reprogram their transcriptional profile and prepare for sexual development. We identify Gaf1, a GATA-like transcription factor that regulates transcription and sexual development in response to starvation, as a downstream target for TORC1 signaling. Under nitrogen-rich conditions, TORC1 positively regulates the phosphorylation and cytoplasmic retention of Gaf1 via the PP2A-like phosphatase Ppe1. Under nitrogen stress conditions when TORC1 is inactivated, Gaf1 becomes dephosphorylated and enters the nucleus. Budding yeast TORC1 regulates GATA transcription factors via the phosphatase Sit4, a structural homologue of Ppe1. Thus, the TORC1-GATA transcription module appears to be conserved in evolution and may also be found in higher eukaryotes.
Collapse
|
20
|
Lattorff HMG, Buchholz J, Fries I, Moritz RFA. A selective sweep in a Varroa destructor resistant honeybee (Apis mellifera) population. INFECTION GENETICS AND EVOLUTION 2015; 31:169-76. [PMID: 25660040 DOI: 10.1016/j.meegid.2015.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 11/18/2022]
Abstract
The mite Varroa destructor is one of the most dangerous parasites of the Western honeybee (Apis mellifera) causing enormous colony losses worldwide. Various chemical treatments for the control of the Varroa mite are currently in use, which, however, lead to residues in bee products and often to resistance in mites. This facilitated the exploration of alternative treatment methods and breeding for mite resistant honeybees has been in focus for breeders in many parts of the world with variable results. Another approach has been applied to a honeybee population on Gotland (Sweden) that was exposed to natural selection and survived Varroa-infestation for more than 10years without treatment. Eventually this population became resistant to the parasite by suppressing the reproduction of the mite. A previous QTL mapping study had identified a region on chromosome 7 with major loci contributing to the mite resistance. Here, a microsatellite scan of the significant candidate QTL regions was used to investigate potential footprints of selection in the original population by comparing the study population on Gotland before (2000) and after selection (2007). Genetic drift had caused an extreme loss of genetic diversity in the 2007 population for all genetic markers tested. In addition to this overall reduction of heterozygosity, two loci on chromosome 7 showed an even stronger and significant reduction in diversity than expected from genetic drift alone. Within the selective sweep eleven genes are annotated, one of them being a putative candidate to interfere with reduced mite reproduction. A glucose-methanol-choline oxidoreductase (GMCOX18) might be involved in changing volatiles emitted by bee larvae that might be essential to trigger oogenesis in Varroa.
Collapse
Affiliation(s)
- H Michael G Lattorff
- Institut für Biologie, Tierphysiologie, Martin-Luther-Universität Halle-Wittenberg, Domplatz 4, 06099 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
| | - Josephine Buchholz
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 4, 06099 Halle (Saale), Germany
| | - Ingemar Fries
- Department of Ecology, Swedish University of Agricultural Sciences, P.O. Box 7044, Uppsala 750-05, Sweden
| | - Robin F A Moritz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany; Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 4, 06099 Halle (Saale), Germany; Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
21
|
Ali A, Tirloni L, Isezaki M, Seixas A, Konnai S, Ohashi K, da Silva Vaz Junior I, Termignoni C. Reprolysin metalloproteases from Ixodes persulcatus, Rhipicephalus sanguineus and Rhipicephalus microplus ticks. EXPERIMENTAL & APPLIED ACAROLOGY 2014; 63:559-578. [PMID: 24687173 DOI: 10.1007/s10493-014-9796-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Metalloproteases (MPs) have been considered essential for blood feeding and other physiological functions in several hematophagous animals, including ticks. We report the characterization of MP sequences of three important ticks from Asia, Africa and America: Ixodes persulcatus (Ip-MPs), Rhipicephalus sanguineus (Rs-MPs) and R. microplus (BrRm-MPs). Amino acid sequence identity between R. microplus and R. sanguineus MPs ranged from 76 to 100 %, and identities among I. persulcatus, I. ricinus and I. scapularis MP sequences ranged from 88 to 97 %. This high sequence identity and typical functional motifs show that all sequences are MPs. The presence of a zinc binding site, a Met-turn and cysteine rich domain at the C-terminal region indicates that these proteins belong to the reproplysin family of MPs. Differences in amino acid sequences of BrRm-MP1, BrRm-MP2, BrRm-MP4 and BrRm-MP5 (from Porto Alegre strain ticks) were 6, 2, 7 and 5 %, respectively, when compared with sequences deposited in GenBank for the same genes from other R. microplus isolates. Analyses of MPs predicted that they have various highly antigenic regions. Semi-quantitative RT-PCR analysis revealed the presence of transcripts in salivary glands of partially and fully fed female ticks. None of these transcripts were observed in males (except BrRm-MP4) and eggs. These enzymes may be functional components required during tick feeding to manipulate host defenses and support tick hematophagy.
Collapse
Affiliation(s)
- Abid Ali
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, C.P. 15005, Porto Alegre, RS, 91501-970, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Umemiya-Shirafuji R, Galay RL, Maeda H, Kawano S, Tanaka T, Fukumoto S, Suzuki H, Tsuji N, Fujisaki K. Expression analysis of autophagy-related genes in the hard tick Haemaphysalis longicornis. Vet Parasitol 2014; 201:169-75. [DOI: 10.1016/j.vetpar.2014.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/14/2014] [Accepted: 01/24/2014] [Indexed: 12/16/2022]
|