1
|
Schwantes U. Impact of anthropogenous environmental factors on the marine ecosystem of trophically transmitted helminths and hosting seabirds: Focus on North Atlantic, North Sea, Baltic and the Arctic seas. Helminthologia 2023; 60:300-326. [PMID: 38222492 PMCID: PMC10787638 DOI: 10.2478/helm-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 09/21/2023] [Indexed: 01/16/2024] Open
Abstract
Alongside natural factors, human activities have a major impact on the marine environment and thus influence processes in vulnerable ecosystems. The major purpose of this review is to summarise the current understanding as to how manmade factors influence the marine biocenosis of helminths, their intermediate hosts as well as seabirds as their final hosts. Moreover, it highlights current knowledge gaps regarding this ecosystem, which should be closed in order to gain a more complete understanding of these interactions. This work is primarily focused on helminths parasitizing seabirds of the North Atlantic and the Arctic Ocean. The complex life cycles of seabird helminths may be impacted by fishing and aquaculture, as they interfere with the abundance of fish and seabird species, while the latter also affects the geographical distribution of intermediate hosts (marine bivalve and fish species), and may therefore alter the intertwined marine ecosystem. Increasing temperatures and seawater acidification as well as environmental pollutants may have negative or positive effects on different parts of this interactive ecosystem and may entail shifts in the abundance or regional distribution of parasites and/or intermediate and final hosts. Organic pollutants and trace elements may weaken the immune system of the hosting seabirds and hence affect the final host's ability to control the endoparasites. On the other hand, in some cases helminths seem to function as a sink for trace elements resulting in decreased concentrations of heavy metals in birds' tissues. Furthermore, this article also describes the role of helminths in mass mortality events amongst seabird populations, which beside natural causes (weather, viral and bacterial infections) have anthropogenous origin as well (e.g. oil spills, climate change, overfishing and environmental pollution).
Collapse
Affiliation(s)
- U. Schwantes
- Verein Jordsand zum Schutz der Seevögel und der Natur e.V., Ahrensburg, Germany
| |
Collapse
|
2
|
de Buron I, Hill-Spanik KM, Baker T, Fignar G, Broach J. Infection of Atlantic tripletail Lobotes surinamensis (Teleostei: Lobotidae) by brain metacercariae Cardiocephaloides medioconiger (Digenea: Strigeidae). PeerJ 2023; 11:e15365. [PMID: 37214094 PMCID: PMC10194066 DOI: 10.7717/peerj.15365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/16/2023] [Indexed: 05/24/2023] Open
Abstract
Three juvenile Atlantic tripletail Lobotes surinamensis caught opportunistically in Charleston Harbor (South Carolina, USA) and maintained in captivity for over three months displayed an altered swimming behavior. While no direct causation can be demonstrated herein, fish were infected in their brain by strigeid trematode larvae (metacercariae) of Cardiocephaloides medioconiger, which were identified via ITS2 and 28S ribosomal RNA gene sequencing. Histology showed nonencysted metacercariae within the brain ventricle between the optic tectum and tegmentum, causing distortion of tegmental parenchyma. Aggregates of mononuclear inflammatory cells were in the ventricle adjacent to metacercariae. Metacercarial infection by Cardiocephaloides medioconiger has been reported from the brain and eyes of only two other fish species from the northern US Atlantic coast: the grey mullet Mugil cephalus and silverside Menidia menidia, but this identification is problematic and needs molecular verification. Atlantic tripletail is a new report as a second intermediate host for C. medioconiger and South Carolina is a new locality. Cardiocephaloides species in general have a low host specificity and infection by C. medioconiger could propagate to other fishes and affect neighboring natural ecosystems.
Collapse
Affiliation(s)
- Isaure de Buron
- Department of Biology, College of Charleston, Charleston, SC, United States of America
| | | | - Tiffany Baker
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States of America
| | - Gabrielle Fignar
- Marine Resources Research Institute, South Carolina Department of Natural Resources, Charleston, SC, United States of America
| | - Jason Broach
- Marine Resources Research Institute, South Carolina Department of Natural Resources, Charleston, SC, United States of America
| |
Collapse
|
3
|
Born-Torrijos A, van Beest GS, Merella P, Garippa G, Raga JA, Montero FE. Mapping a brain parasite: Occurrence and spatial distribution in fish encephalon. INTERNATIONAL JOURNAL FOR PARASITOLOGY: PARASITES AND WILDLIFE 2023; 21:22-32. [PMID: 37081833 PMCID: PMC10111940 DOI: 10.1016/j.ijppaw.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Parasites, especially brain-encysting trematodes, can have an impact on host behaviour, facilitating the transmission to next host and completion of the life cycle, but insufficient research has been done on whether specific brain regions are targeted. Using Cardiocephaloides longicollis as a laboratory model, the precise distribution of metacercariae in experimentally-infected, wild and farmed fish was mapped. The brain regions targeted by this parasite were explored, also from a histologic perspective, and potential pathogenic effects were evaluated. Experimental infections allowed to reproduce the natural infection intensity of C. longicollis, with four times higher infection intensity at the higher dose (150 vs 50 cercariae). The observed metacercarial distribution, similar among all fish groups, may reflect a trematode species-specific pattern: metacercariae occur with highest density in the optic lobe area (primarily infecting the periventricular gray zone of optic tectum) and the medulla oblongata, whereas other areas such as the olfactory lobes and cerebellar lobes may be occupied when the more frequently invaded parts of the brain were crowded. Mono- and multicysts (i.e. formed either with a single metacercaria, or with 2-25 metacercariae encapsulated together) may be formed depending on the aggregation and timing of metacercariae arrival, with minor host inflammatory response. Larvae of C. longicollis colonizing specific brain areas may have an effect on the functions associated with these areas, which are generally related to sensory and motor functions, but are also related to other host fitness traits such as school maintenance or recognition of predators. The detailed information on the extent and distribution of C. longicollis in fish encephalon sets the ground to understand the effects of brain parasites on fish, but further investigation to establish if C. longicollis, through purely mechanical damage (e.g., occupation, pressure and displacement), has an actual impact on host behaviour remains to be tested under controlled experimental conditions.
Collapse
Affiliation(s)
- Ana Born-Torrijos
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, Netherlands
- Corresponding author. Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, Netherlands.
| | - Gabrielle S. van Beest
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, PO Box 22 085, 46071, Valencia, Spain
| | - Paolo Merella
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Giovanni Garippa
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Juan Antonio Raga
- Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, PO Box 22 085, 46071, Valencia, Spain
| | - Francisco E. Montero
- Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, PO Box 22 085, 46071, Valencia, Spain
| |
Collapse
|
4
|
Bennett J, Presswell B, Poulin R. Tracking life cycles of parasites across a broad taxonomic scale in a marine ecosystem. Int J Parasitol 2023; 53:285-303. [PMID: 37001631 DOI: 10.1016/j.ijpara.2023.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 03/31/2023]
Abstract
Parasitic helminths exhibit remarkable diversity in their life cycles, although few parasite species have their whole life cycles resolved. Owing to the fact that parasite life stages within hosts are often not comparable using morphological data, genetic data provides convincing evidence of transmission pathways between intermediate and definitive hosts. We took this approach to an ecosystem level, genetically matching parasite (acanthocephalan, cestode, nematode and trematode) life stages across a broad taxonomic range of intermediate and definitive hosts (invertebrates, seabirds, elasmobranchs and teleost fish) in Otago's (New Zealand) coastal marine ecosystem. We identified which transmission routes are utilized by the most parasite species and assessed which intermediate hosts are most important in facilitating the transmission of parasites in this ecosystem. Our findings reveal 59 new records of larval parasites infecting their respective intermediate hosts and 289 transmission pathways utilized by 35 helminth species to complete their life cycles. Sprat, triplefin and arrow squid all hosted the highest number of larval parasite species, suggesting they play important roles as intermediate hosts. We then used the new life cycle data to provide a synthetic overview of the life cycles known for various parasite groups in New Zealand. This study highlights how studying parasite life cycles can enhance our understanding of the ecology and evolution of parasites and hosts in natural systems, beyond simply resolving life cycles.
Collapse
Affiliation(s)
- Jerusha Bennett
- Zoology Department, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| | - Bronwen Presswell
- Zoology Department, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Robert Poulin
- Zoology Department, University of Otago, P.O. Box 56, Dunedin, New Zealand
| |
Collapse
|
5
|
van Beest GS, Montero FE, Padrós F, Raga JA, Born-Torrijos A. The versatility of simplicity: Structures of Cardiocephaloides longicollis used for different purposes during cercarial transmission. Integr Comp Biol 2022; 62:icac102. [PMID: 35767868 DOI: 10.1093/icb/icac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transmission and infection strategies are critical for completing the life cycles of trematode parasites, which are characterized by complex life cycles involving multiple hosts and stages. Transmission between the first and second intermediate hosts typically relies on cercariae, a free-swimming larval stage that displays a series of behaviors to efficiently disperse, locate, attach to, and infect the next host. The aim of this study is to provide detailed information on behaviors used by furcocercariae (bifurcated tail) during its transmission from the snail to the fish host, using the laboratory-established model of Cardiocephaloides longicollis (Strigeidae). These cercariae are released from snails into seawater, where they swim, locate, penetrate the skin of fish, and encyst as metacercariae in their brain. In a series of in vivo assays, freshly-emerged cercariae were used to visually study their behavior and locomotion. Histopathology of experimentally infected gilthead seabreams with C. longicollis, taken at sequential post-infections times, were analysed to localize the migrating cercariae to the fish brain. Our results show that simplicity and versatility are the key features for the success of cercariae transmission by using their organs for different purposes. While 80% of the behavior was spent in a resting position, the most common swimming behavior was with tail-first, which is commonly described in furcocercariae to reach the host microhabitat. However, C. longicollis relies more on the furcae of the tail by using them as a propeller providing thrust and guidance when they swim, instead of using the tail stem. After attaching to the fish skin, cercariae rapidly creep on it using the oral- and ventral-suckers simulating a leech-like movement until they find a suitable penetration site. To penetrate, cercariae press the cephalic structures against the skin, while the ventral sucker anchors the cercariae to it. After this, they switch their locomotion to a slow peristaltic movement, opening the path through tissues with the help of their cephalic structures and anchoring their body with their surface spines. This is consistent with the post-penetration histological analyses, which suggested that C. longicollis cercariae move between the cells of the connective tissue and muscle fibers when migrating towards the fish's brain, without provoking relevant tissue damage or host responses. Understanding the versatility of cercarial structures to adapt to external conditions enriches our knowledge on parasites and their transmission ecology, opening the door to the design of avoidance methods in fish farms struggling with harmful parasites.
Collapse
Affiliation(s)
- G S van Beest
- Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, PO Box 22 085, 46071 Valencia, Spain
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - F E Montero
- Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, PO Box 22 085, 46071 Valencia, Spain
| | - F Padrós
- Fish Diseases Diagnostic Service, BAVE, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - J A Raga
- Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, PO Box 22 085, 46071 Valencia, Spain
| | - A Born-Torrijos
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
6
|
Williams MA, Faiad S, Claar DC, French B, Leslie KL, Oven E, Guerra AS, Micheli F, Zgliczynski BJ, Haupt AJ, Sandin SA, Wood CL. Life history mediates the association between parasite abundance and geographic features. J Anim Ecol 2022; 91:996-1009. [PMID: 35332535 DOI: 10.1111/1365-2656.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/16/2022] [Indexed: 11/27/2022]
Abstract
Though parasites are ubiquitous in marine ecosystems, predicting the abundance of parasites present within marine ecosystems has proven challenging due to the unknown effects of multiple interacting environmental gradients and stressors. Furthermore, parasites often are considered as a uniform group within ecosystems despite their significant diversity. We aim to determine the potential importance of multiple predictors of parasite abundance in coral reef ecosystems, including reef area, island area, human population density, chlorophyll-a, host diversity, coral cover, host abundance, and island isolation. Using a model selection approach within a database of more than 1200 individual fish hosts and their parasites from 11 islands within the Pacific Line Islands archipelago, we reveal that geographic gradients, including island area and island isolation, emerged as the best predictors of parasite abundance. Life history moderated the relationship; parasites with complex life cycles increased in abundance with increasing island isolation, while parasites with direct life cycles decreased with increasing isolation. Direct life cycle parasites increased in abundance with increasing island area, though complex life cycle parasite abundance was not associated with island area. This novel analysis of a unique dataset indicates that parasite abundance in marine systems cannot be predicted precisely without accounting for the independent and interactive effects of each parasite's life history and environmental conditions.
Collapse
Affiliation(s)
- Maureen A Williams
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA.,Department of Biology, McDaniel College, Baltimore, Maryland, USA
| | - Sara Faiad
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Danielle C Claar
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Beverly French
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Katie L Leslie
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Emily Oven
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Ana Sofia Guerra
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Fiorenza Micheli
- Center for Ocean Solutions, Stanford University, Pacific Grove, CA, USA.,Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Brian J Zgliczynski
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Alison J Haupt
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA.,Department of Marine Science, California State University Monterey Bay, Marina, CA, USA
| | - Stuart A Sandin
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Chelsea L Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Yoneva A, van Beest GS, Born-Torrijos A. Search, find, and penetrate: ultrastructural data of furcocercariae of Cardiocephaloides longicollis (Digenea, Strigeidae) explain their transmission and infection strategy into fish hosts. Parasitol Res 2022; 121:877-889. [PMID: 35091840 DOI: 10.1007/s00436-022-07448-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/23/2022] [Indexed: 11/28/2022]
Abstract
The present study provides an overview of the structures linked to fish host finding, recognition, and invasion of one of the most commonly occurring morphotypes among trematodes, furcocercariae. For this, we use free-swimming cercariae of the strigeid Cardiocephaloides longicollis (Rudolphi 1819) Dubois, 1982. Their elongated cercarial body and bifurcated tail are covered by a tegument with an irregular surface, showing numerous folds arranged in different directions and a typical syncytial organization. Both the body and the bifurcated tail are covered with short spines, rose-thorn shaped, as well as four types of sensory papillae, distinguished by the presence or absence of a cilium, its length, and their position on the cercarial body. These papillae are especially important for free-living stages that rely on external stimuli to locate and adhere to the host. A specialized anterior organ is located at the anterior part of the cercariae and is encircled by a triangle-shaped group of enlarged pre-oral spines followed by a transverse row of enlarged post-oral spines that, together with the sensory papillae, allow active finding, recognition, and penetration into fish. The ventral sucker, covered with inner-oriented spines, sensory papillae, and cilia, helps during this process. The cercariae of C. longicollis possess three types of gland cells (a head gland and two types of penetration glands), each containing different types of secretory granules that play a role in host invasion. The protonephridial excretory system consists of an excretory bladder, a system of collecting tubules, flame cells, and two excretory pores in the middle of each furcae, which serve to control osmoregulation in their marine environment, as well as to eliminate metabolic waste. Together with the four types of sensory endings, the central ganglion forms the nervous system. Our results add novel information on the ultrastructure of strigeid furcocercariae, being essential to interpret these data in relation of their functional role to better understand the transmission and penetration strategies that cercariae display to infect their fish hosts.
Collapse
Affiliation(s)
- Aneta Yoneva
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, 370 05, České Budějovice, Czech Republic.,Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, Sofia, 1113, Bulgaria
| | - Gabrielle S van Beest
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, 370 05, České Budějovice, Czech Republic.,Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, 46980, Paterna, Valencia, Spain
| | - Ana Born-Torrijos
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
8
|
Lester RJG, Blomberg SP. Three methods to measure parasite aggregation using examples from Australian fish parasites. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Robert J. G. Lester
- School of Biological Sciences University of Queensland Brisbane Queensland Australia
| | | |
Collapse
|
9
|
Mechanisms by which predators mediate host-parasite interactions in aquatic systems. Trends Parasitol 2021; 37:890-906. [PMID: 34281798 DOI: 10.1016/j.pt.2021.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023]
Abstract
It is often assumed that predators reduce disease prevalence and transmission by lowering prey population density and/or by selectively feeding on infected individuals. However, recent studies, many of which come from aquatic systems, suggest numerous alternative mechanisms by which predators can influence disease dynamics in their prey. Here, we review the mechanisms by which predators can mediate host-parasite interactions in aquatic prey. We highlight how life histories of aquatic hosts and parasites influence transmission pathways and describe how such pathways intersect with predation to shape disease dynamics. We also provide recommendations for future studies; experiments that account for multiple effects of predators on host-parasite interactions, and that examine how predator-host-parasite interactions shift under changing environmental conditions, are particularly needed.
Collapse
|
10
|
Vermaak A, Smit NJ, Kudlai O. Molecular and morphological characterisation of the metacercariae of two species of Cardiocephaloides (Digenea: Strigeidae) infecting endemic South African klipfish (Perciformes: Clinidae). Folia Parasitol (Praha) 2021; 68. [PMID: 33847601 DOI: 10.14411/fp.2021.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/23/2020] [Indexed: 11/19/2022]
Abstract
South African clinids are a major component of the temperate intertidal regions that are also known to participate in life cycles and transmission of several groups of parasites. However, the knowledge of trematode diversity of these fishes is incomplete. In this study, two species of Clinus Cuvier, the super klipfish Clinus superciliosus (Linnaeus) and the bluntnose klipfish Clinus cottoides Valenciennes, were collected from six localities along the South African coast and examined for the presence of trematodes. Metacercariae of Cardiocephaloides Sudarikov, 1959 were found in the eye vitreous humour and brain of C. superciliosus and in the eye vitreous humour of C. cottoides. Detailed analyses integrating morphological and molecular sequence data (28S rDNA, ITS2 rDNA-region, and COI mtDNA) revealed that these belong to two species, Cardiocephaloides physalis (Lutz, 1926) and an unknown species of Cardiocephaloides. This study provides the first report of clinid fishes serving as intermediate hosts for trematodes, reveals that the diversity of Cardiocephaloides in South Africa is higher than previously recorded, and highlights the need for further research to elucidate the life cycles of these trematode species. The broad geographical distribution of Cardiocephaloides spp. was confirmed in the present study based on molecular sequence data. The host-parasite interactions between clinid fishes and metacercariae of Cardiocephaloides are yet to be explored.
Collapse
Affiliation(s)
- Anja Vermaak
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Olena Kudlai
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.,Institute of Ecology, Nature Research Centre, Vilnius, Lithuania.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
11
|
Phylogenetic Relationships of Cardiocephaloides spp. (Digenea, Diplostomoidea) and the Genetic Characterization of Cardiocephaloides physalis from Magellanic Penguin, Spheniscus magellanicus, in Chile. Acta Parasitol 2020; 65:525-534. [PMID: 31919798 DOI: 10.2478/s11686-019-00162-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/17/2019] [Indexed: 11/21/2022]
Abstract
PURPOSE Cardiocephaloides is a small genus of strigeid digeneans with an essentially cosmopolitan distribution. Most members of Cardiocephaloides are found in larid birds, however, Cardiocephaloides physalis is an exception and parasitizes penguins in some coastal regions of South America and South Africa. No prior molecular phylogenetic studies have included DNA sequence data of C. physalis. Herein, we provide molecular phylogenetic analyses of Cardiocephaloides using DNA sequences from five species of these strigeids. METHODS Adult Cardiocephaloides spp. were obtained from larid birds and penguins collected from 3 biogeographical realms (Palearctic, Nearctic and Neotropics). We have generated sequences of the complete ITS region and partial 28S gene of the nuclear ribosomal DNA, along with partial sequences of the mitochondrial CO1 gene for C. physalis, C. medioconiger and the type species of the genus, C. longicollis and used them for phylogenetic inference. RESULTS Cardiocephaloides spp. appeared as a 100% supported clade in the phylogenetic tree based on 28S sequences. The position of C. physalis varied between the phylogenetic trees based on the relatively conservative 28S gene on one hand, and variable ITS1 and COI sequences on the other. Cardiocephaloides physalis was nested within the clade of Cardiocephaloides spp. in the 28S tree and appeared as the sister group to the remaining members of the genus in the ITS1 region and COI trees. We detected 0.4-1.6% interspecific divergence in 28S, 1.9-6.9% in the ITS region and 8.7-11.8% in CO1 sequences of Cardiocephaloides spp. Our 28S sequence of C. physalis from South America and a shorter sequence from Africa available in the GenBank were identical. CONCLUSION Cardiocephaloides as represented in the currently available dataset is monophyletic with C. physalis parasitism in penguins likely resulting from a secondary host-switching event. Identical 28S sequences of C. physalis from South America and Africa cautiously confirm the broad distribution of this species, although comparison of faster mutating genes (e. g., CO1) is recommended for a better substantiated conclusion.
Collapse
|
12
|
Scheifler M, Ruiz-Rodríguez M, Sanchez-Brosseau S, Magnanou E, Suzuki MT, West N, Duperron S, Desdevises Y. Characterization of ecto- and endoparasite communities of wild Mediterranean teleosts by a metabarcoding approach. PLoS One 2019; 14:e0221475. [PMID: 31504055 PMCID: PMC6736230 DOI: 10.1371/journal.pone.0221475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/07/2019] [Indexed: 02/01/2023] Open
Abstract
Next-generation sequencing methods are increasingly used to identify eukaryotic, unicellular and multicellular symbiont communities within hosts. In this study, we analyzed the non-specific reads obtained during a metabarcoding survey of the bacterial communities associated to three different tissues collected from 13 wild Mediterranean teleost fish species. In total, 30 eukaryotic genera were identified as putative parasites of teleosts, associated to skin mucus, gills mucus and intestine: 2 ascomycetes, 4 arthropods, 2 cnidarians, 7 nematodes, 10 platyhelminthes, 4 apicomplexans, 1 ciliate as well as one order in dinoflagellates (Syndiniales). These results highlighted that (1) the metabarcoding approach was able to uncover a large spectrum of symbiotic organisms associated to the fish species studied, (2) symbionts not yet identified in several teleost species were putatively present, (3) the parasitic diversity differed markedly across host species and (4) in most cases, the distribution of known parasitic genera within tissues is in accordance with the literature. The current work illustrates the large insights that can be gained by making maximum use of data from a metabarcoding approach.
Collapse
Affiliation(s)
- Mathilde Scheifler
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Banyuls/Mer, France
| | - Magdalena Ruiz-Rodríguez
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Banyuls/Mer, France
| | - Sophie Sanchez-Brosseau
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Banyuls/Mer, France
| | - Elodie Magnanou
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Banyuls/Mer, France
| | - Marcelino T. Suzuki
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM Observatoire Océanologique, Banyuls/Mer, France
| | - Nyree West
- Sorbonne Université, CNRS, Observatoire Océanologique de Banyuls, Banyuls/Mer, France
| | - Sébastien Duperron
- CNRS, Muséum National d’Histoire Naturelle, Molécules de Communication et Adaptation des Micro-organismes, UMR7245 MCAM, Muséum National d’Histoire Naturelle, Paris, France
| | - Yves Desdevises
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Banyuls/Mer, France
| |
Collapse
|
13
|
van Beest GS, Villar-Torres M, Raga JA, Montero FE, Born-Torrijos A. In vivo fluorescent cercariae reveal the entry portals of Cardiocephaloides longicollis (Rudolphi, 1819) Dubois, 1982 (Strigeidae) into the gilthead seabream Sparus aurata L. Parasit Vectors 2019; 12:92. [PMID: 30867029 PMCID: PMC6417200 DOI: 10.1186/s13071-019-3351-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/26/2019] [Indexed: 11/21/2022] Open
Abstract
Background Despite their complex life-cycles involving various types of hosts and free-living stages, digenean trematodes are becoming recurrent model systems. The infection and penetration strategy of the larval stages, i.e. cercariae, into the fish host is poorly understood and information regarding their entry portals is not well-known for most species. Cardiocephaloides longicollis (Rudolphi, 1819) Dubois, 1982 (Digenea, Strigeidae) uses the gilthead seabream (Sparus aurata L.), an important marine fish in Mediterranean aquaculture, as a second intermediate host, where they encyst in the brain as metacercariae. Labelling the cercariae with in vivo fluorescent dyes helped us to track their entry into the fish, revealing the penetration pattern that C. longicollis uses to infect S. aurata. Methods Two different fluorescent dyes were used: carboxyfluorescein diacetate succinimidyl ester (CFSE) and Hoechst 33342 (NB). Three ascending concentrations of each dye were tested to detect any effect on labelled cercarial performance, by recording their survival for the first 5 h post-labelling (hpl) and 24 hpl, as well as their activity for 5 hpl. Labelled cercariae were used to track the penetration points into fish, and cercarial infectivity and later encystment were analysed by recording brain-encysted metacercariae in fish infected with labelled and control cercariae after 20 days of infection. Results Although the different dye concentrations showed diverse effects on both survival and activity, intermediate doses of CFSE did not show any short-term effect on survival, permitting a brighter and longer recognition of cercariae on the host body surface. Therefore, CFSE helped to determine the penetration points of C. longicollis into the fish, denoting their aggregation on the head, eye and gills region, as well as on the dorsal fin and the lower side. Only CFSE-labelled cercariae showed a decreased number of encysted metacercariae when compared to control. Conclusions Our study suggests that CFSE is an adequate labelling method for short-term in vivo studies, whereas NB would better suit in vivo studies on long-term performance. Cardiocephaloides longicollis cercariae seem to be attracted to areas near to the brain or those that are likely to be connected to migration routes to neuronal canals. Electronic supplementary material The online version of this article (10.1186/s13071-019-3351-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabrielle S van Beest
- Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, P.O. Box 22 085, 46071, Valencia, Spain. .,Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Mar Villar-Torres
- Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, P.O. Box 22 085, 46071, Valencia, Spain
| | - Juan Antonio Raga
- Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, P.O. Box 22 085, 46071, Valencia, Spain
| | - Francisco Esteban Montero
- Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, P.O. Box 22 085, 46071, Valencia, Spain
| | - Ana Born-Torrijos
- Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, P.O. Box 22 085, 46071, Valencia, Spain.,Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
14
|
Ataev GL, Tokmakova AS. Reproduction of Echinostoma caproni mother sporocysts (Trematoda). Parasitol Res 2018; 117:2419-2426. [PMID: 29858943 DOI: 10.1007/s00436-018-5930-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/14/2018] [Indexed: 11/30/2022]
Abstract
The localisation and the composition of germinal material in miracidia and mother sporocysts of Echinostoma caproni were studied with the use of histological and electron microscopic methods. Germinal material in miracidia was localised in the posterior body half and was represented by 3-4 undifferentiated cells and 5-7 germinal cells. Taken together, these cells are referred to as the primordium of the germinal mass. In the mother sporocyst, germinal elements also form and develop in the germinal mass, which is located caudally. It comprises undifferentiated cells and germinal cells as well as embryos of various ages (up to the stage of 30-50 blastomeres). Germinal cells divide only by cleavage. New germinal cells are formed only from undifferentiated cells, which can proliferate in the germinal mass and nowhere else. This indicates that the germinal mass is the reproductive organ of E. caproni mother sporocyst.
Collapse
Affiliation(s)
- G L Ataev
- Laboratory of Experimental Zoology, Department of Zoology, Faculty of Biology, Herzen State Pedagogical University of Russia, Moyka River 48, St Petersburg, Russia, 191186.
| | - A S Tokmakova
- Laboratory of Experimental Zoology, Department of Zoology, Faculty of Biology, Herzen State Pedagogical University of Russia, Moyka River 48, St Petersburg, Russia, 191186
| |
Collapse
|
15
|
Bader C, Jesudoss Chelladurai J, Starling DE, Jones DE, Brewer MT. Efficacy of injectable praziquantel for elimination of trematode metacercariae in bluegills (Lepomis macrochirus) and quantification of parasite death by propidium iodide staining. Parasitol Res 2017; 117:365-370. [PMID: 29264719 DOI: 10.1007/s00436-017-5703-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/29/2017] [Indexed: 10/18/2022]
Abstract
Digenean trematodes have complex life cycles and control of these flatworms can be accomplished by eliminating immature parasite stages from intermediate hosts. In aquaculture systems, presence of trematode metacercariae can negatively impact fish health and lead to economic losses. Posthodiplostomum minimum is a parasite of birds that uses bluegill sunfish (Lepomis macrochirus) as the intermediate host and is commonly found in fish used to stock waterways for recreational purposes. In this study, we evaluated killing of P. minimum metacercariae by injectable praziquantel in naturally infected bluegills. Using propidium iodide staining and motility assessment, we found that 5 mg/kg administered intramuscularly was effective for parasite killing. However, metacercarial death was not apparent until day 7 post-treatment. Our results demonstrated that propidium iodide staining is an effective method for detecting death in metacercariae recovered from treated fish. This method was at least as sensitive as objective motility scoring and provided quantitative assessment of parasite death. Future studies involving treatment of metacercariae in fish with praziquantel may need to be carried out over a period of weeks in order to accurately assess parasite killing and would benefit from using the propidium iodide method.
Collapse
Affiliation(s)
- Chris Bader
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, 2758 Vet Med, 1800 Christensen Dr., Ames, IA, 50011, USA
| | - Jeba Jesudoss Chelladurai
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, 2758 Vet Med, 1800 Christensen Dr., Ames, IA, 50011, USA
| | - David E Starling
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Douglas E Jones
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, 2758 Vet Med, 1800 Christensen Dr., Ames, IA, 50011, USA
| | - Matthew T Brewer
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, 2758 Vet Med, 1800 Christensen Dr., Ames, IA, 50011, USA.
| |
Collapse
|
16
|
Born-Torrijos A, Holzer AS, Raga JA, van Beest GS, Yoneva A. Description of embryonic development and ultrastructure in miracidia of Cardiocephaloides longicollis (Digenea, Strigeidae) in relation to active host finding strategy in a marine environment. J Morphol 2017; 278:1137-1148. [PMID: 28516456 DOI: 10.1002/jmor.20700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/28/2017] [Accepted: 04/22/2017] [Indexed: 11/07/2022]
Abstract
The functional ultrastructure and embryonic development of miracidia in naturally released eggs of the trematode Cardiocephaloides longicollis were studied using light and transmission electron microscopy. This species has operculated eggs and embryogenesis occurs in the marine environment before an actively infecting ciliated miracidium hatches. Six different developmental stages were identified. The lack of pores in the eggshell indicates its impermeability and the miracidium's dependency on glycogen nutritive reserves, contained in numerous vitellocytes in early embryos. As the development advances, these merge into larger vitelline vacuoles that encircle the miracidium and may aid its hatching. Tissue and primary organ differentiation were observed in advanced stages, i.e., terebratorium, glands, cerebral ganglion, peripheral sensory endings, and eyespots. The anterior part of the body contains a single apical and paired lateral glands, as well as two types of sensory endings, which permit location, adhesion, and penetration of the host. No previous studies describe the embryonic development and ultrastructure of miracidia in strigeids, however, some of the structural features shared with other, well described species with unknown life cycles are emphasised. This study highlights that ultrastructural data have to be interpreted in relation to parasite biology to understand the structural requirements of specific parasite strategies.
Collapse
Affiliation(s)
- Ana Born-Torrijos
- Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, PO Box 22 085, Valencia, 46071, Spain.,Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, České Budějovice, 370 05, Czech Republic
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, České Budějovice, 370 05, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czech Republic
| | - Juan A Raga
- Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, PO Box 22 085, Valencia, 46071, Spain
| | - Gabrielle S van Beest
- Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, PO Box 22 085, Valencia, 46071, Spain
| | - Aneta Yoneva
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, České Budějovice, 370 05, Czech Republic.,Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, Sofia, 1113, Bulgaria
| |
Collapse
|
17
|
Blasco-Costa I, Locke SA. Life History, Systematics and Evolution of the Diplostomoidea Poirier, 1886: Progress, Promises and Challenges Emerging From Molecular Studies. ADVANCES IN PARASITOLOGY 2017; 98:167-225. [PMID: 28942769 DOI: 10.1016/bs.apar.2017.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Members of the Diplostomoidea mature in amniotes and employ vertebrates, annelids and molluscs as second intermediate hosts. Diplostomoid life cycles generally follow a three-host pattern typical of digeneans, but novelties have arisen in some species, including obligate four-host life cycles, vertical transmission, and intracellular parasitism. In this review, we summarize the basic biology of diplostomoids with reference to molecular studies, and present challenges, gaps and areas where molecular data could address long-standing questions. Our analysis of published studies revealed that most molecular surveys find more diplostomoid species than expected, but this tendency is influenced by how much effort goes into examining specimens morphologically and the number of sequenced worms. To date, molecular work has concentrated disproportionately on intraspecific or species-level diversity of larval stages in the Diplostomidae in temperate northern regions. Although the higher taxonomy of the superfamily is recognized to be in need of revision, little molecular work has been conducted at this level. Our phylogenetic analysis indicates several families and subfamilies require reconsideration, and that larval morphotypes are more reflective of evolutionary relationships than definitive hosts. The host associations of adult diplostomoids result from host-switching processes, whereas molecular surveys indicate that larval diplostomoid metacercariae have narrow ranges of second intermediate hosts, consistent with coevolution. Molecular data are often used to link diplostomoid developmental stages, and we provide data from adult Neodiplostomum and Mesoophorodiplostomum that correct earlier misidentifications of their larval stages and propose alternatives to collecting definitive hosts.
Collapse
|