1
|
Tsubokawa D, Satoh M. Strongyloides venezuelensis-derived venestatin ameliorates asthma pathogenesis by suppressing receptor for advanced glycation end-products-mediated signaling. Pulm Pharmacol Ther 2022; 75:102148. [PMID: 35863725 DOI: 10.1016/j.pupt.2022.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION EF-hand Ca2+-binding proteins such as S100 protein family members are recognized by the receptor for advanced glycation end-products (RAGE) and are involved in the pathogenesis of asthma/allergic airway inflammation (AAI). Venestatin, an EF-hand Ca2+-binding protein, which is secreted by the parasitic helminth Strongyloides venezuelensis, binds with RAGE and suppresses RAGE-mediated inflammatory responses after parasite invasion. In this study, we evaluated the effect of venestatin on pathogenesis in a house dust mite (HDM) murine model of asthma/AAI. METHODS Mice were intranasally treated with HDM, HDM with recombinant venestatin, or HDM with synthetic peptides, which were designed based on the EF-hand Ca2+-binding domain of venestatin. Pro-inflammatory responses in the lungs of mice were assessed. RESULTS HDM treatment induced inflammatory cell infiltration, phosphorylation of the mitogen-activated protein kinase and inhibitor κB, and production of the cytokines tumor necrosis factor-α and interleukin-5 in the lungs. Co-administration of recombinant venestatin with HDM suppressed these pro-inflammatory responses. Treatment with synthetic peptides reduced inflammatory cell infiltration in a RAGE-dependent manner. CONCLUSION The EF-hand domain of venestatin may have potential therapeutic benefits in asthma.
Collapse
Affiliation(s)
- Daigo Tsubokawa
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Masashi Satoh
- Department of Immunology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
2
|
Dulovic A, Norman M, Harbecke D, Streit A. Chemotactic and temperature-dependent responses of the Strongyloidoidea superfamily of nematodes. Parasitology 2022; 149:116-123. [PMID: 35184785 PMCID: PMC11010508 DOI: 10.1017/s003118202100161x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 01/08/2023]
Abstract
Host-seeking behaviour and how a parasite identifies the correct host to infect remains a poorly understood area of parasitology. What is currently known is that host sensation and seeking behaviour is formed from a complex mixture of chemo-, thermo- and mechanosensory behaviours, of which chemosensation is the best studied. Previous studies of olfaction in parasitic nematodes suggested that this behaviour appears to be more closely related to target host and infection mode than phylogeny. However, there has not yet been a study comparing the chemotactic and temperature-dependent behaviours of very closely related parasitic and non-parasitic nematodes. To this end, we examined the temperature-dependent and chemotactic responses of the Strongyloidoidea superfamily of nematodes. We found differences in temperature response between the different species and within infective larvae. Chemotactic responses were highly divergent, with different attraction profiles between all species studied. When examining direct stimulation with fur, we found that it was insufficient to cause an attractive response. Overall, our results support the notion that olfactory sensation is more closely related to lifestyle and host range than phylogeny, and that multiple cues are required to initiate host-seeking behaviour.
Collapse
Affiliation(s)
- Alex Dulovic
- Max Planck Institute for Developmental Biology, Tübingen, Baden Württemberg, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Baden Württemberg, Germany
| | - Mat Norman
- Max Planck Institute for Developmental Biology, Tübingen, Baden Württemberg, Germany
- UBC Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Dorothee Harbecke
- Max Planck Institute for Developmental Biology, Tübingen, Baden Württemberg, Germany
| | - Adrian Streit
- Max Planck Institute for Developmental Biology, Tübingen, Baden Württemberg, Germany
| |
Collapse
|
3
|
Venestatin from parasitic helminths interferes with receptor for advanced glycation end products (RAGE)-mediated immune responses to promote larval migration. PLoS Pathog 2021; 17:e1009649. [PMID: 34081755 PMCID: PMC8205142 DOI: 10.1371/journal.ppat.1009649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/15/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Parasitic helminths can reside in humans owing to their ability to disrupt host protective immunity. Receptor for advanced glycation end products (RAGE), which is highly expressed in host skin, mediates inflammatory responses by regulating the expression of pro-inflammatory cytokines and endothelial adhesion molecules. In this study, we evaluated the effects of venestatin, an EF-hand Ca2+-binding protein secreted by the parasitic helminth Strongyloides venezuelensis, on RAGE activity and immune responses. Our results demonstrated that venestatin bound to RAGE and downregulated the host immune response. Recombinant venestatin predominantly bound to the RAGE C1 domain in a Ca2+-dependent manner. Recombinant venestatin effectively alleviated RAGE-mediated inflammation, including footpad edema in mice, and pneumonia induced by an exogenous RAGE ligand. Infection experiments using S. venezuelensis larvae and venestatin silencing via RNA interference revealed that endogenous venestatin promoted larval migration from the skin to the lungs in a RAGE-dependent manner. Moreover, endogenous venestatin suppressed macrophage and neutrophil accumulation around larvae. Although the invasion of larvae upregulated the abundance of RAGE ligands in host skin tissues, mRNA expression levels of tumor necrosis factor-α, cyclooxygenase-2, endothelial adhesion molecules vascular cell adhesion protein-1, intracellular adhesion molecule-1, and E-selectin were suppressed by endogenous venestatin. Taken together, our results indicate that venestatin suppressed RAGE-mediated immune responses in host skin induced by helminthic infection, thereby promoting larval migration. The anti-inflammatory mechanism of venestatin may be targeted for the development of anthelminthics and immunosuppressive agents for the treatment of RAGE-mediated inflammatory diseases. Parasitic helminths have evolved smart strategies to thrive in diverse hosts. For example, parasitic helminths secrete various immunomodulators in the host to establish successful tissue migration to their reproductive niche and chronic parasitism. Identification and functional analyses have revealed these immunomodulators may have potential therapeutic effects in the treatment of immune-related diseases. However, few immunomodulators from parasitic helminths have been identified and analyzed to date. In this study, we determined that venestatin, an EF-hand Ca2+-binding protein secreted by the parasitic nematode Strongyloides venezuelensis, bound to receptor for advanced glycation end products (RAGE), a host pro-inflammatory receptor, which downregulated RAGE-mediated inflammatory responses. S. venezuelensis larvae successfully migrated to their niche owing to the anti-inflammatory functions of venestatin. Venestatin could provide a novel therapeutic target for the treatment of RAGE-mediated inflammatory diseases, such as Alzheimer’s disease, rheumatoid arthritis, asthma, ulcerative colitis, and diabetes.
Collapse
|
4
|
Dela Justina V, Gama LA, Schönholzer T, Bressan AF, Lima VV, Americo MF, Giachini FR. Resistance mesenteric arteries display hypercontractility in the resolution time of Strongyloides venezuelensis infection. Exp Parasitol 2021; 222:108078. [PMID: 33485874 DOI: 10.1016/j.exppara.2021.108078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/23/2020] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
The blood flow in the mesenteric region is crucial for nutrient absorption and immune response in the gastrointestinal tract. The presence of nematodes or their excreted/secreted products seems to provoke vascular dysfunction. However, it is unclear whether and how the intestinal nematodes with habitat in the intestinal niche could affect the mesenteric vascular resistance. In this study, male Wistar rats were infected with 2000 larvae of S. venezuelensis, and experiments were conducted at 0 (non-infected control), 10 or 30 days post-infection (DPI). Eggs were counted in rats' feces and adult worms recovered from the small intestine. Second- or third-order mesenteric arteries were extracted for concentration-response curves (CRC) to phenylephrine [PE; in the presence or absence of L-NAME or indomethacin] and acetylcholine. The number of eggs and adult worms were significantly higher in the 10 DPI group than those of 30 DPI group. Augmented PE-induced contraction was seen after 30 DPI compared to 10 DPI or control group. Hypercontractility to PE was partially prevented by L-NAME and wholly abolished by indomethacin incubation. Endothelium-dependent relaxation and endothelial nitric oxide synthase expression were unchanged among groups. COX-1 and COX-2 display a different pattern of expression over the infection. Hypercontractility observed in mesenteric resistance arteries in the resolution time of S. venezuelensis infection may represent systemic damage, which can generate significant cardiovascular and gastrointestinal repercussions.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Institute of Biological Sciences, Federal University of Goias, Goiânia, GO, Brazil
| | - Loyane Almeida Gama
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra Do Garças, MT, Brazil; Institute of Biosciences, São Paulo State University - UNESP, Botucatu, SP, Brazil
| | - Tatiane Schönholzer
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra Do Garças, MT, Brazil
| | - Alecsander F Bressan
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra Do Garças, MT, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Victor Vitorino Lima
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra Do Garças, MT, Brazil
| | - Madileine F Americo
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra Do Garças, MT, Brazil; Institute of Biosciences, São Paulo State University - UNESP, Botucatu, SP, Brazil
| | - Fernanda R Giachini
- Institute of Biological Sciences, Federal University of Goias, Goiânia, GO, Brazil; Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra Do Garças, MT, Brazil.
| |
Collapse
|
5
|
Wheeler NJ, Heimark ZW, Airs PM, Mann A, Bartholomay LC, Zamanian M. Genetic and functional diversification of chemosensory pathway receptors in mosquito-borne filarial nematodes. PLoS Biol 2020; 18:e3000723. [PMID: 32511224 PMCID: PMC7302863 DOI: 10.1371/journal.pbio.3000723] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 06/18/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022] Open
Abstract
Lymphatic filariasis (LF) afflicts over 60 million people worldwide and leads to severe pathological outcomes in chronic cases. The nematode parasites (Nematoda: Filarioidea) that cause LF require both arthropod (mosquito) intermediate hosts and mammalian definitive hosts for their propagation. The invasion and migration of filarial worms through host tissues are complex and critical to survival, yet little is known about the receptors and signaling pathways that mediate directed migration in these medically important species. In order to better understand the role of chemosensory signaling in filarial worm taxis, we employ comparative genomics, transcriptomics, reverse genetics, and chemical approaches to identify putative chemosensory receptor proteins and perturb chemotaxis phenotypes in filarial worms. We find that chemoreceptor family size is correlated with the presence of environmental (extrahost) stages in nematode life cycles, and that filarial worms contain compact and highly diverged chemoreceptor complements and lineage-specific ion channels that are predicted to operate downstream of chemoreceptor activation. In Brugia malayi, an etiological agent of LF, chemoreceptor expression patterns correspond to distinct parasite migration events across the life cycle. To interrogate the role of chemosensation in the migration of larval worms, arthropod and mammalian infectious stage Brugia parasites were incubated in nicotinamide, an agonist of the nematode transient receptor potential (TRP) channel OSM-9. Exposure of microfilariae to nicotinamide alters intramosquito migration, and exposure of L3s reduces chemotaxis toward host-associated cues in vitro. Nicotinamide also potently modulates thermosensory responses in L3s, suggesting a polymodal sensory role for Brugia osm-9. Reverse genetic studies implicate both Brugia osm-9 and the cyclic nucleotide-gated (CNG) channel subunit tax-4 in larval chemotaxis toward host serum, and these ion channel subunits partially rescue sensory defects in Caenorhabditis elegans osm-9 and tax-4 knock-out strains. Together, these data reveal genetic and functional diversification of chemosensory signaling proteins in filarial worms and encourage a more thorough investigation of clade- and parasite-specific facets of nematode sensory receptor biology.
Collapse
Affiliation(s)
- Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zachary W. Heimark
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul M. Airs
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexis Mann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lyric C. Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
6
|
Giachetto PF, Cunha RC, Nhani A, Garcia MV, Ferro JA, Andreotti R. Gene Expression in the Salivary Gland of Rhipicephalus (Boophilus) microplus Fed on Tick-Susceptible and Tick-Resistant Hosts. Front Cell Infect Microbiol 2020; 9:477. [PMID: 32039052 PMCID: PMC6985549 DOI: 10.3389/fcimb.2019.00477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/24/2019] [Indexed: 01/10/2023] Open
Abstract
The success of cattle tick fixation largely depends on the secretion of substances that alter the immune response of the host. The majority of these substances are expressed by the parasite salivary gland and secreted in tick saliva. It is known that hosts can mount immune responses against ticks and bovine European breeds, and bovine industrial crossbreeds are more susceptible to infestations than are Bos indicus cattle. To identify candidates for the development of novel control strategies for the cattle tick Rhipicephalus (Boophilus) microplus, a salivary gland transcriptome analysis of engorged females fed on susceptible or resistant hosts was performed. Using RNA-Seq, transcriptomes were de novo assembled and produced a total of 235,451 contigs with 93.3% transcriptome completeness. Differential expression analysis identified 137 sequences as differentially expressed genes (DEGs) between ticks raised on tick-susceptible or tick-resistant cattle. DEGs predicted to be secreted proteins include innexins, which are transmembrane proteins that form gap junction channels; the transporters Na+/dicarboxylate, Na+/tricarboxylate, and phosphate transporter and a putative monocarboxylate transporter; a phosphoinositol 4-phosphate adaptor protein; a cysteine-rich protein containing a trypsin inhibitor-like (TIL) domain; a putative defense protein 3 containing a reeler domain; and an F-actin-uncapping protein LRRC16A with a CARMIL_C domain; these genes were upregulated in ticks fed on tick-susceptible cattle. DEGs predicted to be non-secreted proteins included a small heat shock protein and the negative elongation factor B-like, both acting in a coordinated manner to increase HSP transcript levels in the salivary glands of the ticks fed on tick-susceptible cattle; the 26S protease regulatory subunit 6B and another chaperone with similarity to calnexin, also upregulated in ticks fed on tick-susceptible cattle; an EF-hand calcium binding protein and a serine carboxypeptidase (SCP), both involved in the blood coagulation cascade and upregulated in ticks fed on tick-susceptible cattle; and two ribosomal proteins, the 60S acidic ribosomal protein P2 and the 60S ribosomal protein L19. These results help to characterize cattle tick salivary gland gene expression in tick-susceptible and tick-resistant hosts and suggest new putative targets for the control of tick infestations, as those genes involved in the mechanism of stress response during blood feeding.
Collapse
Affiliation(s)
| | - Rodrigo Casquero Cunha
- Bolsista do CNPq (157460/2018-5), Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | | | | | | |
Collapse
|
7
|
Abstract
Purpose of Review This paper constitutes an update of recent studies on the general biology, molecular genetics, and cellular biology of Strongyloides spp. and related parasitic nematodes. Recent Findings Increasingly, human strongyloidiasis is considered the most neglected of neglected tropical diseases. Despite this, the last 5 years has seen remarkable advances in the molecular biology of Strongyloides spp. Genome sequences for S. stercoralis, S. ratti, S. venezuelensis, S. papillosus, and the related parasite Parastrongyloides trichosuri were created, annotated, and analyzed. These genomic resources, along with a practical transgenesis platform for Strongyloides spp., aided a major achievement, the advent of targeted mutagenesis via CRISPR/Cas9 in S. stercoralis and S. ratti. The genome sequences have also enabled significant molecular epidemiologic and phylogenetic findings on human strongyloidiasis, including the first genetic evidence of zoonotic transmission of S. stercoralis between dogs and humans. Studies of molecular signaling pathways identified the nuclear receptor Ss-DAF-12 as one that can be manipulated in the parasite by exogenous application of its steroid ligands. The chemotherapeutic implications of this were unscored by a study in which a Ss-DAF-12 ligand suppressed autoinfection by S. stercoralis in a new murine model of human strongyloidiasis. Summary Seminal advances in genomics of Strongyloides spp. have transformed research into strongyloidiasis, facilitating fundamental phylogenetic and epidemiologic studies and aiding the deployment of CRISPR/Cas9 gene disruption and editing as functional genomic tools in Strongyloides spp. Studies of Ss-DAF-12 signaling in S. stercoralis demonstrated the potential of this pathway as a novel chemotherapeutic target in parasitic nematodes.
Collapse
Affiliation(s)
- Tegegn G. Jaleta
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James B. Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Tsubokawa D, Lee JM, Hatta T, Mikami F, Maruyama H, Arakawa T, Kusakabe T, Tsuji N. Characterization of the RAGE-binding protein, Strongyloides venestatin, produced by the silkworm-baculovirus expression system. INFECTION GENETICS AND EVOLUTION 2019; 75:103964. [PMID: 31302241 DOI: 10.1016/j.meegid.2019.103964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022]
Abstract
The receptor for advanced glycation end products (RAGE) recognizes Ca++-binding proteins, such as members of the S100 protein family released by dead or devitalized tissues, and plays an important role in inflammatory responses. We recently identified the Ca++-binding protein, venestatin, secreted from the rodent parasitic nematode, Strongyloides venezuelensis. We herein characterized recombinant venestatin, which is abundantly produced by the silkworm-baculovirus expression system (silkworm-BES), particularly in its interaction with RAGE. Venestatin from silkworm-BES possessed a binding capacity with Ca++ ions and vaccine immunogenicity against S. venezuelensis larvae in mice, which is similar to venestatin produced by the E. coli expression system (EES). Venestatin from silkworm-BES had a higher affinity for human recombinant RAGE than that from EES, and their affinities were Ca++-dependent. RAGE in the mouse lung co-immunoprecipitated with venestatin from silkworm-BES administered intranasally, indicating that it bound endogenous mouse RAGE. The present results suggest that venestatin from silkworm-BES affects RAGE-mediated pathological processes.
Collapse
Affiliation(s)
- Daigo Tsubokawa
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan; Department of Molecular and Cellular Parasitology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan.
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Hatta
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan; Department of Molecular and Cellular Parasitology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Fusako Mikami
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Haruhiko Maruyama
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara Kiyotake, Miyazaki 899-1692, Japan
| | - Takeshi Arakawa
- Laboratory of Vaccinology and Vaccine Immunology, Center of Molecular Biosciences, University of the Ryukyu, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Naotoshi Tsuji
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan; Department of Molecular and Cellular Parasitology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|