1
|
Shi Y, Lai D, Liu D, Du L, Li Y, Fu X, Deng P, Tang L, He S, Liu X, Li Y, Liu Q. Morphological and molecular characteristics of a Trypanosoma sp. from triatomines (Triatoma rubrofasciata) in China. Parasit Vectors 2024; 17:214. [PMID: 38730303 PMCID: PMC11088070 DOI: 10.1186/s13071-024-06274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Triatomines (kissing bugs) are natural vectors of trypanosomes, which are single-celled parasitic protozoans, such as Trypanosoma cruzi, T. conorhini and T. rangeli. The understanding of the transmission cycle of T. conorhini and Triatoma rubrofasciata in China is not fully known. METHODS The parasites in the faeces and intestinal contents of the Tr. rubrofasciata were collected, and morphology indices were measured under a microscope to determine the species. DNA was extracted from the samples, and fragments of 18S rRNA, heat shock protein 70 (HSP70) and glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) were amplified and sequenced. The obtained sequences were then identified using the BLAST search engine, followed by several phylogenetic analyses. Finally, laboratory infections were conducted to test whether Tr. rubrofasciata transmit the parasite to rats (or mice) through bites. Moreover, 135 Tr. rubrofasciata samples were collected from the Guangxi region and were used in assays to investigate the prevalence of trypanosome infection. RESULTS Trypanosoma sp. were found in the faeces and intestinal contents of Tr. rubrofasciata, which were collected in the Guangxi region of southern China and mostly exhibited characteristics typical of epimastigotes, such as the presence of a nucleus, a free flagellum and a kinetoplast. The body length ranged from 6.3 to 33.9 µm, the flagellum length ranged from 8.7 to 29.8 µm, the nucleus index was 0.6 and the kinetoplast length was -4.6. BLAST analysis revealed that the 18S rRNA, HSP70 and gGAPDH sequences of Trypanosoma sp. exhibited the highest degree of similarity with those of T. conorhini (99.7%, 99.0% and 99.0%, respectively) and formed a well-supported clade close to T. conorhini and T. vespertilionis but were distinct from those of T. rangeli and T. cruzi. Laboratory experiments revealed that both rats and mice developed low parasitaemia after inoculation with Trypanosoma sp. and laboratory-fed Tr. rubrofasciata became infected after feeding on trypanosome-positive rats and mice. However, the infected Tr. rubrofasciata did not transmit Trypanosoma sp. to their offspring. Moreover, our investigation revealed a high prevalence of Trypanosoma sp. infection in Tr. rubrofasciata, with up to 36.3% of specimens tested in the field being infected. CONCLUSIONS Our study is the first to provide a solid record of T. conorhini from Tr. rubrofasciata in China with morphological and molecular evidence. This Chinese T. conorhini is unlikely to have spread through transovarial transmission in Tr. rubrofasciata, but instead, it is more likely that the parasite is transmitted between Tr. rubrofasciata and mice (or rats). However, there was a high prevalence of T. conorhini in the Tr. rubrofasciata from our collection sites and numerous human cases of Tr. rubrofasciata bites were recorded. Moreover, whether these T. conorhini strains are pathogenic to humans has not been investigated.
Collapse
Affiliation(s)
- Yunliang Shi
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People's Republic of China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
| | - DeHua Lai
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Dengyu Liu
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Liyan Du
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yuanyuan Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; Key Laboratory on Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China
| | - Xiaoyin Fu
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Peichao Deng
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Lili Tang
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Shanshan He
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Xiaoquan Liu
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yanwen Li
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People's Republic of China.
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China.
| | - Qin Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; Key Laboratory on Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
2
|
Fonseca MS, Santos AJ, Mendonça MA, Rodamilans GM, Marques FS, Biondi I, Lira-da-Silva RM, Aburjaile FF, Sokolonski AR, Soares RP, Meyer R, Portela RW. Trypanosoma sp. infection in Boa constrictor snakes: morphological, hematological, clinical biochemistry, molecular, and phylogenetic characteristics. Parasitol Res 2023; 123:21. [PMID: 38072845 DOI: 10.1007/s00436-023-08023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023]
Abstract
There are few reports of Trypanosoma in snakes, as well as little information about its pathogenicity in these animals. Thus, the present study aimed to characterize Trypanosoma found in Boa constrictor snakes, to verify the influence of the parasitism on hematological and clinical biochemistry parameters, and to perform a phylogenetic study of the isolates. Blood samples from sixty-one boas were analyzed for the presence of trypanosomatids and by hematological and clinical biochemistry assays. The flagellates that were found in this analysis were used for cell culture, morphometry, and molecular analysis. Later, molecular typing phylogenetic studies were performed. Nine positive animals (14.75%) were identified by microscopy analysis. The hematological results showed that parasitized animals presented significantly lower levels of packed cell volume, hemoglobin, mean corpuscular volume, and mean corpuscular hemoglobin. In the leukogram, eosinophils and heterophils counts were higher in parasitized animals. Considering the molecular analyses, the isolates presented a higher identity of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the 18S small subunit ribosomal RNA (SSU rRNA) gene fragments with Trypanosoma serpentis. The phylogenetic tree, using the GAPDH, clustered all isolates with T. serpentis and Trypanosoma cascavelli. This is the first description of T. serpentis parasitizing boas and of the clinical changes caused by trypanosomatid infection in snakes.
Collapse
Affiliation(s)
- Maisa S Fonseca
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Avenida Reitor Miguel Calmon s/n, Bahia State, Salvador, 40110-100, Brazil
| | - Anderson J Santos
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Avenida Reitor Miguel Calmon s/n, Bahia State, Salvador, 40110-100, Brazil
| | - Marcos A Mendonça
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Avenida Reitor Miguel Calmon s/n, Bahia State, Salvador, 40110-100, Brazil
| | - Gustavo M Rodamilans
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Avenida Reitor Miguel Calmon s/n, Bahia State, Salvador, 40110-100, Brazil
| | - Franciane S Marques
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Avenida Reitor Miguel Calmon s/n, Bahia State, Salvador, 40110-100, Brazil
| | - Ilka Biondi
- Laboratório de Animais Peçonhentos e Herpetologia, Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Bahia State, Feira de Santana, 44036-960, Brazil
| | - Rejane M Lira-da-Silva
- Núcleo Regional de Ofiologia e Animais Peçonhentos da Bahia, Departamento de Zoologia, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia State, 40170-290, Brazil
| | - Flavia F Aburjaile
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais State, 31270-901, Brazil
| | - Ana R Sokolonski
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Avenida Reitor Miguel Calmon s/n, Bahia State, Salvador, 40110-100, Brazil
| | - Rodrigo P Soares
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais State, 30190-002, Brazil
| | - Roberto Meyer
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Avenida Reitor Miguel Calmon s/n, Bahia State, Salvador, 40110-100, Brazil
| | - Ricardo W Portela
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Avenida Reitor Miguel Calmon s/n, Bahia State, Salvador, 40110-100, Brazil.
| |
Collapse
|
3
|
Thiombiano NG, Boungou M, Chabi BAM, Oueda A, Werb O, Schaer J. First investigation of blood parasites of bats in Burkina Faso detects Hepatocystis parasites and infections with diverse Trypanosoma spp. Parasitol Res 2023; 122:3121-3129. [PMID: 37847392 PMCID: PMC10667148 DOI: 10.1007/s00436-023-08002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Bats are hosts to a large diversity of eukaryotic protozoan blood parasites that comprise species of Trypanosoma and different haemosporidian parasite taxa and bats have played an important role in the evolutionary history of both parasite groups. However, bats in several geographical areas have not been investigated, including in Burkina Faso, where no information about malaria parasites and trypanosomes of bats exists to date.In this study, we collected data on the prevalence and the phylogenetic relationships of protozoan blood parasites in nine different bat species in Burkina Faso. Hepatocystis parasites were detected in two species of epauletted fruit bats, and a relatively high diversity of trypanosome parasites was identified in five bat species. The phylogenetic analyses recovered the trypanosome parasites of the bat species Rhinolophus alcyone and Nycteris hispida as close relatives of T. livingstonei, the trypanosome infections in Scotophilus leucogaster as closely related to the species T. vespertilionis and the trypanosomes from Pipistrellus nanulus and Epomophorus gambianus might present the species T. dionisii. These findings of the first investigation in Burkina Faso present a first snapshot of the diversity of protozoan blood parasites in bats in this country.
Collapse
Affiliation(s)
- Noel Gabiliga Thiombiano
- Laboratoire de Biologie et Ecologie Animales (LBEA), Unite de Formation Et de Recherche/Science de La Vie et de La Terre (UFR/SVT), University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Magloire Boungou
- Laboratoire de Biologie et Ecologie Animales (LBEA), Unite de Formation Et de Recherche/Science de La Vie et de La Terre (UFR/SVT), University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Bertrand Adéchègoun Mèschac Chabi
- Laboratoire de Biologie et Ecologie Animales (LBEA), Unite de Formation Et de Recherche/Science de La Vie et de La Terre (UFR/SVT), University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Adama Oueda
- Laboratoire de Biologie et Ecologie Animales (LBEA), Unite de Formation Et de Recherche/Science de La Vie et de La Terre (UFR/SVT), University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
- Universite de Ouahigouya, Ouahigouya, Burkina Faso
| | - Oskar Werb
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Juliane Schaer
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.
| |
Collapse
|
4
|
Barnabé C, Brenière SF, Santillán-Guayasamín S, Douzery EJP, Waleckx E. Revisiting gene typing and phylogeny of Trypanosoma cruzi reference strains: Comparison of the relevance of mitochondrial DNA, single-copy nuclear DNA, and the intergenic region of mini-exon gene. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105504. [PMID: 37739149 DOI: 10.1016/j.meegid.2023.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Chagas disease is a widespread neglected disease in Latin America. Trypanosoma cruzi, the causative agent of the disease, is currently subdivided into six DTUs (discrete typing units) named TcI-TcVI, and although no clear association has been found between parasite genetics and different clinical outcomes of the disease or different transmission cycles, genetic characterization of T. cruzi strains remains crucial for integrated epidemiological studies. Numerous markers have been used for this purpose, although without consensus. These include mitochondrial genes, single or multiple-copy nuclear genes, ribosomal RNA genes, and the intergenic region of the repeated mini-exon gene. To increase our knowledge of these gene sequences and their usefulness for strain typing, we sequenced fragments of three mitochondrial genes, nine single-copy nuclear genes, and the repeated intergenic part of the mini-exon gene by Next Generation Sequencing (NGS) on a sample constituted of 16 strains representative of T. cruzi genetic diversity, to which we added the corresponding genetic data of the 38 T. cruzi genomes fully sequenced until 2022. Our results show that single-copy nuclear genes remain the gold standard for characterizing T. cruzi strains; the phylogenetic tree from concatenated genes (3959 bp) confirms the six DTUs previously recognized and provides additional information about the alleles present in the hybrid strains. In the tree built from the three mitochondrial concatenated genes (1274 bp), three main clusters are identified, including one with TcIII, TcIV, TcV, and TcVI DTUs which are not separated. Nevertheless, mitochondrial markers remain necessary for detecting introgression and heteroplasmy. The phylogenetic tree built from the sequence alignment of the repeated mini-exon gene fragment (327 bp) displayed six clusters, but only TcI was associated with a single cluster. The sequences obtained from strains belonging to the other DTUs were scattered into different clusters. Therefore, while the mini-exon marker may bring, for some biological samples, some advantages in terms of sensibility due to its repeated nature, mini-exon sequences must be used with caution and, when possible, avoided for T. cruzi typing and phylogenetic studies.
Collapse
Affiliation(s)
- Christian Barnabé
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France.
| | - Simone Frédérique Brenière
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France
| | - Soledad Santillán-Guayasamín
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France; Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Emmanuel J P Douzery
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France.
| | - Etienne Waleckx
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France; Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico; ACCyC, Asociación Chagas con Ciencia y Conocimiento, A. C, Orizaba, Mexico.
| |
Collapse
|
5
|
Castillo-Castañeda AC, Patiño LH, Zuñiga MF, Cantillo-Barraza O, Ayala MS, Segura M, Bautista J, Urbano P, Jaimes-Dueñez J, Ramírez JD. An overview of the trypanosomatid (Kinetoplastida: Trypanosomatidae) parasites infecting several mammal species in Colombia. Parasit Vectors 2022; 15:471. [PMID: 36522757 PMCID: PMC9756507 DOI: 10.1186/s13071-022-05595-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Trypanosomatids are among the most critical parasites for public health due to their impact on human, animal, and plant health. Diseases associated with these pathogens manifest mainly in poor and vulnerable populations, where social, environmental, and biological factors modulate the case incidence and geographical distribution. METHODS We used Sanger and amplicon-based next-generation sequencing (NGS) in samples from different mammals to identify trypanosomatid infections in several departments in Colombia. A total of 174 DNA samples (18 humans, 83 dogs, and 73 wild mammals) were analyzed by conventional PCR using a fragment of the heat shock protein 70 (Hsp70) gene and Sanger sequenced the positive samples. Twenty-seven samples were sent for amplicon-based NGS using the same gene fragment. Data obtained were used to perform diversity analyses. RESULTS One hundred and thirteen samples were positive for PCR by Hsp70 fragment; these corresponded to 22.1% Leishmania spp., 18.6% L. amazonensis, 9.7% L. braziliensis, 14.2% L. infantum, 8% L. panamensis, and 27.4% Trypanosoma cruzi. Comparison of the identified species by the two sequencing technologies used resulted in 97% concordance. Alpha and beta diversity indices were significant, mainly for dogs; there was an interesting index of coinfection events in the analyzed samples: different Leishmania species and the simultaneous presence of T. cruzi and even T. rangeli in one of the samples analyzed. Moreover, a low presence of L. braziliensis was observed in samples from wild mammals. Interestingly, to our knowledge, this is the first report of Leishmania detection in Hydrochaeris hydrochaeris (capybara) in Colombia. CONCLUSIONS The Hsp70 fragment used in this study is an optimal molecular marker for trypanosomatid identification in many hosts and allows the identification of different species in the same sample when amplicon-based sequencing is used. However, the use of this fragment for molecular diagnosis through conventional PCR should be carefully interpreted because of this same capacity to identify several parasites. This point is of pivotal importance in highly endemic countries across South America because of the co-circulation of different genera from the Trypanosomatidae family. The findings show an interesting starting point for One Health approaches in which coevolution and vector-host interactions can be studied.
Collapse
Affiliation(s)
- Adriana C. Castillo-Castañeda
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz H. Patiño
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Maria Fernanda Zuñiga
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Omar Cantillo-Barraza
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia ,grid.412881.60000 0000 8882 5269Grupo de Biología y Control de Enfermedades Infecciosas (BCEI), Universidad de Antioquia, Medellín, Colombia
| | - Martha S. Ayala
- grid.419226.a0000 0004 0614 5067Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Maryi Segura
- grid.419226.a0000 0004 0614 5067Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Jessica Bautista
- grid.419226.a0000 0004 0614 5067Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Plutarco Urbano
- Grupo de Investigaciones Biológicas de La Orinoquía, Universidad Internacional del Trópico Americano (Unitropico), Yopal, Colombia
| | - Jeiczon Jaimes-Dueñez
- grid.442158.e0000 0001 2300 1573Grupo de Investigación en Ciencias Animales GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia
| | - Juan David Ramírez
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia ,grid.59734.3c0000 0001 0670 2351Department of Pathology, Molecular and Cell-Based Medicine, Molecular Microbiology Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
6
|
Riana E, Arnuphapprasert A, Narapakdeesakul D, Ngamprasertwong T, Wangthongchaicharoen M, Soisook P, Bhodhibundit P, Kaewthamasorn M. Molecular detection of Trypanosoma (Trypanosomatidae) in bats from Thailand, with their phylogenetic relationships. Parasitology 2022; 149:654-666. [PMID: 35115070 PMCID: PMC11010503 DOI: 10.1017/s0031182022000117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/06/2022]
Abstract
The vast majority of trypanosome species is vector-borne parasites, with some of them being medically and veterinary important (such as Trypanosoma cruzi and Trypanosoma brucei) and capable of causing serious illness in vertebrate hosts. The discovery of trypanosomes in bats emphasizes the importance of bats as an important reservoir. Interestingly, there is a hypothesis that bats are ancestral hosts of T. cruzi. Trypanosome diversity has never been investigated in bats in Thailand, despite being in a biodiversity hot spot. To gain a better understanding of the diversity and evolutionary relationship of trypanosomes, polymerase chain reaction-based surveys were carried out from 2018 to 2020 in 17 sites. A total of 576 bats were captured, representing 23 species. A total of 38 (6.6%) positive samples was detected in ten bat species. Trypanosoma dionisii and Trypanosoma noyesi were identified from Myotis siligorensis and Megaderma spasma, respectively. The remaining 18S rRNA sequences of trypanosomes were related to other trypanosomes previously reported elsewhere. The sequences in the current study showed nucleotide identity as low as 90.74% compared to those of trypanosomes in the GenBank database, indicating the possibility of new species. All bat trypanosomes identified in the current study fall within the T. cruzi clade. The current study adds to evidence linking T. noyesi to a bat trypanosome and further supports the bat host origin of the T. cruzi clade. To the best of authors' knowledge, this is the first study on bat trypanosomes in Thailand and their phylogenetic relationships with global isolates.
Collapse
Affiliation(s)
- Elizabeth Riana
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Apinya Arnuphapprasert
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Duriyang Narapakdeesakul
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Pipat Soisook
- Princess Maha Chakri Sirindhorn Natural History Museum, Prince of Songkla University, Songkhla, Thailand
- Harrison Institute, Bowerwood House, No. 15, St Botolph's Road, Sevenoaks, KentTN13 3AQ, UK
| | - Phanaschakorn Bhodhibundit
- Sai Yok National Park, Department of National Parks, Wildlife and Plant Conservation, Kanchanaburi, Thailand
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Sato H, Mafie E. "Visiting old, learn new": taxonomical overview of chiropteran trypanosomes from the morphology to the genes. Parasitol Res 2022; 121:805-822. [PMID: 35106654 DOI: 10.1007/s00436-022-07423-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/02/2022] [Indexed: 11/25/2022]
Abstract
Bats (the order Chiroptera) account for more than 20% of all mammalian species in the world; remarkably, they are the only mammals capable of true and sustained flight using their wing-like forelimbs. Since the beginning of the twentieth century, various morphotypes (or genotypes in the last decade) of haemoflagellates in the genus Trypanosoma (Euglenozoa: Kinetoplastea: Trypanosomatidae) have been reported worldwide in the blood of bats. Of note, the latent nature of chiropteran trypanosome infection with low levels of parasitaemia, together with the apparent morphological variation of the bloodstream forms related to phenotypical plasticity and the morphological resemblance of different parasite species, has hampered the taxonomic classification of bat trypanosomes based on morphological criteria. This said, 50 years ago, Hoare (1972) provisionally divided bat trypanosomes into two major morphotypes: the megadermae group (corresponding to the subgenus Megatrypanum in the traditional taxonomic system; 8 species) and the vespertilionis group (similar to the subgenus Schizotrypanum; 5 species). Importantly, the biological and biochemical analyses of bat trypanosomes isolated by haemoculture, together with the molecular genetic characterisation using various gene markers, allowed the establishment of clear phylogenetic and taxonomic relationships of various isolates from different continents in the last two decades. Here, we review the historical taxonomic approaches used to define chiropteran trypanosomes, as well as the ones currently employed to shed light on the diversity and evolutional tracks of the globally distributed chiropteran trypanosomes.
Collapse
Affiliation(s)
- Hiroshi Sato
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
- Division of Pathogenic Microorganisms, Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
| | - Eliakunda Mafie
- Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
8
|
Berbigier AP, Barros JHDS, Pontes ES, Lisboa CV, Gentile R, Xavier SCDC, Jansen AM, Roque ALR. Trypanosomatid Richness in Wild and Synanthropic Small Mammals from a Biological Station in Rio de Janeiro, Brazil. Pathogens 2021; 10:pathogens10111442. [PMID: 34832597 PMCID: PMC8620513 DOI: 10.3390/pathogens10111442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Trypanosomatids are diverse and can infect several host species, including small mammals (rodents and marsupials). Between 2012 and 2014, 91 small mammals were surveyed for trypanosomatid infection in the Estação Biológica FIOCRUZ Mata Atlântica (EFMA), an Atlantic Forest area in Rio de Janeiro that presents different levels of conserved and degraded areas. Blood, skin, liver, and spleen samples were submitted to parasitological, serological, and molecular assays to detect the infection and determine the taxonomic status of their parasites. Sixty-eight individuals (74.7%; n = 91) were infected by trypanosomatids, including fourteen mixed infected by different trypanosomatid parasites. These hosts were infected by: T. cruzi DTU TcI (n = 12), T. cruzi DTU TcIV (n = 2), T. janseni (n = 15), T. dionisii (n = 1), and T. rangeli A (n = 1) detected in blood or tissue cultures, in addition to T. cruzi DTU TcI (n = 9) and Leishmania sp. (n = 1) only by the molecular diagnosis. Serological diagnosis was positive in 38 (71.6%) individuals for T. cruzi, the same amount for Leishmania spp., and 23 (43.3%) individuals were mixed infected. These data indicate a remarkable richness of trypanosomatid species/genotypes infecting small mammals, even in a disturbed area with low mammal species diversity—as is the case of the EFMA—reinforcing the generalist aspect of these parasites.
Collapse
Affiliation(s)
- Alice Pereira Berbigier
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (A.P.B.); (J.H.d.S.B.); (E.S.P.); (C.V.L.); (S.C.d.C.X.); (A.M.J.)
| | - Juliana Helena da Silva Barros
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (A.P.B.); (J.H.d.S.B.); (E.S.P.); (C.V.L.); (S.C.d.C.X.); (A.M.J.)
| | - Edilene Sousa Pontes
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (A.P.B.); (J.H.d.S.B.); (E.S.P.); (C.V.L.); (S.C.d.C.X.); (A.M.J.)
| | - Cristiane Varella Lisboa
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (A.P.B.); (J.H.d.S.B.); (E.S.P.); (C.V.L.); (S.C.d.C.X.); (A.M.J.)
| | - Rosana Gentile
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Samanta Cristina das Chagas Xavier
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (A.P.B.); (J.H.d.S.B.); (E.S.P.); (C.V.L.); (S.C.d.C.X.); (A.M.J.)
| | - Ana Maria Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (A.P.B.); (J.H.d.S.B.); (E.S.P.); (C.V.L.); (S.C.d.C.X.); (A.M.J.)
| | - André Luiz Rodrigues Roque
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (A.P.B.); (J.H.d.S.B.); (E.S.P.); (C.V.L.); (S.C.d.C.X.); (A.M.J.)
- Correspondence: ; Tel.: +55-(21)-2562-1416; Fax: +55-(21)-2562-1609
| |
Collapse
|
9
|
Valença-Barbosa C, Finamore-Araujo P, Moreira OC, Vergara-Meza JG, Alvarez MVN, Nascimento JR, Borges-Veloso A, Viana MC, Lilioso M, Miguel DC, Gadelha FR, Teixeira MMG, Almeida CE. Genotypic Trypanosoma cruzi distribution and parasite load differ ecotypically and according to parasite genotypes in Triatoma brasiliensis from endemic and outbreak areas in Northeastern Brazil. Acta Trop 2021; 222:106054. [PMID: 34273309 DOI: 10.1016/j.actatropica.2021.106054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022]
Abstract
This study aimed to identify the Trypanosoma cruzi genotypes and their relationship with parasitic load in distinct geographic and ecotypic populations of Triatoma brasiliensis in two sites, including one where a Chagas disease (ChD) outbreak occurred in Rio Grande do Norte state, Brazil. Triatomine captures were performed in peridomestic and sylvatic ecotopes in two municipalities: Marcelino Vieira - affected by the outbreak; and Currais Novos - where high pressure of peridomestic triatomine infestation after insecticide spraying have been reported. The kDNA-PCR was used to select 124 T. cruzi positive triatomine samples, of which 117 were successfully genotyped by fluorescent fragment length barcoding (FFLB). Moreover, the T. cruzi load quantification was performed using a multiplex TaqMan qPCR. Our findings showed a clear ecotypic segregation between TcI and TcII harboured by T. brasiliensis (p<0.001). Although no genotypes were ecotypically exclusive, TcI was predominant in peridomestic ecotopes (86%). In general, T. brasiliensis from Rio Grande do Norte had a higher T. cruzi load varying from 3.94 to 7.66 x 106T. cruzi per insect. Additionally, TcII (median value=299,504 T. cruzi/intestine unit equivalents) had more than twice (p=0.1) the parasite load of TcI (median value=149,077 T. cruzi/intestine unit equivalents), which can be attributed to a more ancient co-evolution with T. brasiliensis. The higher prevalence of TcII in the sylvatic T. brasiliensis (70%) could be associated with a more diversified source of bloodmeals for wild insect populations. Either TcI or TcII may have been responsible for the ChD outbreak that occurred in the city of Marcelino Vieira. On the other hand, a smaller portion of T. brasiliensis was infected by TcIII (3%) in the peridomicile, in addition to T. rangeli genotype A (1%), often found in mixed infections. Our results highlight the need of understanding the patterns of T. cruzi genotype´s development and circulation in insect vectors and reservoirs as a mode of tracking situations of epidemiologic importance, as the ChD outbreak recently recorded for Northeastern Brazil.
Collapse
Affiliation(s)
- Carolina Valença-Barbosa
- Instituto de Biologia, Universidade de Campinas - UNICAMP, São Paulo, Brazil; Grupo Triatomíneos, Instituto René Rachou, Fundação Oswaldo Cruz - Fiocruz, Belo Horizonte, Minas Gerais, Brazil.
| | - Paula Finamore-Araujo
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Otacilio C Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | - André Borges-Veloso
- Instituto de Biologia, Universidade de Campinas - UNICAMP, São Paulo, Brazil; Grupo Triatomíneos, Instituto René Rachou, Fundação Oswaldo Cruz - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | | | - Maurício Lilioso
- Instituto de Biologia, Universidade de Campinas - UNICAMP, São Paulo, Brazil
| | | | | | | | - Carlos Eduardo Almeida
- Instituto de Biologia, Universidade de Campinas - UNICAMP, São Paulo, Brazil; Instituto de Biologia, Universidade Federal da Bahia, Brazil
| |
Collapse
|
10
|
Austen JM, Barbosa AD. Diversity and Epidemiology of Bat Trypanosomes: A One Health Perspective. Pathogens 2021; 10:pathogens10091148. [PMID: 34578180 PMCID: PMC8465530 DOI: 10.3390/pathogens10091148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Bats (order Chiroptera) have been increasingly recognised as important reservoir hosts for human and animal pathogens worldwide. In this context, molecular and microscopy-based investigations to date have revealed remarkably high diversity of Trypanosoma spp. harboured by bats, including species of recognised medical and veterinary importance such as Trypanosoma cruzi and Trypanosoma evansi (aetiological agents of Chagas disease and Surra, respectively). This review synthesises current knowledge on the diversity, taxonomy, evolution and epidemiology of bat trypanosomes based on both molecular studies and morphological records. In addition, we use a One Health approach to discuss the significance of bats as reservoirs (and putative vectors) of T. cruzi, with a focus on the complex associations between intra-specific genetic diversity and eco-epidemiology of T. cruzi in sylvatic and domestic ecosystems. This article also highlights current knowledge gaps on the biological implications of trypanosome co-infections in a single host, as well as the prevalence, vectors, life-cycle, host-range and clinical impact of most bat trypanosomes recorded to date. Continuous research efforts involving molecular surveillance of bat trypanosomes are required for improved disease prevention and control, mitigation of biosecurity risks and potential spill-over events, ultimately ensuring the health of humans, domestic animals and wildlife globally.
Collapse
Affiliation(s)
- Jill M. Austen
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (J.M.A.); (A.D.B.)
| | - Amanda D. Barbosa
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, DF, Brazil
- Correspondence: (J.M.A.); (A.D.B.)
| |
Collapse
|
11
|
Dario MA, Pavan MG, Rodrigues MS, Lisboa CV, Kluyber D, Desbiez ALJ, Herrera HM, Roque ALR, Lima L, Teixeira MMG, Jansen AM. Trypanosoma rangeli Genetic, Mammalian Hosts, and Geographical Diversity from Five Brazilian Biomes. Pathogens 2021; 10:736. [PMID: 34207936 PMCID: PMC8230690 DOI: 10.3390/pathogens10060736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Trypanosoma rangeli is a generalist hemoflagellate that infects mammals and is transmitted by triatomines around Latin America. Due to its high genetic diversity, it can be classified into two to five lineages. In Brazil, its distribution outside the Amazon region is virtually unknown, and knowledge on the ecology of its lineages and on host species diversity requires further investigation. Here, we analyzed 57 T. rangeli samples obtained from hemocultures and blood clots of 1392 mammals captured in different Brazilian biomes. The samples were subjected to small subunit (SSU) rDNA amplification and sequencing to confirm T. rangeli infection. Phylogenetic inferences and haplotype networks were reconstructed to classify T. rangeli lineages and to infer the genetic diversity of the samples. The results obtained in our study highlighted both the mammalian host range and distribution of T. rangeli in Brazil: infection was observed in five new species (Procyon cancrivorous, Priodontes maximum, Alouatta belzebul, Sapajus libidinosus, and Trinomys dimidiatus), and transmission was observed in the Caatinga biome. The coati (Nasua nasua) and capuchin monkey (S. libidinosus) are the key hosts of T. rangeli. We identified all four T. rangeli lineages previously reported in Brazil (A, B, D, and E) and possibly two new genotypes.
Collapse
Affiliation(s)
- Maria Augusta Dario
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.A.D.); (M.S.R.); (C.V.L.); (A.L.R.R.)
| | - Márcio Galvão Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-36, Brazil;
| | - Marina Silva Rodrigues
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.A.D.); (M.S.R.); (C.V.L.); (A.L.R.R.)
| | - Cristiane Varella Lisboa
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.A.D.); (M.S.R.); (C.V.L.); (A.L.R.R.)
| | - Danilo Kluyber
- Associate Researcher, Naples Zoo at Caribbeans Gardens, Naples, FL 34102, USA;
- Instituto de Conservação de Animais Silvestres (ICAS), Campo Grande 79037-100, Brazil;
| | - Arnaud L. J. Desbiez
- Instituto de Conservação de Animais Silvestres (ICAS), Campo Grande 79037-100, Brazil;
| | - Heitor Miraglia Herrera
- Pós-Graduação em Ciência Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil;
- Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Campo Grande 79117-900, Brazil
| | - André Luiz Rodrigues Roque
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.A.D.); (M.S.R.); (C.V.L.); (A.L.R.R.)
| | - Luciana Lima
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (L.L.); (M.M.G.T.)
| | - Marta M. G. Teixeira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (L.L.); (M.M.G.T.)
| | - Ana Maria Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.A.D.); (M.S.R.); (C.V.L.); (A.L.R.R.)
| |
Collapse
|
12
|
McKee CD, Bai Y, Webb CT, Kosoy MY. Bats are key hosts in the radiation of mammal-associated Bartonella bacteria. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 89:104719. [PMID: 33444855 PMCID: PMC10915969 DOI: 10.1016/j.meegid.2021.104719] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/25/2022]
Abstract
Bats are notorious reservoirs of several zoonotic diseases and may be uniquely tolerant of infection among mammals. Broad sampling has revealed the importance of bats in the diversification and spread of viruses and eukaryotes to other animal hosts. Vector-borne bacteria of the genus Bartonella are prevalent and diverse in mammals globally and recent surveys have revealed numerous Bartonella lineages in bats. We assembled a sequence database of Bartonella strains, consisting of nine genetic loci from 209 previously characterized Bartonella lineages and 121 new cultured isolates from bats, and used these data to perform a comprehensive phylogenetic analysis of the Bartonella genus. This analysis included estimation of divergence dates using a molecular clock and ancestral reconstruction of host associations and geography. We estimate that Bartonella began infecting mammals 62 million years ago near the Cretaceous-Paleogene boundary. Additionally, the radiation of particular Bartonella clades correlate strongly to the timing of diversification and biogeography of mammalian hosts. Bats were inferred to be the ancestral hosts of all mammal-associated Bartonella and appear to be responsible for the early geographic expansion of the genus. We conclude that bats have had a deep influence on the evolutionary radiation of Bartonella bacteria and their spread to other mammalian orders. These results support a 'bat seeding' hypothesis that could explain similar evolutionary patterns in other mammalian parasite taxa. Application of such phylogenetic tools as we have used to other taxa may reveal the general importance of bats in the ancient diversification of mammalian parasites.
Collapse
Affiliation(s)
- Clifton D McKee
- Graduate Degree Program in Ecology, Colorado State University, 1021 Campus Delivery, Fort Collins, CO 80523, USA; Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Ying Bai
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Colleen T Webb
- Graduate Degree Program in Ecology, Colorado State University, 1021 Campus Delivery, Fort Collins, CO 80523, USA; Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523, USA
| | - Michael Y Kosoy
- KB One Health, LLC, 3244 Reedgrass Court, Fort Collins, CO 80521, USA
| |
Collapse
|
13
|
Mule SN, Costa-Martins AG, Rosa-Fernandes L, de Oliveira GS, Rodrigues CMF, Quina D, Rosein GE, Teixeira MMG, Palmisano G. PhyloQuant approach provides insights into Trypanosoma cruzi evolution using a systems-wide mass spectrometry-based quantitative protein profile. Commun Biol 2021; 4:324. [PMID: 33707618 PMCID: PMC7952728 DOI: 10.1038/s42003-021-01762-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/24/2021] [Indexed: 01/31/2023] Open
Abstract
The etiological agent of Chagas disease, Trypanosoma cruzi, is a complex of seven genetic subdivisions termed discrete typing units (DTUs), TcI-TcVI and Tcbat. The relevance of T. cruzi genetic diversity to the variable clinical course of the disease, virulence, pathogenicity, drug resistance, transmission cycles and ecological distribution requires understanding the parasite origin and population structure. In this study, we introduce the PhyloQuant approach to infer the evolutionary relationships between organisms based on differential mass spectrometry-based quantitative features. In particular, large scale quantitative bottom-up proteomics features (MS1, iBAQ and LFQ) were analyzed using maximum parsimony, showing a correlation between T. cruzi DTUs and closely related trypanosomes' protein expression and sequence-based clustering. Character mapping enabled the identification of synapomorphies, herein the proteins and their respective expression profiles that differentiate T. cruzi DTUs and trypanosome species. The distance matrices based on phylogenetics and PhyloQuant clustering showed statistically significant correlation highlighting the complementarity between the two strategies. Moreover, PhyloQuant allows the identification of differentially regulated and strain/DTU/species-specific proteins, and has potential application in the identification of specific biomarkers and candidate therapeutic targets.
Collapse
Affiliation(s)
- Simon Ngao Mule
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Carla Monadeli F Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniel Quina
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Graziella E Rosein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
14
|
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 2021; 11:200407. [PMID: 33715388 PMCID: PMC8061765 DOI: 10.1098/rsob.200407] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.
Collapse
Affiliation(s)
- Alexei Y. Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jan Votýpka
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daria Tashyreva
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
15
|
Goodrich I, McKee C, Kosoy M. Trypanosoma (Herpetosoma) diversity in rodents and lagomorphs of New Mexico with a focus on epizootological aspects of infection in Southern Plains woodrats (Neotoma micropus). PLoS One 2020; 15:e0244803. [PMID: 33382847 PMCID: PMC7775056 DOI: 10.1371/journal.pone.0244803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Protozoan parasites of the genus Trypanosoma infect a broad diversity of vertebrates and several species cause significant illness in humans. However, understanding of the phylogenetic diversity, host associations, and infection dynamics of Trypanosoma species in naturally infected animals is incomplete. This study investigated the presence of Trypanosoma spp. in wild rodents and lagomorphs in northern New Mexico, United States, as well as phylogenetic relationships among these parasites. A total of 458 samples from 13 rodent and one lagomorph species collected between November 2002 and July 2004 were tested by nested PCR targeting the 18S ribosomal RNA gene (18S rRNA). Trypanosoma DNA was detected in 25.1% of all samples, with the highest rates of 50% in Sylvilagus audubonii, 33.1% in Neotoma micropus, and 32% in Peromyscus leucopus. Phylogenetic analysis of Trypanosoma sequences revealed five haplotypes within the subgenus Herpetosoma (T. lewisi clade). Focused analysis on the large number of samples from N. micropus showed that Trypanosoma infection varied by age class and that the same Trypanosoma haplotype could be detected in recaptured individuals over multiple months. This is the first report of Trypanosoma infections in Dipodomys ordii and Otospermophilus variegatus, and the first detection of a haplotype phylogenetically related to T. nabiasi in North America in S. audubonii. This study lends important new insight into the diversity of Trypanosoma species, their geographic ranges and host associations, and the dynamics of infection in natural populations.
Collapse
Affiliation(s)
- Irina Goodrich
- Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Clifton McKee
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Michael Kosoy
- Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| |
Collapse
|
16
|
Trypanosomes of vectors and domestic dogs in Trypanosoma cruzi transmission areas from Brazilian southwestern amazon: New mammalian host for Trypanosoma janseni. Acta Trop 2020; 210:105504. [PMID: 32526167 DOI: 10.1016/j.actatropica.2020.105504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Trypanosoma cruzi is a widespread protozoan in Latin America causing Chagas disease in humans and able to infect several other mammal species. The objective of this study was to investigate the T. cruzi infection in triatomine fauna as well as in dogs from distinct areas of Acre, western Brazilian Amazonia, which recently reported acute cases of human CD as well as an area that have not notify this disease recently. Triatomines were collected and the intestinal contents were evaluated for the presence of trypanosomatids by optical microscopy and polymerase chain reaction (PCR) targeting the mini-exon gene. Blood smear, hemoculture, PCR and serology were performed in the studied mammals. Fecal content of four triatomines were positive (11.6%) in the fresh examination. Molecular analysis identified Trypanosoma cruzi TCI in two specimens. Blood samples from 90 dogs were obtained. Trypanosoma sp. was observed in six blood smears (6/83, 7.22%). Seropositivity for T. cruzi was 8/89 (8.98). One dog's hemoculture was obtained and characterized as T. rangeli. PCR reactions in blood clots resulted in one positive dog (1/75, 1.3%) infected by T. janseni, providing a new mammalian host for a recently described Trypanosoma species. The results demonstrate the low exposition and prevalence for T. cruzi suggesting that dogs are not important to T. cruzi transmission cycle in the studied áreas.
Collapse
|
17
|
Abstract
Trypanosomes are blood-borne parasites that can infect a variety of different vertebrates, including animals and humans. This study aims to broaden scientific knowledge about the presence and biodiversity of trypanosomes in Australian bats. Molecular and morphological analysis was performed on 86 blood samples collected from seven different species of microbats in Western Australia. Phylogenetic analysis on 18S rDNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) sequences identified Trypanosoma dionisii in five different Australian native species of microbats; Chalinolobus gouldii, Chalinolobus morio, Nyctophilus geoffroyi, Nyctophilus major and Scotorepens balstoni. In addition, two novels, genetically distinct T. dionisii genotypes were detected and named T. dionisii genotype Aus 1 and T. dionisii genotype Aus 2. Genotype Aus 2 was the most prevalent and infected 20.9% (18/86) of bats in the present study, while genotype Aus 1 was less prevalent and was identified in 5.8% (5/86) of Australian bats. Morphological analysis was conducted on trypomastigotes identified in blood films, with morphological parameters consistent with trypanosome species in the subgenus Schizotrypanum. This is the first report of T. dionisii in Australia and in Australian native bats, which further contributes to the global distribution of this cosmopolitan bat trypanosome.
Collapse
|
18
|
Arias-Giraldo LM, Muñoz M, Hernández C, Herrera G, Velásquez-Ortiz N, Cantillo-Barraza O, Urbano P, Cuervo A, Ramírez JD. Identification of blood-feeding sources in Panstrongylus, Psammolestes, Rhodnius and Triatoma using amplicon-based next-generation sequencing. Parasit Vectors 2020; 13:434. [PMID: 32867816 PMCID: PMC7457505 DOI: 10.1186/s13071-020-04310-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 08/24/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Triatomines are hematophagous insects that play an important role as vectors of Trypanosoma cruzi, the causative agent of Chagas disease. These insects have adapted to multiple blood-feeding sources that can affect relevant aspects of their life-cycle and interactions, thereby influencing parasitic transmission dynamics. We conducted a characterization of the feeding sources of individuals from the primary circulating triatomine genera in Colombia using amplicon-based next-generation sequencing (NGS). METHODS We used 42 triatomines collected in different departments of Colombia. DNA was extracted from the gut. The presence of T. cruzi was identified using real-time PCR, and discrete typing units (DTUs) were determined by conventional PCR. For blood-feeding source identification, PCR products of the vertebrate 12S rRNA gene were obtained and sequenced by next-generation sequencing (NGS). Blood-meal sources were inferred using blastn against a curated reference dataset containing the 12S rRNA sequences belonging to vertebrates with a distribution in South America that represent a potential feeding source for triatomine bugs. Mean and median comparison tests were performed to evaluate differences in triatomine blood-feeding sources, infection state, and geographical regions. Lastly, the inverse Simpson's diversity index was calculated. RESULTS The overall frequency of T. cruzi infection was 83.3%. TcI was found as the most predominant DTU (65.7%). A total of 67 feeding sources were detected from the analyses of approximately 7 million reads. The predominant feeding source found was Homo sapiens (76.8%), followed by birds (10.5%), artiodactyls (4.4%), and non-human primates (3.9%). There were differences among numerous feeding sources of triatomines of different species. The diversity of feeding sources also differed depending on the presence of T. cruzi. CONCLUSIONS To the best of our knowledge, this is the first study to employ amplicon-based NGS of the 12S rRNA gene to depict blood-feeding sources of multiple triatomine species collected in different regions of Colombia. Our findings report a striking read diversity that has not been reported previously. This is a powerful approach to unravel transmission dynamics at microgeographical levels.
Collapse
Affiliation(s)
- Luisa M Arias-Giraldo
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Hernández
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Giovanny Herrera
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Natalia Velásquez-Ortiz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Omar Cantillo-Barraza
- Grupo de Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín, Colombia
| | - Plutarco Urbano
- Grupo de Investigaciones Biológicas de la Orinoquia, Fundación Universitaria Internacional del Trópico Americano (Unitropico), Yopal, Colombia
| | - Andrés Cuervo
- Secretaría Departamental de Salud de Arauca, Arauca, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
19
|
Watanabe Costa R, Batista MF, Meneghelli I, Vidal RO, Nájera CA, Mendes AC, Andrade-Lima IA, da Silveira JF, Lopes LR, Ferreira LRP, Antoneli F, Bahia D. Comparative Analysis of the Secretome and Interactome of Trypanosoma cruzi and Trypanosoma rangeli Reveals Species Specific Immune Response Modulating Proteins. Front Immunol 2020; 11:1774. [PMID: 32973747 PMCID: PMC7481403 DOI: 10.3389/fimmu.2020.01774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/02/2020] [Indexed: 12/04/2022] Open
Abstract
Chagas disease, a zoonosis caused by the flagellate protozoan Trypanosoma cruzi, is a chronic and systemic parasitic infection that affects ~5–7 million people worldwide, mainly in Latin America. Chagas disease is an emerging public health problem due to the lack of vaccines and effective treatments. According to recent studies, several T. cruzi secreted proteins interact with the human host during cell invasion. Moreover, some comparative studies with T. rangeli, which is non-pathogenic in humans, have been performed to identify proteins directly involved in the pathogenesis of the disease. In this study, we present an integrated analysis of canonical putative secreted proteins (PSPs) from both species. Additionally, we propose an interactome with human host and gene family clusters, and a phylogenetic inference of a selected protein. In total, we identified 322 exclusively PSPs in T. cruzi and 202 in T. rangeli. Among the PSPs identified in T. cruzi, we found several trans-sialidases, mucins, MASPs, proteins with phospholipase 2 domains (PLA2-like), and proteins with Hsp70 domains (Hsp70-like) which have been previously characterized and demonstrated to be related to T. cruzi virulence. PSPs found in T. rangeli were related to protozoan metabolism, specifically carboxylases and phosphatases. Furthermore, we also identified PSPs that may interact with the human immune system, including heat shock and MASP proteins, but in a lower number compared to T. cruzi. Interestingly, we describe a hypothetical hybrid interactome of PSPs which reveals that T. cruzi secreted molecules may be down-regulating IL-17 whilst T. rangeli may enhance the production of IL-15. These results will pave the way for a better understanding of the pathophysiology of Chagas disease and may ultimately lead to the identification of molecular targets, such as key PSPs, that could be used to minimize the health outcomes of Chagas disease by modulating the immune response triggered by T. cruzi infection.
Collapse
Affiliation(s)
- Renata Watanabe Costa
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marina Ferreira Batista
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabela Meneghelli
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ramon Oliveira Vidal
- The Berlin Institute for Medical Systems Biology-Max Delbrück Center for Molecular Medicine in the Helmholtz Association in Berlin, Berlin, Germany.,Laboratorio Nacional de Biociências (LNBio), Campinas, São Paulo, Brazil
| | - Carlos Alcides Nájera
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Clara Mendes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Augusta Andrade-Lima
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luciano Rodrigo Lopes
- Departamento de Informática em Saúde, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ludmila Rodrigues Pinto Ferreira
- RNA Systems Biology Lab (RSBL), Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Antoneli
- Departamento de Informática em Saúde, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Diana Bahia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
20
|
Kaufer A, Stark D, Ellis J. A review of the systematics, species identification and diagnostics of the Trypanosomatidae using the maxicircle kinetoplast DNA: from past to present. Int J Parasitol 2020; 50:449-460. [PMID: 32333942 DOI: 10.1016/j.ijpara.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/25/2022]
Abstract
The Trypanosomatid family are a diverse and widespread group of protozoan parasites that belong to the higher order class Kinetoplastida. Containing predominantly monoxenous species (i.e. those having only a single host) that are confined to invertebrate hosts, this class is primarily known for its pathogenic dixenous species (i.e. those that have two hosts), serving as the aetiological agents of the important neglected tropical diseases including leishmaniasis, American trypanosomiasis (Chagas disease) and human African trypanosomiasis. Over the past few decades, a multitude of studies have investigated the diversity, classification and evolutionary history of the trypanosomatid family using different approaches and molecular targets. The mitochondrial-like DNA of the trypanosomatid parasites, also known as the kinetoplast, has emerged as a unique taxonomic and diagnostic target for exploring the evolution of this diverse group of parasitic eukaryotes. This review discusses recent advancements and important developments that have made a significant impact in the field of trypanosomatid systematics and diagnostics in recent years.
Collapse
Affiliation(s)
- Alexa Kaufer
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Damien Stark
- Department of Microbiology, St Vincent's Hospital Sydney, Darlinghurst, NSW 2010, Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
21
|
Añez N, Crisante G, Rojas A, Segnini S, Espinoza-Álvarez O, Teixeira MM. Update on Chagas disease in Venezuela during the period 2003-2018. A review. Acta Trop 2020; 203:105310. [PMID: 31862464 DOI: 10.1016/j.actatropica.2019.105310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/04/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
The present article reviews the status of Chagas disease in Venezuela during the period 2003-2018, based on the detection of Trypanosoma cruzi-infection in 3,343 blood samples of individuals from rural localities and 182 patients referred from health centers to confirm presumptive clinical diagnostic. The study involved samples from 81 rural localities of 17 states located at different regions and ecological life zones of the country. Analysis by parasitological (fresh microscopic observation, hemoculture and Giemsa stained blood smears), serological (DAT, IFAT-polyvalent, IgM, IgG tests) and molecular (PCR) tests, revealed 10.7% seroprevalence and 42.8% T. cruzi-infection, in individuals from rural localities and referred patients, respectively. In both groups T. cruzi-infection was detected at any age, revealing active transmission in children under 10-years-old. Clinical profile detected in referred patients, showed significantly major number of symptoms in orally infected patients than in infected by vectorial route (P<0.01). Genetic characterization of T. cruzi isolates obtained from orally and vectorial transmitted acute Chagas disease in western Venezuela, revealed the circulation of DTUI and DTUIII in the former, and DTUI, DTUII and DTUIII in patients infected by vectorial route. DTUI predominated in both cases, and haplotype Ib was the most frequently found in this genotype. Statistical analysis of clinical profile - T. cruzi DTUs - transmission route relationships did not show association among these variables and, consequently, chagasic patient's clinical condition did not depend of T. cruzi genotype or its route of transmission. In addition, differences in clinical severity may be associated with host susceptibility and/or parasite load received by the human receptor in spite of the T. cruzi genotype itself. The epidemiological implications of the present findings are discussed, and the need for developing efficient tools as well as implementation of urgent and radical changes in the public health policy to control Chagas disease transmission in the Venezuelan territory are suggested.
Collapse
|
22
|
Hieu HV, Do LT, Pita S, Ha H, Khoa PT, Tuan PA, Mai TP, Lien NG, Panzera F. Biological attributes of the kissing bug Triatoma rubrofasciata from Vietnam. Parasit Vectors 2019; 12:585. [PMID: 31842951 PMCID: PMC6915989 DOI: 10.1186/s13071-019-3844-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/09/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Triatoma rubrofasciata is the only kissing bug species distributed globally. In the Americas, this species transmits the parasite Trypanosoma cruzi, responsible for Chagas disease. The presence of T. rubrofasciata in several Asian countries has greatly increased recently. In Vietnam, it is found in large numbers, closely associated with human environments. Although T. rubrofasciata from Asia is not infected with Tryp. cruzi, it carries other parasites such as Trypanosoma lewisi and Trypanosoma conorhini. Reports of bites by T. rubrofasciata have increased significantly in several places of Vietnam, becoming a public health problem as it produces severe anaphylactic reactions. METHODS Specimens of T. rubrofasciata were collected from seven provinces in central Vietnam. We analyzed different biological attributes (life-cycle, starvation resistance, feeding and reproductive capacities) and genetic characteristics (chromosomes and DNA sequences) of T. rubrofasciata from Vietnam and compared them with Brazilian specimens. Natural infection with Tryp. conorhini and Tryp. lewisi were analyzed in a sample of 100 collected insects. RESULTS Species identification of T. rubrofasciata from central Vietnam was corroborated by genetic markers. Cytogenetic analyses showed that T. rubrofasciata from central Vietnam share the same chromosomal characteristics with individuals from Brazil and Hanoi. DNA sequence analyses of a mitochondrial cytochrome b gene fragment showed little variation between Old and New World specimens. Our study sample, compared with Brazilian individuals, showed a higher survival capacity revealed by a higher hatching rate (98% compared with 80.5%), a larger amount of blood taken in single meal and long-term starvation resistance. Furthermore, this species had a high natural rate of infection with Tryp. conorhini (46%) and Tryp. lewisi (27%). CONCLUSIONS For T. rubrofasciata of Vietnam, a high rate of fecundity throughout the year, a high capacity for starvation, and its occurrence in synanthropic environments of urban areas with a high availability of food sources are risk factors to be taken into account by vector control campaigns. The several allergic reactions caused by their bites and their high infection with Tryp. lewisi highlight the need to implement specific control programmes for T. rubrofasciata in Vietnam.
Collapse
Affiliation(s)
- Ho Viet Hieu
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Duy Tan University, Da Nang, 550000, Vietnam
| | - Le Thanh Do
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000, Vietnam.
| | - Sebastián Pita
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Hoang Ha
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Duy Tan University, Da Nang, 550000, Vietnam
| | - Pham Thi Khoa
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Duy Tan University, Da Nang, 550000, Vietnam
| | - Pham Anh Tuan
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Duy Tan University, Da Nang, 550000, Vietnam
| | - Ta Phuong Mai
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Duy Tan University, Da Nang, 550000, Vietnam
| | - Ngo Giang Lien
- Department of Cell Biology, University of Science, Vietnam National University, Hanoi, 100000, Vietnam
| | - Francisco Panzera
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay.
| |
Collapse
|
23
|
Out of Africa: The origins of the protozoan blood parasites of the Trypanosoma cruzi clade found in bats from Africa. Mol Phylogenet Evol 2019; 145:106705. [PMID: 31821880 DOI: 10.1016/j.ympev.2019.106705] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/26/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
Understanding geographic patterns of interaction between hosts and parasites can provide useful insight into the evolutionary history of the organisms involved. However, poor taxon sampling often hinders meaningful phylogenetic descriptions of groups of parasites. Trypanosome parasites that constitute the Trypanosoma cruzi clade are worldwide distributed infecting several mammalian species, especially bats. Diversity in this clade has been recently expanded by newly discovered species, but the common ancestor and geographical origins of this group of blood parasites are still debated. We present here results based on the molecular characterization of trypanosome isolates obtained from 1493 bats representing 74 species and sampled over 16 countries across four continents. After estimating the appropriate number of hypothetical species in our data set using GMYC models in combination with Poisson Tree Processes (mPTP) and ABGD, the 18S rRNA and gGAPDH genes were used for phylogenetic analyses to infer the major evolutionary relationships in the T. cruzi clade. Then, biogeographical processes influencing the distribution of this cosmopolitan group of parasites was inferred using BioGeoBEARS. Results revealed a large lineages diversity and the presence of trypanosomes in all sampled regions which infected 344 individuals from 31 bat species. We found eight Trypanosoma species, including: five previously known; one subspecies of Trypanosoma livingstonei (Trypanosoma cf. livingstonei); and two undescribed taxa (Trypanosoma sp. 1, Trypanosoma sp. 2), which were found exclusively in bats of the genus Miniopterus from Europe and Africa. The new taxa discovered have both an unexpected position in the global phylogeny of the T. cruzi clade. Trypanosoma sp. 1 is a sister lineage of T. livingstonei which is located at the base of the tree, whereas Trypanosoma sp. 2 is a sister lineage of the Shizotrypanum subclade that contains T. c. cruzi and T. dionisii. Ancestral areas reconstruction provided evidence that trypanosomes of the T. cruzi clade have radiated from Africa through several dispersion events across the world. We discuss the impact of these findings on the biogeography and taxonomy of this important clade of parasites and question the role played by bats, especially those from the genus Miniopterus, on the dispersal of these protozoan parasites between continents.
Collapse
|
24
|
Evolutionary Insight into the Trypanosomatidae Using Alignment-Free Phylogenomics of the Kinetoplast. Pathogens 2019; 8:pathogens8030157. [PMID: 31540520 PMCID: PMC6789588 DOI: 10.3390/pathogens8030157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Advancements in next-generation sequencing techniques have led to a substantial increase in the genomic information available for analyses in evolutionary biology. As such, this data requires the exponential growth in bioinformatic methods and expertise required to understand such vast quantities of genomic data. Alignment-free phylogenomics offer an alternative approach for large-scale analyses that may have the potential to address these challenges. The evolutionary relationships between various species within the trypanosomatid family, specifically members belonging to the genera Leishmania and Trypanosoma have been extensively studies over the last 30 years. However, there is a need for a more exhaustive analysis of the Trypanosomatidae, summarising the evolutionary patterns amongst the entire family of these important protists. The mitochondrial DNA of the trypanosomatids, better known as the kinetoplast, represents a valuable taxonomic marker given its unique presence across all kinetoplastid protozoans. The aim of this study was to validate the reliability and robustness of alignment-free approaches for phylogenomic analyses and its applicability to reconstruct the evolutionary relationships between the trypanosomatid family. In the present study, alignment-free analyses demonstrated the strength of these methods, particularly when dealing with large datasets compared to the traditional phylogenetic approaches. We present a maxicircle genome phylogeny of 46 species spanning the trypanosomatid family, demonstrating the superiority of the maxicircle for the analysis and taxonomic resolution of the Trypanosomatidae.
Collapse
|
25
|
André MR, Gutiérrez R, Ikeda P, do Amaral RB, de Sousa KCM, Nachum-Biala Y, Lima L, Teixeira MMG, Machado RZ, Harrus S. Genetic diversity of Bartonella spp. in vampire bats from Brazil. Transbound Emerg Dis 2019; 66:2329-2341. [PMID: 31287942 DOI: 10.1111/tbed.13290] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023]
Abstract
Recently, an increasing number of Bartonella species have been emerged to cause human diseases. Among animal reservoirs for Bartonella spp., bats stand out due to their high mobility, wide distribution, social behaviour and long-life span. Although studies on the role of vampire bats in the epidemiology of rabies have been extensively investigated in Latin America, information on the circulation and genetic diversity of Bartonella species in these bat species is scarce. In the present work, 208 vampire bats, namely Desmodus rotundus (the common vampire bat; n = 167), Diphylla ecaudata (the hairy-legged vampire bat; n = 32) and Diaemus youngii (the white-winged vampire bat; n = 9) from 15 different states in Brazil were sampled. DNA was extracted from liver tissue samples and submitted to real-time PCR (qPCR) and conventional PCR (cPCR) assays for Bartonella spp. targeting five genetic loci, followed by phylogenetic and genotype network analyses. Fifty-one out of 208 liver samples (24.51%) were positive for Bartonella DNA in the ITS real-time PCR assay [40 (78.43%) of them were from D. rotundus from 11 states, and 11 (21.57%) samples from D. ecaudata from three states. Eleven genotypes were found for each gltA and rpoB genes. Several ITS sequences detected in the present study clustered within the lineage that includes B. bacilliformis and B. ancachensis. The Bayesian phylogenetic inference based on the gltA gene positioned the obtained sequences in six different clades, closely related to Bartonella genotypes previously detected in D. rotundus and associated ectoparasites sampled in Latin America. On the other hand, the Bartonella rpoB genotypes clustered together with the ruminant species, B. schoenbuchensis and B. chomelii. The present study describes for the first time the molecular detection of Bartonella spp. in D. ecaudata bats. It also indicates that Bartonella spp. of vampire bats are genetically diverse and geographically widespread in Brazil.
Collapse
Affiliation(s)
- Marcos R André
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, São Paulo, Brazil
| | - Ricardo Gutiérrez
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Priscila Ikeda
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, São Paulo, Brazil
| | - Renan Bressianini do Amaral
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, São Paulo, Brazil
| | | | - Yaarit Nachum-Biala
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Luciana Lima
- Departmento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marta M G Teixeira
- Departmento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Rosangela Z Machado
- Laboratório de Imunoparasitologia, Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, São Paulo, Brazil
| | - Shimon Harrus
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
26
|
Kaufer A, Barratt J, Stark D, Ellis J. The complete coding region of the maxicircle as a superior phylogenetic marker for exploring evolutionary relationships between members of the Leishmaniinae. INFECTION GENETICS AND EVOLUTION 2019; 70:90-100. [DOI: 10.1016/j.meegid.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 02/05/2023]
|
27
|
Wang LJ, Han HJ, Zhao M, Liu JW, Luo LM, Wen HL, Qin XR, Zhou CM, Qi R, Yu H, Yu XJ. Trypanosoma dionisii in insectivorous bats from northern China. Acta Trop 2019; 193:124-128. [PMID: 30826326 DOI: 10.1016/j.actatropica.2019.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/18/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
Although bats were considered as a major host of trypanosomatid flagellates, information of trypanosomes in bats is unknown in China. We collected bats in 2015 from Shandong Province of China and used PCR to amplify the Trypanosoma glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) gene and 18S rRNA gene from the bat blood samples and heart tissues. The results showed that 10.3% (13/126) of bats (Eptesicus serotinus and Myotis pequinius) were positive for trypanosomatid DNA and DNA sequencing showed that all PCR amplified Trypanosoma DNA belonged to T. dionisii. We concluded that T. dionisii had a infection rate in bats from China. For the first time, Trypanosoma infections were detected in bats from China, providing valuable information on the prevalence of these parasites in Asia. This is also the first report of Trypanosoma dionisii in Myotis pequinius, suggesting that Trypanosoma dionisii has a broad host species.
Collapse
|
28
|
Qiu Y, Kajihara M, Harima H, Hang'ombe BM, Nakao R, Hayashida K, Mori-Kajihara A, Changula K, Eto Y, Ndebe J, Yoshida R, Takadate Y, Mwizabi D, Kawabata H, Simuunza M, Mweene A, Sawa H, Takada A, Sugimoto C. Molecular characterization and phylogenetic analysis of Trypanosoma spp. detected from striped leaf-nosed bats ( Hipposideros vittatus) in Zambia. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 9:234-238. [PMID: 31198682 PMCID: PMC6555876 DOI: 10.1016/j.ijppaw.2019.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/25/2023]
Abstract
Bat trypanosomes consist of more than 30 trypanosome species from over 70 species of bats. Recent studies suggest that bats play a role in disseminating trypanosomes from African continent to the terrestrial mammals both in the Afrotropic-Palearctic Ecozones and Nearctic Ecozone. However, the diversity, distribution, and evolution of bat trypanosomes are still unclear. To better understand their evolution, more genetic data of bat trypanosomes from a variety of locations are required. During a survey of Borrelia spp. of bats inhabiting a cave in Zambia, we observed flagellate parasites from 5 of 43 hemocultures. Sequence and phylogenetic analyses of the glycosomal glyceraldehyde 3-phosphate dehydrogenase gene (gGAPDH; 572 bp) and the 18S ribosomal RNA gene (18S rRNA gene; 1,079-1,091 bp) revealed that all were Trypanosoma spp. belonged to the Trypanosoma cruzi clade. Three and two of them exhibited the similarity with T. conorhini and T. dionisii, respectively. The present study provides the first genetic data on Trypanosoma spp. of bats inhabiting Zambia.
Collapse
Affiliation(s)
- Yongjin Qiu
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Masahiro Kajihara
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Kita-20 Nishi-10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Hayato Harima
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Bernard Mudenda Hang'ombe
- Department of Para-clinical Studies, School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
- Global Virus Network Affilate Center of Excellence, The University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
- African Center of Excellence for Infectious Diseases of Humans and Animals, P.O. Box 32379, Lusaka, 10101, Zambia
| | - Ryo Nakao
- Laboratory of Veterinary Parasitology, Graduate School of Infectious Diseases, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Kyoko Hayashida
- Division of Collaboration and Education, Hokkaido University Research Center for Zoonosis Control, Kita-20 Nishi-10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Akina Mori-Kajihara
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Kita-20 Nishi-10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Katendi Changula
- Department of Para-clinical Studies, School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
| | - Yoshiki Eto
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Kita-20 Nishi-10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Joseph Ndebe
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
| | - Reiko Yoshida
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Kita-20 Nishi-10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Yoshihiro Takadate
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Kita-20 Nishi-10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Daniel Mwizabi
- Department of National Parks and Wildlife, Ministry of Tourism and Arts, Chilanga, 101010, Zambia
| | - Hiroki Kawabata
- Department of Bacteriology-I, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjyuku-ku, Tokyo, 162-8640, Japan
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
| | - Aaron Mweene
- Global Virus Network Affilate Center of Excellence, The University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
- African Center of Excellence for Infectious Diseases of Humans and Animals, P.O. Box 32379, Lusaka, 10101, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
| | - Hirofumi Sawa
- Global Virus Network Affilate Center of Excellence, The University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
- African Center of Excellence for Infectious Diseases of Humans and Animals, P.O. Box 32379, Lusaka, 10101, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
- Global Virus Network, 725 West Lombard St, Baltimore, MD, 21201, USA
- Division of Molecular Pathology, Hokkaido University Research Center for Zoonosis Control, Kita-20 Nishi-10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Ayato Takada
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Kita-20 Nishi-10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Chihiro Sugimoto
- Division of Collaboration and Education, Hokkaido University Research Center for Zoonosis Control, Kita-20 Nishi-10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
- Corresponding author. Division of Collaboration and Education, Hokkaido University Research Center for Zoonosis Control, Kita 20, Nishi 10, Kita-Ku, Sapporo, Hokkaido, 001-0020, Japan.
| |
Collapse
|
29
|
Rodrigues MS, Lima L, Xavier SCDC, Herrera HM, Rocha FL, Roque ALR, Teixeira MMG, Jansen AM. Uncovering Trypanosoma spp. diversity of wild mammals by the use of DNA from blood clots. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 8:171-181. [PMID: 30847276 PMCID: PMC6389730 DOI: 10.1016/j.ijppaw.2019.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/16/2022]
Abstract
Trypanosoma spp. infection in wild mammals is detected mainly through parasitological tests that usually display low sensitivity. We propose the use of DNA extracted directly from blood clots (BC), which are neglected sources of DNA for diagnosis and identification of Trypanosoma spp. This approach followed by nested PCR targeting the 18S SSU rDNA demonstrated to be sensitive and suitable to evaluate the diversity of trypanosomes infecting sylvatic mammals, including subpatent and mixed infections. Infection was detected in 95/120 (79.2%) samples from bats, carnivores and marsupials that included negative serological and hemoculture testing mammals. Thirteen Trypanosoma spp. or Molecular Operational Taxonomic Units (MOTUs) were identified, including two new MOTUs. The high diversity of trypanosomes species and MOTUs infecting bats and marsupials showed that these hosts can be considered as bio-accumulators of Trypanosoma spp., with specimens of Didelphis spp. displaying the highest trypanosome diversity. The use of blood clots allowed direct access to non-culturable parasites, mixed infections, besides bypassing the selective pressure on the parasites inherent to cultivation procedures. Trypanosoma cruzi was the species found infecting the highest number of individuals, followed by T. lainsoni. Positive PCR for T. cruzi was observed in 16 seronegative individuals and 30 individuals with negative hemocultures. Also, T. lainsoni, previously found only in rodents, showed to be capable of infecting bats and marsupials. This finding makes it clear that some species of Trypanosoma are more generalist than previously thought. Molecular diagnosis using nested PCR from DNA extracted from BC allowed the increase of the knowledge about host-spectrum and distribution of Trypanosoma spp. and allowed the identification of new MOTUs.
Collapse
Affiliation(s)
- Marina Silva Rodrigues
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana Lima
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Heitor Miraglia Herrera
- Laboratório de Biologia Parasitária, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Fabiana Lopes Rocha
- Programa de Pós-graduação em Ecologia e Monitoramento Ambiental. Universidade Federal da Paraíba. Centro de Ciências Aplicadas e Educação, Rio Tinto, Paraíba, Brazil
| | - André Luiz Rodrigues Roque
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Ana Maria Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Barros JHS, Lima L, Schubach AO, Teixeira MMG. Trypanosoma madeirae sp. n.: A species of the clade T. cruzi associated with the neotropical common vampire bat Desmodus rotundus. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2018; 8:71-81. [PMID: 30671342 PMCID: PMC6328357 DOI: 10.1016/j.ijppaw.2018.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 01/10/2023]
Abstract
Molecular phylogenetic studies have revealed the growing diversity of bat trypanosomes. Here, 14 isolates from blood samples of the vampire bat Desmodus rotundus (Phyllostomidae) from Rio de Janeiro, Southeast Brazil, were cultivated, and morphologically and molecularly characterized. All isolates represent a novel species named Trypanosoma madeirae n. sp. positioned in the Neobat lineage of the clade T. cruzi. The Neobat lineage also comprises closely related trypanosomes of clades Neotropic 1, 2 and 3 from diverse phyllostomid species. Trypanosomes of Neotropic 1, found in Trachops cirrhosus and Artibeus jamaicensis (phyllostomids), likely represent a different species or genotype closely related to T. madeirae. Consistent with its phylogenetic positioning, T. madeirae differs from Trypanosoma cruzi in morphology of both epimastigote and trypomastigote culture forms and does not infect Triatoma infestans. Similar to its closest relatives of Neobat lineage, T. madeirae was unable to develop within mammalian cells. To date, PCR-surveys on archived blood/liver samples unveiled T. madeirae exclusively in D. rotundus from Southern to Northern Brazil. The description of a new species of bat trypanosome associated with vampire bats increases the repertoire of trypanosomes infecting D. rotundus, currently comprised of Trypanosoma cruzi, T. cruzi marinkellei, Trypanosoma dionisii, Trypanosoma rangeli, Trypanosoma pessoai, and Trypanosoma madeirae. Trypanosoma madeirae n. sp. was so far only detected in the vampire bat Desmodus rotundus. T. madeirae clustered with other Neotropical trypanosomes in the Neobat lineage of the clade T. cruzi. Several species of trypanosomes are hosted by Desmodus rotundus.
Collapse
Affiliation(s)
- Juliana H S Barros
- Trypanosomatid Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luciana Lima
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Armando O Schubach
- Surveillance and Clinical Research in Leishmaniasis Laboratory, National of Infectology Evandro Chagas Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marta M G Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Huang YL, Huang DN, Wu WH, Yang F, Zhang XM, Wang M, Tang YJ, Zhang Q, Peng LF, Zhang RL. Identification and characterization of the causative triatomine bugs of anaphylactic shock in Zhanjiang, China. Infect Dis Poverty 2018; 7:127. [PMID: 30541628 PMCID: PMC6291942 DOI: 10.1186/s40249-018-0509-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/23/2018] [Indexed: 12/02/2022] Open
Abstract
Background Two health concerns primarily related to triatomine bugs are transmission of Trypanosoma cruzi through infective feces, and allergic reactions induced by triatomine bites. In the Southwestern United States, reduviid bugs bites commonly cause insect allergy. In South China, four cases of anaphylactic shock have been reported after this bite exposure. To further classify the species of these bugs and confirm the sensitization of the triatomine saliva, we caught triatomine bugs from the region where the bites occurred and performed phylogenetic and immunohistochemical (IHC) analysis. Methods Triatomine bugs were collected in Donghai Island of Zhanjiang City in South China. The genomic DNA was extracted from three legs of the bugs. The fragments of mitochondrial 16S rRNA, cytochrome c oxidase subunit I (COI) gene and nuclear ribosomal 18S and 28S rRNA genes were obtained by PCR and sequenced. A phylogenetic tree was constructed based on the sequence of 16S rRNA gene using a maximum likelihood method with MEGA 7.0 software. Trypanosomal specific fragments and vertebrate COI genes were amplified from the fecal DNA to detect the infection of trypanosomes and analyze the blood feeding patterns, respectively. Paraffin-embedded sections were then prepared from adult triatomines and sent for IHC staining. Results We collected two adult triatomine bugs in Donghai Island. Morphological and molecular analyses indicated that the triatomines were Triatoma rubrofasciata. No fragments of T. cruzi or other trypanosomes were detected from the fecal DNA. Mitochondrial gene segments of Homo sapiens and Mus musculus were successfully amplified. The allergens which induced specific IgE antibodies in human serum were localized in the triatomine saliva by IHC assay. Conclusions The two triatomine bugs from Donghai Island were T. rubrofasciata. They had bitten humans and mice. Their saliva should contain the allergens related to the allergic symptoms and even anaphylactic shock of exposed residents. Great consideration should be given to this triatomine bugs due to their considerable distribution and potential threat to public health in South China.
Collapse
Affiliation(s)
- Ya-Lan Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Da-Na Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Wei-Hua Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiao-Min Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Miao Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yi-Jun Tang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Qian Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Li-Fei Peng
- Department of Parasitology, Guangdong Medical University, Zhanjiang, 524005, China.
| | - Ren-Li Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
32
|
Vieira CB, Praça YR, Bentes KLDS, Santiago PB, Silva SMM, Silva GDS, Motta FN, Bastos IMD, de Santana JM, de Araújo CN. Triatomines: Trypanosomatids, Bacteria, and Viruses Potential Vectors? Front Cell Infect Microbiol 2018; 8:405. [PMID: 30505806 PMCID: PMC6250844 DOI: 10.3389/fcimb.2018.00405] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Triatominae bugs are the vectors of Chagas disease, a major concern to public health especially in Latin America, where vector-borne Chagas disease has undergone resurgence due mainly to diminished triatomine control in many endemic municipalities. Although the majority of Triatominae species occurs in the Americas, species belonging to the genus Linshcosteus occur in India, and species belonging to the Triatoma rubrofasciata complex have been also identified in Africa, the Middle East, South-East Asia, and in the Western Pacific. Not all of Triatominae species have been found to be infected with Trypanosoma cruzi, but the possibility of establishing vector transmission to areas where Chagas disease was previously non-endemic has increased with global population mobility. Additionally, the worldwide distribution of triatomines is concerning, as they are able to enter in contact and harbor other pathogens, leading us to wonder if they would have competence and capacity to transmit them to humans during the bite or after successful blood feeding, spreading other infectious diseases. In this review, we searched the literature for infectious agents transmitted to humans by Triatominae. There are reports suggesting that triatomines may be competent vectors for pathogens such as Serratia marcescens, Bartonella, and Mycobacterium leprae, and that triatomine infection with other microrganisms may interfere with triatomine-T. cruzi interactions, altering their competence and possibly their capacity to transmit Chagas disease.
Collapse
Affiliation(s)
- Caroline Barreto Vieira
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Yanna Reis Praça
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Kaio Luís da Silva Bentes
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Paula Beatriz Santiago
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Sofia Marcelino Martins Silva
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Gabriel dos Santos Silva
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Flávia Nader Motta
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
- Faculdade de Ceilândia, Universidade de Brasília, Brasília, Brazil
| | - Izabela Marques Dourado Bastos
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Jaime Martins de Santana
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Carla Nunes de Araújo
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
- Faculdade de Ceilândia, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
33
|
Costa-Martins AG, Lima L, Alves JMP, Serrano MG, Buck GA, Camargo EP, Teixeira MMG. Genome-wide identification of evolutionarily conserved Small Heat-Shock and eight other proteins bearing α-crystallin domain-like in kinetoplastid protists. PLoS One 2018; 13:e0206012. [PMID: 30346990 PMCID: PMC6197667 DOI: 10.1371/journal.pone.0206012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/04/2018] [Indexed: 11/18/2022] Open
Abstract
Small Heat-Shock Proteins (sHSPs) and other proteins bearing alpha-crystallin domains (ACD) participate in defense against heat and oxidative stress and play important roles in cell cycle, cytoskeleton dynamics, and immunological and pathological mechanisms in eukaryotes. However, little is known about these proteins in early-diverging lineages of protists such as the kinetoplastids. Here, ACD-like proteins (ACDp) were investigated in genomes of 61 species of 12 kinetoplastid genera, including Trypanosoma spp. (23 species of mammals, reptiles and frogs), Leishmania spp. (mammals and lizards), trypanosomatids of insects, Phytomonas spp. of plants, and bodonids. Comparison of ACDps based on domain architecture, predicted tertiary structure, phylogeny and genome organization reveals a kinetoplastid evolutionarily conserved repertoire, which diversified prior to trypanosomatid adaptation to parasitic life. We identified 9 ACDp orthologs classified in 8 families of TryACD: four previously recognized (HSP20, Tryp23A, Tryp23B and ATOM69), and four characterized for the first time in kinetoplastids (TryACDP, TrySGT1, TryDYX1C1 and TryNudC). A single copy of each ortholog was identified in each genome alongside TryNudC1/TrypNudC2 homologs and, overall, ACDPs were under strong selection pressures at main phylogenetic lineages. Transcripts of all ACDPs were identified across the life stages of T. cruzi, T. brucei and Leishmania spp., but proteomic profiles suggested that most ACDPs may be species- and stage-regulated. Our findings establish the basis for functional studies, and provided evolutionary and structural support for an underestimated repertoire of ACDps in the kinetoplastids.
Collapse
Affiliation(s)
- André G Costa-Martins
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luciana Lima
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,INCT-EpiAmO-Instituto Nacional de Epidemiologia na Amazônia Ocidental, Porto Velho, RO, Brazil
| | - João Marcelo P Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Myrna G Serrano
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Gregory A Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Erney P Camargo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,INCT-EpiAmO-Instituto Nacional de Epidemiologia na Amazônia Ocidental, Porto Velho, RO, Brazil
| | - Marta M G Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,INCT-EpiAmO-Instituto Nacional de Epidemiologia na Amazônia Ocidental, Porto Velho, RO, Brazil
| |
Collapse
|