1
|
Calderón-Gallegos A, Tapia-Rodríguez M, Estrada K, Rios-Valencia DG, de la Torre P, Castellanos-de Oteyza N, Morales MA, Bobes RJ, Laclette JP. The muscle and neural architecture of Taenia crassiceps cysticerci revisited; implications on head-tail polarization of the larvae. Front Cell Infect Microbiol 2024; 14:1415162. [PMID: 38919702 PMCID: PMC11196405 DOI: 10.3389/fcimb.2024.1415162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Taenia crassiceps has been used for decades as an experimental model for the study of human and porcine cysticercosis. Even though, its life cycle, tissue organization, ultrastructure and immune response elicited in the host, have been extensively described, there are many other biological questions remaining to be addressed. In the present study we revisited the muscle and neural architecture of cysticerci in two of the most frequently used strains (WFU and ORF), using conventional staining and confocal microscopy imaging, aiming to assemble an updated anatomy. Differences between both strains, including polarization processes during development of the young budding larvae, are emphasized. We also performed a search for genes that have been related to peptidergic neural processes in other related flatworms. These findings can help to understand the anatomical and molecular consequences of the scolex presence or absence in both strains.
Collapse
Affiliation(s)
| | | | - Karel Estrada
- Unit for Massive Sequencing and Bioinformatics, Biotechnology Institute, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Diana G. Rios-Valencia
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Patricia de la Torre
- Department of Immunology, Universidad Nacional Autónoma de México, Mexico, Mexico
| | | | - Miguel A. Morales
- Department of Cell Biology and Phisiology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Raúl J. Bobes
- Department of Immunology, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Juan P. Laclette
- Department of Immunology, Universidad Nacional Autónoma de México, Mexico, Mexico
| |
Collapse
|
2
|
Tolstenkov O, Chatzigeorgiou M, Gorbushin A. Neuronal gene expression in two generations of the marine parasitic worm, Cryptocotyle lingua. Commun Biol 2023; 6:1279. [PMID: 38110640 PMCID: PMC10728431 DOI: 10.1038/s42003-023-05675-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Trematodes, or flukes, undergo intricate anatomical and behavioral transformations during their life cycle, yet the functional changes in their nervous system remain poorly understood. We investigated the molecular basis of nervous system function in Cryptocotyle lingua, a species of relevance for fisheries. Transcriptomic analysis revealed a streamlined molecular toolkit with the absence of key signaling pathways and ion channels. Notably, we observed the loss of nitric oxide synthase across the Platyhelminthes. Furthermore, we identified upregulated neuronal genes in dispersal larvae, including those involved in aminergic pathways, synaptic vesicle trafficking, TRPA channels, and surprisingly nitric oxide receptors. Using neuronal markers and in situ hybridization, we hypothesized their functional relevance to larval adaptations and host-finding strategies. Additionally, employing a behavior quantification toolkit, we assessed cercaria motility, facilitating further investigations into the behavior and physiology of parasitic flatworms. This study enhances our understanding of trematode neurobiology and provides insights for targeted antiparasitic strategies.
Collapse
Affiliation(s)
| | | | - Alexander Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, St Petersburg, Russia
| |
Collapse
|
3
|
Montagne J, Preza M, Koziol U. Stem cell proliferation and differentiation during larval metamorphosis of the model tapeworm Hymenolepis microstoma. Front Cell Infect Microbiol 2023; 13:1286190. [PMID: 37908761 PMCID: PMC10614006 DOI: 10.3389/fcimb.2023.1286190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Background Tapeworm larvae cause important diseases in humans and domestic animals. During infection, the first larval stage undergoes a metamorphosis where tissues are formed de novo from a population of stem cells called germinative cells. This process is difficult to study for human pathogens, as these larvae are infectious and difficult to obtain in the laboratory. Methods In this work, we analyzed cell proliferation and differentiation during larval metamorphosis in the model tapeworm Hymenolepis microstoma, by in vivo labelling of proliferating cells with the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU), tracing their differentiation with a suite of specific molecular markers for different cell types. Results Proliferating cells are very abundant and fast-cycling during early metamorphosis: the total number of cells duplicates every ten hours, and the length of G2 is only 75 minutes. New tegumental, muscle and nerve cells differentiate from this pool of proliferating germinative cells, and these processes are very fast, as differentiation markers for neurons and muscle cells appear within 24 hours after exiting the cell cycle, and fusion of new cells to the tegumental syncytium can be detected after only 4 hours. Tegumental and muscle cells appear from early stages of metamorphosis (24 to 48 hours post-infection); in contrast, most markers for differentiating neurons appear later, and the detection of synapsin and neuropeptides correlates with scolex retraction. Finally, we identified populations of proliferating cells that express conserved genes associated with neuronal progenitors and precursors, suggesting the existence of tissue-specific lineages among germinative cells. Discussion These results provide for the first time a comprehensive view of the development of new tissues during tapeworm larval metamorphosis, providing a framework for similar studies in human and veterinary pathogens.
Collapse
Affiliation(s)
| | | | - Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
4
|
Preza M, Van Bael S, Temmerman L, Guarnaschelli I, Castillo E, Koziol U. Global analysis of neuropeptides in cestodes identifies Attachin, a SIFamide homolog, as a stimulant of parasite motility and attachment. J Neurochem 2022; 162:467-482. [PMID: 35689626 DOI: 10.1111/jnc.15654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Many anthelmintics target the neuromuscular system, in particular by interfering with signaling mediated by classical neurotransmitters. Although peptidergic signaling has been proposed as a novel target for anthelmintics, current knowledge of the neuropeptide complement of many helminth groups is still limited, especially for parasitic flatworms (cestodes, trematodes, and monogeneans). In this work, we have characterized the neuropeptide complement of the model cestode Hymenolepis microstoma. Peptidomic characterization of adults of H. microstoma validated many of the neuropeptide precursor (npp) genes previously predicted in silico, and identified novel neuropeptides that are conserved in parasitic flatworms. Most neuropeptides from parasitic flatworms lack significant similarity to those from other animals, confirming the uniqueness of their peptidergic signaling. Analysis of gene expression of ten npp genes by in situ hybridization confirmed that all of them are expressed in the nervous system and identified cryptic features, including the first evidence of dorsoventral asymmetry, as well as a new population of peripheral peptidergic cells that appears to be conserved in the trematode Schistosoma mansoni. Finally, we characterized in greater detail Attachin, an SIFamide homolog. Although its expression is largely restricted to the longitudinal nerve cords and cerebral commissure in H. microstoma, it shows widespread localization in the larval nervous system of Echinococcus multilocularis and Mesocestoides corti. Exogenous addition of a peptide corresponding to the highly conserved C-terminus of Attachin stimulated motility and attachment of M. corti larvae. Altogether, this work provides a robust experimental foothold for the characterization of peptidergic signaling in parasitic flatworms.
Collapse
Affiliation(s)
- Matías Preza
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sven Van Bael
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Inés Guarnaschelli
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Estela Castillo
- Laboratorio de Biología Parasitaria, Instituto de Higiene, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
5
|
Biserova NM, Mustafina AR, Raikova OI. The neuro-glandular brain of the Pyramicocephalus phocarum plerocercoid (Cestoda, Diphyllobothriidea): immunocytochemical and ultrastructural study. ZOOLOGY 2022; 152:126012. [DOI: 10.1016/j.zool.2022.126012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 01/24/2023]
|
6
|
Terenina N, Kreshchenko N, Movsesyan S. Musculature and neurotransmitters of internal organs of trematodes (the digestive, reproductive and excretory systems). ZOOLOGY 2021; 150:125986. [PMID: 34929537 DOI: 10.1016/j.zool.2021.125986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
The article analyzes the results on the presence and organization of the muscle elements in the visceral organs of parasitic flatworms, trematodes, as well as their innervations. The different regions of the digestive, reproductive and excretory systems of trematodes contain circular, longitudinal and diagonal muscle fibers. The results of immunocytochemical investigations and confocal scanning laser microscopy show the presence of serotonin and FMRFamide-like immunoreactivity in the nervous system elements in various parts of the digestive, reproductive and excretory systems of trematodes. The data suggest that serotonergic and FMRFamide-immunopositive components of parasite's nervous system are involved in the regulation of the muscle activity of the digestive, reproductive and excretory systems. Comparative analysis of the results presented for trematodes from different taxonomic groups indicates that the organization of muscle elements in the visceral organs in trematodes and their innervation by serotonergic and peptidergic components are highly conserved.
Collapse
Affiliation(s)
- Nadezhda Terenina
- A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia.
| | - Natalia Kreshchenko
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya str., 3, Pushchino, Moscow Region, 142290, Russia.
| | - Sergey Movsesyan
- A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia
| |
Collapse
|
7
|
Preza M, Calvelo J, Langleib M, Hoffmann F, Castillo E, Koziol U, Iriarte A. Stage-specific transcriptomic analysis of the model cestode Hymenolepis microstoma. Genomics 2021; 113:620-632. [PMID: 33485950 DOI: 10.1016/j.ygeno.2021.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/20/2020] [Accepted: 01/17/2021] [Indexed: 12/11/2022]
Abstract
Most parasitic flatworms go through different life stages with important physiological and morphological changes. In this work, we used a transcriptomic approach to analyze the main life-stages of the model tapeworm Hymenolepis microstoma (eggs, cysticercoids, and adults). Our results showed massive transcriptomic changes in this life cycle, including key gene families that contribute substantially to the expression load in each stage. In particular, different members of the cestode-specific hydrophobic ligand-binding protein (HLBP) family are among the most highly expressed genes in each life stage. We also found the transcriptomic signature of major metabolic changes during the transition from cysticercoids to adult worms. Thus, this work contributes to uncovering the gene expression changes that accompany the development of this important cestode model species, and to the best of our knowledge represents the first transcriptomic study with robust replicates spanning all of the main life stages of a tapeworm.
Collapse
Affiliation(s)
- Matías Preza
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Javier Calvelo
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; Laboratorio Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Mauricio Langleib
- Laboratorio Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Federico Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS 39762, United States
| | - Estela Castillo
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| | - Andrés Iriarte
- Laboratorio Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay.
| |
Collapse
|
8
|
Mair GR, Halton DW, Maule AG. The neuromuscular system of the sheep tapeworm Moniezia expansa. INVERTEBRATE NEUROSCIENCE 2020; 20:17. [PMID: 32978688 DOI: 10.1007/s10158-020-00246-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/05/2020] [Indexed: 01/06/2023]
Abstract
Cestodes are common gastrointestinal parasites of humans and livestock. They attach to the host gut and, without a mouth or intestinal system, absorb nutrients through their epidermis. Here we show that despite this simplified anatomy and sessile lifestyle, they maintain a complex neuromuscular system. We used fluorescently labelled phalloidin as a specific probe for filamentous actin to define the overall organisation of several distinct muscle systems in the cyclophyllidean Moniezia expansa. Like all flatworms, the body wall musculature below the neodermis of this intestinal parasite of sheep is characterised by outer circular and inner longitudinal muscle fibres. Diagonal fibres, typically found in free-living and trematode platyhelminths, on the other hand, are notably absent. Prominent longitudinal sheaths dominate the parenchyma and provide retractor muscles to the four acetabula in the scolex; they attach at the bottom of each cup-shaped holdfast. Within sexually mature proglottids, circular fibres dominate the duct walls of the male and female reproductive systems. Nerve cells and fibres that express serotonin or neuropeptide F supply well-developed innervation to several of the described muscle systems: emanating from the central nervous system, fibres in the periphery develop pervasive nerve nets that anastomose within body wall musculature as well as the parenchymal longitudinal and oblique muscle fibres, and innervate the sexual organs and gonopore in mature proglottids. Using homology searches, we provide evidence for 20 neuropeptide precursors together with four prepropeptide processing enzymes as well as several 5-HT signalling components to be represented in the Moniezia transcriptome.
Collapse
Affiliation(s)
- Gunnar R Mair
- Biomedical Sciences, Iowa State University, 1800 Christensen Drive, 2008 Vet Med, Ames, IA, 50011-1134, USA.
| | - David W Halton
- School of Biological Sciences, Queen's University of Belfast, Belfast, BT9 5DL, UK
| | - Aaron G Maule
- School of Biological Sciences, Queen's University of Belfast, Belfast, BT9 5DL, UK
| |
Collapse
|
9
|
Miles S, Magnone J, Cyrklaff M, Arbildi P, Frischknecht F, Dematteis S, Mourglia-Ettlin G. Linking murine resistance to secondary cystic echinococcosis with antibody responses targeting Echinococcus granulosus tegumental antigens. Immunobiology 2020; 225:151916. [PMID: 32107022 DOI: 10.1016/j.imbio.2020.151916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 11/26/2022]
Abstract
Successful establishment of a parasite infection depends partially on the host intrinsic susceptibility to the pathogen. In cystic echinococcosis (CE), a zoonotic disease caused by the cestode parasite Echinococcus granulosus, the infection outcome in the murine model of secondary CE varies according to the mouse strain used. In this regard, intrinsic differences in susceptibility to the infection were previously reported for Balb/c and C57Bl/6 mice, being C57Bl/6 animals less permissive to secondary CE. Induction of parasite-specific antibodies has been suggested to play relevant roles in such susceptibility/resistance phenomena. Here, we report an in deep comparison of antibody responses induced in both mouse strains. Firstly, only C57Bl/6 mice were shown to induce specific-antibodies with efficient anti-parasite activities during early secondary CE. Then, through ImmunoTEM and Serological Proteome Analysis (SERPA), an evaluation of specific antibody responses targeting parasite tegumental antigens was performed. Both strategies showed that infected C57Bl/6 mice -unlike Balb/c animals- narrowed their IgG recognition repertoire against tegumental antigens, targeting fewer but potentially more relevant parasite components. In this sense, tegumental antigens recognition between Balb/c and C57Bl/6 mice, either by natural and/or induced antibodies, was analyzed through SERPA and MALDI-TOF/TOF studies. A total of 13 differentially recognized proteins (DRPs) uniquely targeted by antibodies from C57Bl/6 mice were successfully identified, wherein a subset of 7 DRPs were only recognized by infection-induced antibodies, suggesting their potential as natural protective antigens. In this regard, immunoinformatic analyses showed that such DRPs exhibited higher numbers of possible T cell epitopes towards the H-2-IAb haplotype, which is present in C57Bl/6 mice but absent in Balb/c animals. In summary, our results showed that the genetic predisposition to generate better T-dependent antibody responses against particular tegumental antigens might be a key factor influencing host susceptibility in the murine model of secondary CE.
Collapse
Affiliation(s)
- Sebastián Miles
- Área Inmunología, DEPBIO/IQB - Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Javier Magnone
- Área Inmunología, DEPBIO/IQB - Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Marek Cyrklaff
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Paula Arbildi
- Área Inmunología, DEPBIO/IQB - Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Sylvia Dematteis
- Área Inmunología, DEPBIO/IQB - Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, DEPBIO/IQB - Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
10
|
Scholz T, Kuchta R, Brabec J. Broad tapeworms (Diphyllobothriidae), parasites of wildlife and humans: Recent progress and future challenges. Int J Parasitol Parasites Wildl 2019; 9:359-369. [PMID: 31341771 PMCID: PMC6630034 DOI: 10.1016/j.ijppaw.2019.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/08/2023]
Abstract
Tapeworms of the family Diphyllobothriidae, commonly known as broad tapeworms, are predominantly large-bodied parasites of wildlife capable of infecting humans as their natural or accidental host. Diphyllobothriosis caused by adults of the genera Dibothriocephalus, Adenocephalus and Diphyllobothrium is usually not a life-threatening disease. Sparganosis, in contrast, is caused by larvae (plerocercoids) of species of Spirometra and can have serious health consequences, exceptionally leading to host's death in the case of generalised sparganosis caused by 'Sparganum proliferum'. While most of the definitive wildlife hosts of broad tapeworms are recruited from marine and terrestrial mammal taxa (mainly carnivores and cetaceans), only a few diphyllobothriideans mature in fish-eating birds. In this review, we provide an overview the recent progress in our understanding of the diversity, phylogenetic relationships and distribution of broad tapeworms achieved over the last decade and outline the prospects of future research. The multigene family-wide phylogeny of the order published in 2017 allowed to propose an updated classification of the group, including new generic assignment of the most important causative agents of human diphyllobothriosis, i.e., Dibothriocephalus latus and D. nihonkaiensis. Genomic data of selected representatives have also begun to accumulate, promising future developments in understanding the biology of this particular group of parasites. The list of nominal species of taxonomically most complicated genus Spirometra as well as host-parasite list of 37 species of broad tapeworms parasitising marine mammals (pinnipeds and cetaceans) are also provided.
Collapse
Affiliation(s)
- Tomáš Scholz
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Roman Kuchta
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Jan Brabec
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Natural History Museum of Geneva, PO Box 6434, CH-1211, Geneva 6, Switzerland
| |
Collapse
|