1
|
Musese LJ, Kitegile AS, Kilawe CJ. Ectoparasites of wild rodents in forest sites invaded and uninvaded by Maesopsis eminii in Amani nature forest reserve, Tanzania. Int J Parasitol Parasites Wildl 2024; 24:100932. [PMID: 38601057 PMCID: PMC11002661 DOI: 10.1016/j.ijppaw.2024.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
Parasites are important component of communities in a forest ecosystem with profound effects on trophic interactions such as food web. Modification of the forest structure (e.g. changes in species composition and abundance of key species) can have a strong impact on the occurrence, diversity, and abundance of parasites, with subsequent repercussions for ecosystem functioning. In this study, we compared the occurrence and abundance of wild rodents' ectoparasites from forest sites invaded and uninvaded by an invasive tree, Maesopsis eminii in Amani Nature Forest Reserve, Tanzania. Three large plots (40 m × 100 m) were randomly established in each forest sites invaded and uninvaded by M. eminii. In each plot, 50 Sherman traps were systematically placed at 10 m interval for capturing wild rodents through a capture-mark-recapture technique. Wilcox rank sum test was used to compare for differences in the abundance of infested rodents and ectoparasites between the invaded and uninvaded forest sites. A total of 297 individual rodents were captured and screened for ectoparasites, including 174 rodents from uninvaded forest site and 123 rodents from invaded forest site. The number of infested rodents were significantly (W = 8592, P < 0.001) greater in uninvaded forest site (66.27%) than in the invaded forest site (36.2%). Furthermore, a significant greater number of Echinolaelaps echidninus (W = 1849, P < 0.01) and Dinopsyllus ellobius (W = 2800.5, P < 0.05) ectoparasites were found in uninvaded as compared to the invaded forest sites. The results of this study suggest that the invasion and dominance by, M. eminii in Amani Nature Reserve has created unfavorable conditions for rodents and ectoparasites and therefore impacting the diversity and function of the forest ecosystem. We recommend prevention of further introduction of the M. eminii outside their natural range and mitigating the impact of the established M. eminii in Amani Forest Nature Reserve.
Collapse
Affiliation(s)
- Leticia J. Musese
- Department of Wildlife Management, Sokoine University of Agriculture, Tanzania
- Department of Zoology and Wildlife Conservation, University of Dar es Salaam, Tanzania
| | - Amani S. Kitegile
- Department of Wildlife Management, Sokoine University of Agriculture, Tanzania
| | - Charles J. Kilawe
- Department of Ecosystems and Conservation, Sokoine University of Agriculture, Tanzania
| |
Collapse
|
2
|
Antonovskaia AA, Altshuler EP, Balakirev AE, Lopatina YV. Explorational analysis of the abundance and prevalence of chigger and gamasid mites parasitic on small mammals in Vietnam. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:925-939. [PMID: 38733178 DOI: 10.1093/jme/tjae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
We studied chigger and gamasid mite loads on small mammals during the dry season in Vietnam and used both our field data and museum collections to estimate the influence of environmental factors on mite abundance and prevalence. Generalized linear (mixed effect) models were used to analyze the data. We examined 1,239 small mammal individuals, which were obtained from field expeditions and museum collections belonging to 59 species. In different localities, Rattus Fischer (Rodentia: Muridae), Niviventer Marshall (Rodentia: Muridae), and Maxomys Sody (Rodentia: Muridae) were the most common animals captured. The prevalence of chigger and gamasid mites in our expedition data was high: 72% and 62%, respectively. We found differences in the abundance of chigger mites between different populations of the same species of small mammals. Season and locality were the main factors that influenced chigger mite abundance and prevalence. The best model that predicted the abundance and prevalence of chigger mites included geography (province) as a predictor and host species and season as random effects. For the first time, we analyzed factors connected with climate and weather affecting chigger mites of small mammals in Vietnam.
Collapse
Affiliation(s)
- Anastasia A Antonovskaia
- Department of Entomology, Faculty of Biology, Lomonosov Moscow State University, Leninskie gory 1-12, Moscow 119234, Russia
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, Saint Petersburg 199034, Russia
| | - Evgeny P Altshuler
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Leninskie gory 1-12, Moscow 119234, Russia
| | - Alexander E Balakirev
- Joint Russian-Vietnamese Tropical Research and Technological Centre, 63 Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii prosp. 33, Moscow 119071, Russia
| | - Yuliya V Lopatina
- Department of Entomology, Faculty of Biology, Lomonosov Moscow State University, Leninskie gory 1-12, Moscow 119234, Russia
| |
Collapse
|
3
|
Hending D, Randrianarison H, Andriamavosoloarisoa NNM, Ranohatra-Hending C, McCabe G, Cotton S, Holderied M. Forest fragmentation and edge effects impact body condition, fur condition and ectoparasite prevalence in a nocturnal lemur community. CONSERVATION PHYSIOLOGY 2024; 12:coae042. [PMID: 38957844 PMCID: PMC11217907 DOI: 10.1093/conphys/coae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Forest fragmentation and edge effects are two major threats to primate populations. Primates inhabiting fragmented landscapes must survive in a more degraded environment, often with lower food availability compared to continuous forests. Such conditions can have deleterious effects on animal physiological health, yet some primates thrive in these habitats. Here, we assessed how forest fragmentation and associated edge effects impact three different components of physiological health in a nocturnal primate community in the Sahamalaza-Iles Radama National Park, northwest Madagascar. Over two periods, 6 March 2019-30 October 2019 and 10 January 2022-17 May 2022, we collected data on body condition, fur condition scores and ectoparasite prevalence for 125 Mirza zaza, 51 Lepilemur sahamalaza, 27 Cheirogaleus medius and 22 Microcebus sambiranensis individuals, and we compared these metrics between core and edge areas of continuous forest and fragmented forest. Body condition scores for all species varied between areas, with a positive response to fragmentation and edge effects observed for M. zaza and L. sahamalaza and a negative response for C. medius and M. sambiranensis. Fur condition scores and ectoparasite prevalence were less variable, although M. zaza and L. sahamalaza had a significantly negative response to fragmentation and edge effects for these two variables. Interestingly, the impacts of fragmentation and edge effects on physiological health were variable-specific. Our results suggest that lemur physiological responses to fragmentation and edge effects are species-specific, and body condition, fur condition and ectoparasite prevalence are impacted in different ways between species. As other ecological factors, including food availability and inter/intraspecific competition, likely also influence physiological health, additional work is required to determine why certain aspects of lemur physiology are affected by environmental stressors while others remain unaffected. Although many nocturnal lemurs demonstrate resilience to fragmented and degraded habitats, urgent conservation action is needed to safeguard the survival of their forest habitats.
Collapse
Affiliation(s)
- Daniel Hending
- Department of Biology, University of Oxford, 11A Mansfield Road, Oxford OX1 3SZ, UK
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TH, UK
- Institute of Conservation Science & Learning, Bristol Zoological Society, Clifton, Bristol BS8 3HA, UK
| | | | | | - Christina Ranohatra-Hending
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TH, UK
- Institute of Conservation Science & Learning, Bristol Zoological Society, Clifton, Bristol BS8 3HA, UK
| | - Grainne McCabe
- Institute of Conservation Science & Learning, Bristol Zoological Society, Clifton, Bristol BS8 3HA, UK
- Wilder Institute, Calgary Zoo, 1300 Zoo Road NE, Calgary, AB T2E 7V6, Canada
| | - Sam Cotton
- Institute of Conservation Science & Learning, Bristol Zoological Society, Clifton, Bristol BS8 3HA, UK
| | - Marc Holderied
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TH, UK
| |
Collapse
|
4
|
Ramsay MS, Sgarlata GM, Barratt CD, Salmona J, Andriatsitohaina B, Kiene F, Manzi S, Ramilison ML, Rakotondravony R, Chikhi L, Lehman SM, Radespiel U. Effects of Forest Fragmentation on Connectivity and Genetic Diversity in an Endemic and an Invasive Rodent in Northwestern Madagascar. Genes (Basel) 2023; 14:1451. [PMID: 37510355 PMCID: PMC10378931 DOI: 10.3390/genes14071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Habitat loss and fragmentation are of concern to conservation biologists worldwide. However, not all organisms are affected equally by these processes; thus, it is important to study the effects of living in fragmented habitats on species that differ in lifestyle and habitat requirements. In this study, we examined the dispersal and connectivity patterns of rodents, one endemic (Eliurus myoxinus) and one invasive (Rattus rattus), in two landscapes containing forest fragments and adjacent continuous forest patches in northwestern Madagascar. We generated genetic (RADseq) data for 66 E. myoxinus and 81 R. rattus individuals to evaluate differences in genetic diversity as well as inbreeding and connectivity in two landscapes. We found higher levels of inbreeding and lower levels of genetic diversity in E. myoxinus compared with R. rattus. We observed related dyads both within and between habitat patches and positive spatial autocorrelation at lower distance classes for both species, with a stronger pattern of spatial autocorrelation in R. rattus. Across each site, we identified contrasting migration rates for each species, but these did not correspond to habitat-matrix dichotomies. The relatively low genetic diversity in the endemic E. myoxinus suggests ecological constraints that require further investigation.
Collapse
Affiliation(s)
- Malcolm S Ramsay
- Department of Anthropology, University of Toronto, Toronto, ON M5S 2S2, Canada
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | | | - Christopher D Barratt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Jordi Salmona
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, 31062 Toulouse, France
| | - Bertrand Andriatsitohaina
- Planet Madagascar, Antananarivo 101, Madagascar
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga 401, Madagascar
| | - Frederik Kiene
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Sophie Manzi
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, 31062 Toulouse, France
| | - Miarisoa L Ramilison
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga 401, Madagascar
- Department of Primate Behavior and Ecology, Central Washington University, Ellensburg, WA 98926, USA
| | - Romule Rakotondravony
- Faculté des Sciences, de Technologies et de l'Environnement, Université de Mahajanga, Mahajanga 401, Madagascar
| | - Lounès Chikhi
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, 31062 Toulouse, France
| | - Shawn M Lehman
- Department of Anthropology, University of Toronto, Toronto, ON M5S 2S2, Canada
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| |
Collapse
|
5
|
Kiene F, Springer A, Andriatsitohaina B, Ramsay MS, Rakotondravony R, Strube C, Radespiel U. Filarial infections in lemurs: Evidence for a wide geographical distribution and low host specificity among lemur species. Am J Primatol 2023; 85:e23458. [PMID: 36504317 DOI: 10.1002/ajp.23458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/03/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
The relevance of emerging infectious diseases continues to grow worldwide as human activities increasingly extend into formerly remote natural areas. This is particularly noticeable on the island of Madagascar. As closest relatives to humans on the island, lemurs are of particular relevance as a potential origin of zoonotic pathogen spillover. Knowledge of pathogens circulating in lemur populations is, however, very poor. Particularly little is known about lemur hemoparasites. To infer host range, ecological and geographic spread of the recently described hemoparasitic nematode Lemurfilaria lemuris in northwestern Madagascar, a total of 942 individuals of two mouse lemur species (Microcebus murinus [n = 207] and Microcebus ravelobensis [n = 433]) and two rodent species (the endemic Eliurus myoxinus [n = 118] and the invasive Rattus rattus [n = 184]) were captured in two fragmented forest landscapes (Ankarafantsika National Park and Mariarano Classified Forest) in northwestern Madagascar for blood sample examination. No protozoan hemoparasites were detected by microscopic blood smear screening. Microfilaria were present in 1.0% (2/207) of M. murinus and 2.1% (9/433) of M. ravelobensis blood samples but not in rodent samples. Internal transcribed spacer 1 (ITS-1) sequences were identical to an unnamed Onchocercidae species previously described to infect a larger lemur species, Propithecus verreauxi, about 650 km further south. In contrast to expectations, L. lemuris was not detected. The finding of a pathogen in a distantly related host species, at a considerable geographic distance from the location of its original detection, instead of a microfilaria species previously described for one of the studied host species in the same region, illustrates our low level of knowledge of lemur hemoparasites, their host ranges, distribution, modes of transmission, and their zoonotic potential. Our findings shall stimulate new research that will be of relevance for both conservation medicine and human epidemiology.
Collapse
Affiliation(s)
- Frederik Kiene
- Institute of Zoology, University of Veterinary Medicine Hannover, Hanover, Germany.,Centre for Infection Medicine, Institute for Parasitology, University of Veterinary Medicine Hannover, Hanover, Germany.,Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andrea Springer
- Centre for Infection Medicine, Institute for Parasitology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Bertrand Andriatsitohaina
- Ecole Doctorale Ecosystèmes Naturels (EDEN), University of Mahajanga, Mahajanga, Madagascar.,Faculté des Sciences, de Technologies et de l'Environnement, University of Mahajanga, Mahajanga, Madagascar
| | - Malcolm S Ramsay
- Institute of Zoology, University of Veterinary Medicine Hannover, Hanover, Germany.,Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Romule Rakotondravony
- Ecole Doctorale Ecosystèmes Naturels (EDEN), University of Mahajanga, Mahajanga, Madagascar.,Faculté des Sciences, de Technologies et de l'Environnement, University of Mahajanga, Mahajanga, Madagascar
| | - Christina Strube
- Centre for Infection Medicine, Institute for Parasitology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
6
|
Chen K, Roe RM, Ponnusamy L. Biology, Systematics, Microbiome, Pathogen Transmission and Control of Chiggers (Acari: Trombiculidae, Leeuwenhoekiidae) with Emphasis on the United States. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15147. [PMID: 36429867 PMCID: PMC9690316 DOI: 10.3390/ijerph192215147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Chiggers are the larval stage of Trombiculidae and Leeuwenhoekiidae mites of medical and veterinary importance. Some species in the genus Leptotrombidium and Herpetacarus vector Orientia species, the bacteria that causes scrub typhus disease in humans. Scrub typhus is a life-threatening, febrile disease. Chigger bites can also cause dermatitis. There were 248 chigger species reported from the US from almost every state. However, there are large gaps in our knowledge of the life history of other stages of development. North American wide morphological keys are needed for better species identification, and molecular sequence data for identification are minimal and not clearly matched with morphological data. The role of chiggers in disease transmission in the US is especially understudied, and the role of endosymbionts in Orientia infection are suggested in the scientific literature but not confirmed. The most common chiggers in the eastern United States were identified as Eutrombicula alfreddugesi but were likely misidentified and should be replaced with Eutrombicula cinnabaris. Scrub typhus was originally believed to be limited to the Tsutsugamushi Triangle and the chigger genus, Leptotrombidium, but there is increasing evidence this is not the case. The potential of Orientia species establishing in the US is high. In addition, several other recognized pathogens to infect humans, namely Hantavirus, Bartonella, Borrelia, and Rickettsia, were also detected in chiggers. The role that chiggers play in these disease transmissions in the US needs further investigation. It is possible some of the tick-borne diseases and red meat allergies are caused by chiggers.
Collapse
Affiliation(s)
- Kaiying Chen
- Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - R. Michael Roe
- Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| | - Loganathan Ponnusamy
- Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
7
|
Bethge J, Razafimampiandra JC, Wulff A, Dausmann KH. Seasonal changes in the parasite prevalence of a small Malagasy lemur species (Lepilemur edwardsi). Integr Zool 2022; 18:427-439. [PMID: 35276032 DOI: 10.1111/1749-4877.12647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Parasitic infections can impact the fitness of individuals and can have influence on animals' population dynamics. An individuals' parasite prevalence often changes depending on external or seasonal changes, e.g., rainfall and ambient temperatures, but also on internal changes, e.g., changes in body condition. In this study we aimed to identify the environmental factors that may influence the intestinal parasite and ectoparasite prevalence of the folivorous Malagasy primate species, Lepilemur edwardsi, living in a seasonal dry deciduous forest. Species living in this habitat have to adapt to seasonal changes of ambient temperature, with almost no precipitation during the dry season and hence strong fluctuations of resource availability throughout the year. We sampled the feces and ectoparasites of L. edwardsi throughout the year. Intestinal parasite prevalence increased from the wet to the dry season and was highest in the late dry season, which might be due to the accompanying decrease in diet-quality. Conversely, ectoparasite prevalence decreased in the dry season, presumably due to the prevailing unfavorable environmental conditions for the development of ectoparasites (i.e., mites and ticks). Paired with the higher resting metabolism and stress level of L. edwardsi during the late dry season, it seems that this species may struggle when dry seasons intensify in its habitat. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Janina Bethge
- Institute of Zoology, Functional Ecology, Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Jean Claude Razafimampiandra
- Mention Zoologie et Biodiversité Animale, Faculté des Sciences, Université d'Antananarivo, B.P. 906, 101, Antananarivo, Madagascar
| | - Arne Wulff
- Institute of Zoology, Functional Ecology, Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Kathrin H Dausmann
- Institute of Zoology, Functional Ecology, Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| |
Collapse
|
8
|
Franchini M, Mazza G, Mori E. First assessment of ectoparasite prevalence in Apennine populations of Eurasian red squirrel: does habitat fragmentation affect parasite presence? ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1967458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Marcello Franchini
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, Udine 33100, Italy
| | - Giuseppe Mazza
- CREA Research Centre for Plant Protection and Certification (CREA-DC), Via Lanciola 12/a, Firenze 50125, Italy
| | - Emiliano Mori
- National Research Council, Research Institute on Terrestrial Ecosystems, Via Madonna del Piano 10, Sesto Fiorentino (Florence) 50019, Italy
| |
Collapse
|
9
|
Warburton EM, Blanar CA. Life in the margins: host-parasite relationships in ecological edges. Parasitol Res 2021; 120:3965-3977. [PMID: 34694518 DOI: 10.1007/s00436-021-07355-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022]
Abstract
Transitional zones, such as edge habitat, are key landscapes for investigating biodiversity. "Soft edges" are permeable corridors that hosts can cross, while "hard edges" are impermeable borders that hosts cannot pass. Although pathogen transmission in the context of edges is vital to species conservation, drivers of host-parasite relationships in ecological edges remain poorly understood. Thus, we defined a framework for testing hypotheses of host-parasite interactions in hard and soft edges by (1) characterizing hard and soft edges from both the host and parasite perspectives, (2) predicting the types of parasites that would be successful in each type of edge, and (3) applying our framework to species invasion fronts as an example of host-parasite relationships in a soft edge. Generally, we posited that parasites in soft edges are more likely to be negatively affected by habitat fragmentation than their hosts because they occupy higher trophic levels but parasite transmission would benefit from increased host connectivity. Parasites along hard edges, however, are at higher risk of local extinction due to host population perturbations with limited opportunity for parasite recolonization. We then used these characteristics to predict functional traits that would lead to parasite success along soft and hard edges. Finally, we applied our framework to invasive species fronts to highlight predictions regarding host connectivity and parasite traits in soft edges. We anticipate that our work will promote a more complete discussion of habitat connectivity using a common framework and stimulate empirical research into host-parasite relationships within ecological edges and transitional zones.
Collapse
Affiliation(s)
- Elizabeth M Warburton
- Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA, 30606, USA.
| | - Christopher A Blanar
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Davie, FL, 33314, USA
| |
Collapse
|
10
|
Kiene F, Andriatsitohaina B, Ramsay MS, Rakotondravony R, Strube C, Radespiel U. Habitat fragmentation and vegetation structure impact gastrointestinal parasites of small mammalian hosts in Madagascar. Ecol Evol 2021; 11:6766-6788. [PMID: 34141255 PMCID: PMC8207415 DOI: 10.1002/ece3.7526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
Deleterious effects of habitat loss and fragmentation on biodiversity have been demonstrated in numerous taxa. Although parasites represent a large part of worldwide biodiversity, they are mostly neglected in this context. We investigated the effects of various anthropogenic environmental changes on gastrointestinal parasite infections in four small mammal hosts inhabiting two landscapes of fragmented dry forest in northwestern Madagascar. Coproscopical examinations were performed on 1,418 fecal samples from 903 individuals of two mouse lemur species, Microcebus murinus (n = 199) and M. ravelobensis (n = 421), and two rodent species, the native Eliurus myoxinus (n = 102) and the invasive Rattus rattus (n = 181). Overall, sixteen parasite morphotypes were detected and significant prevalence differences between host species regarding the most common five parasites may be explained by parasite-host specificity or host behavior, diet, and socioecology. Ten host- and habitat-related ecological variables were evaluated by generalized linear mixed modeling for significant impacts on the prevalence of the most abundant gastrointestinal parasites and on gastrointestinal parasite species richness (GPSR). Forest maturation affected homoxenous parasites (direct life cycle) by increasing Lemuricola, but decreasing Enterobiinae gen. sp. prevalence, while habitat fragmentation and vegetation clearance negatively affected the prevalence of parasites with heterogenic environment (i.e., Strongyloides spp.) or heteroxenous (indirect cycle with intermediate host) cycles, and consequently reduced GPSR. Forest edges and forest degradation likely change abiotic conditions which may reduce habitat suitability for soil-transmitted helminths or required intermediate hosts. The fragility of complex parasite life cycles suggests understudied and potentially severe effects of decreasing habitat quality by fragmentation and degradation on hidden ecological networks that involve parasites. Since parasites can provide indispensable ecological services and ensure stability of ecosystems by modulating animal population dynamics and nutrient pathways, our study underlines the importance of habitat quality and integrity as key aspects of conservation.
Collapse
Affiliation(s)
- Frederik Kiene
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHanoverGermany
- Centre for Infection MedicineInstitute for ParasitologyUniversity of Veterinary Medicine HannoverHanoverGermany
| | - Bertrand Andriatsitohaina
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHanoverGermany
- Ecole Doctorale Ecosystèmes Naturels (EDEN)University of MahajangaMahajangaMadagascar
| | - Malcolm S. Ramsay
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHanoverGermany
- Department of AnthropologyUniversity of TorontoTorontoCanada
| | - Romule Rakotondravony
- Ecole Doctorale Ecosystèmes Naturels (EDEN)University of MahajangaMahajangaMadagascar
- Faculté des Sciences, de Technologies et de l’EnvironnementUniversity of MahajangaMahajangaMadagascar
| | - Christina Strube
- Centre for Infection MedicineInstitute for ParasitologyUniversity of Veterinary Medicine HannoverHanoverGermany
| | - Ute Radespiel
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHanoverGermany
| |
Collapse
|
11
|
Fernandes FR, da Silva Abreu S, Cruz LD. Transmission networks and ectoparasite mite burdens in Oecomys paricola (Rodentia: Cricetidae). Parasitology 2021; 148:443-450. [PMID: 33256864 PMCID: PMC11010056 DOI: 10.1017/s0031182020002231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/03/2020] [Accepted: 11/24/2020] [Indexed: 11/05/2022]
Abstract
The host contact network structure results from the movement and behaviour of hosts (e.g. degree of sociability; vagility and greater or lesser fidelity of shelters), which can generate heterogeneity in the transmission of parasites and influence the parasitic burden of individual hosts. In the current study, we tested the hypothesis that the burdens of Gigantolaelaps oudemansi mites are related to the characteristics of the transmission networks of individuals of Oecomys paricola, a solitary rodent. The study was carried out in a savannah habitat in north-eastern Brazil. In the dry season, the rodent network presented sub-groups of rodent individuals interacting with each other, whereas in the wet season, no modules were formed in the network. Mite burden was positively related to the number of connections that an individual host had with other host individuals in the dry season. The pairwise absolute difference between the mean mite burdens among individual rodents was negatively correlated with the similarities of node interactions. No relationships were observed during the wet season. There was a higher heterogeneity of mite burden among hosts in the dry season compare to that in the wet season. In solitary species, spatial organization may show seasonal variation, causing a change in the opportunities of host contacts, thereby influencing the transmission and dispersion of their ectoparasite burdens.
Collapse
Affiliation(s)
- Fernanda Rodrigues Fernandes
- Departamento de Biologia, Universidade Federal do Maranhão, Centro de Ciências Biológicas e da Saúde, Avenida dos Portugueses, 1966, Bacanga, 65080805, São Luís, Maranhão, Brazil
| | - Somayra da Silva Abreu
- Programa de Pós-graduação em Biodiversidade e Conservação, Universidade Federal do Maranhão, Centro de Ciências Biológicas e da Saúde, Avenida dos Portugueses, 1966, Bacanga, 65080805, São Luís, Maranhão, Brazil
| | - Leonardo Dominici Cruz
- Departamento de Biologia, Universidade Federal do Maranhão, Centro de Ciências Biológicas e da Saúde, Avenida dos Portugueses, 1966, Bacanga, 65080805, São Luís, Maranhão, Brazil
| |
Collapse
|
12
|
Durden LA, Kessler SE, Radespiel U, Hasiniaina AF, Stekolnikov AA, Chalkowski K, Zohdy S. Host Associations of Ectoparasites of the Gray Mouse Lemur, Microcebus murinus, in Northwestern Madagascar. J Parasitol 2021; 107:108-114. [PMID: 33567091 DOI: 10.1645/20-145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Eight species of ectoparasites were collected during 225 gray mouse lemur, Microcebus murinus (J. F. Miller), captures, in Ankarafantsika National Park, Madagascar, in 2010-2011. The ixodid tick, Haemaphysalis lemuris Hoogstraal, was the most common ectoparasite and was mostly represented by nymphs. Other ectoparasites recorded include the polyplacid sucking louse, Lemurpediculus madagascariensis Durden, Kessler, Radespiel, Zimmermann, Hasiniaina, and Zohdy; the ixodid tick, Haemaphysalis simplex Neumann; an undescribed laelapid mite in the genus Aetholaelaps; another laelapid belonging to the genus Androlaelaps; the chigger mite Schoutedenichia microcebi Stekolnikov; an undescribed species of atopomelid mite in the genus Listrophoroides; and an undescribed species of psoroptid mite in the genus Cheirogalalges. Except for the 2 species of ticks and 1 species of chigger, these ectoparasites may be host-specific to M. murinus. Total tick (H. lemuris and H. simplex) infestation was significantly greater in August than October, whereas louse (L. madagascariensis) infestation was significantly greater in October. There was no significant difference in tick infestations between male and female lemurs, but male lemurs had significantly more lice than female lemurs. Reproductive status was not a significant predictor of tick infestation in males and females.
Collapse
Affiliation(s)
- Lance A Durden
- Department of Biology, Georgia Southern University, 4324 Old Register Road, Statesboro, Georgia 30458
| | - Sharon E Kessler
- Department of Psychology, University of Stirling, Stirling, FK9 4LA, Scotland, United Kingdom.,Department of Anthropology, Durham University, Durham, DH1 3LE, United Kingdom
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine, Buenteweg 17, 30559 Hannover, Germany
| | - Alida F Hasiniaina
- Institute of Zoology, University of Veterinary Medicine, Buenteweg 17, 30559 Hannover, Germany.,Facultés des Sciences, Technologies et de l'Environnement, Université de Mahajanga, Rue Georges V - Immeuble KAKAL, Mahajanga Be, B.P. 652, Mahajanga 401, Madagascar
| | - Alexandr A Stekolnikov
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya embankment 1, 199034 Saint Petersburg, Russia
| | - Kayleigh Chalkowski
- School of Forestry and Wildlife Sciences, College of Veterinary Sciences, Auburn University, Auburn, Alabama 36849
| | - Sarah Zohdy
- School of Forestry and Wildlife Sciences, College of Veterinary Sciences, Auburn University, Auburn, Alabama 36849
| |
Collapse
|
13
|
Novaes RLM, Alves FM, Souza RF, Laurindo RS, Moratelli R. Bats used as hosts by Amblyomma sculptum (Acari: Ixodidae) in Northeastern Brazil and its implications on tick-borne diseases. ZOOLOGIA 2020. [DOI: 10.3897/zoologia.37.e56795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Amblyomma
Koch, 1844 is distributed worldwide, with ca. 130 species currently recognized. These ticks are vectors of pathogens to animals and humans, including the causative agent of the New World Rocky Mountain spotted fever. Species of the Amblyomma parasitize a wide range of organisms, especially medium and large terrestrial mammals. Here we report for the first time the association of Myotis lavali Moratelli, Peracchi, Dias & Oliveira, 2011, Noctilio albiventris Desmarest, 1818 and Noctilio leporinus (Linnaeus, 1758) as hosts for Amblyomma sculptum Berlese, 1888. The ticks were originally identified as Amblyomma cajennense (Fabricius, 1787), in 2011. However, a later taxonomic review indicated that the species of the A. cajennense complex occurring in the Caatinga is A. sculptum. We also discuss the ecoepidemiological implications of this association.
Collapse
|