1
|
Cronan JE. Lipoic acid attachment to proteins: stimulating new developments. Microbiol Mol Biol Rev 2024; 88:e0000524. [PMID: 38624243 PMCID: PMC11332335 DOI: 10.1128/mmbr.00005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
SUMMARYLipoic acid-modified proteins are essential for central metabolism and pathogenesis. In recent years, the Escherichia coli and Bacillus subtilis lipoyl assembly pathways have been modified and extended to archaea and diverse eukaryotes including humans. These extensions include a new pathway to insert the key sulfur atoms of lipoate, several new pathways of lipoate salvage, and a novel use of lipoic acid in sulfur-oxidizing bacteria. Other advances are the modification of E. coli LplA for studies of protein localization and protein-protein interactions in cell biology and in enzymatic removal of lipoate from lipoyl proteins. Finally, scenarios have been put forth for the evolution of lipoate assembly in archaea.
Collapse
Affiliation(s)
- John E. Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
2
|
Leela N, Prommana P, Kamchonwongpaisan S, Taechalertpaisarn T, Shaw PJ. Antimalarial target vulnerability of the putative Plasmodium falciparum methionine synthase. PeerJ 2024; 12:e16595. [PMID: 38239295 PMCID: PMC10795524 DOI: 10.7717/peerj.16595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/14/2023] [Indexed: 01/22/2024] Open
Abstract
Background Plasmodium falciparum possesses a cobalamin-dependent methionine synthase (MS). MS is putatively encoded by the PF3D7_1233700 gene, which is orthologous and syntenic in Plasmodium. However, its vulnerability as an antimalarial target has not been assessed. Methods We edited the PF3D7_1233700 and PF3D7_0417200 (dihydrofolate reductase-thymidylate synthase, DHFR-TS) genes and obtained transgenic P. falciparum parasites expressing epitope-tagged target proteins under the control of the glmS ribozyme. Conditional loss-of-function mutants were obtained by treating transgenic parasites with glucosamine. Results DHFR-TS, but not MS mutants showed a significant proliferation defect over 96 h, suggesting that P. falciparum MS is not a vulnerable antimalarial target.
Collapse
Affiliation(s)
- Nirut Leela
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Bangkok, Thailand
| | - Parichat Prommana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Tana Taechalertpaisarn
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Bangkok, Thailand
| | - Philip J. Shaw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| |
Collapse
|
3
|
Nair SC, Munro JT, Mann A, Llinás M, Prigge ST. The mitochondrion of Plasmodium falciparum is required for cellular acetyl-CoA metabolism and protein acetylation. Proc Natl Acad Sci U S A 2023; 120:e2210929120. [PMID: 37068227 PMCID: PMC10151609 DOI: 10.1073/pnas.2210929120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/28/2023] [Indexed: 04/19/2023] Open
Abstract
Coenzyme A (CoA) biosynthesis is an excellent target for antimalarial intervention. While most studies have focused on the use of CoA to produce acetyl-CoA in the apicoplast and the cytosol of malaria parasites, mitochondrial acetyl-CoA production is less well understood. In the current study, we performed metabolite-labeling experiments to measure endogenous metabolites in Plasmodium falciparum lines with genetic deletions affecting mitochondrial dehydrogenase activity. Our results show that the mitochondrion is required for cellular acetyl-CoA biosynthesis and identify a synthetic lethal relationship between the two main ketoacid dehydrogenase enzymes. The activity of these enzymes is dependent on the lipoate attachment enzyme LipL2, which is essential for parasite survival solely based on its role in supporting acetyl-CoA metabolism. We also find that acetyl-CoA produced in the mitochondrion is essential for the acetylation of histones and other proteins outside of the mitochondrion. Taken together, our results demonstrate that the mitochondrion is required for cellular acetyl-CoA metabolism and protein acetylation essential for parasite survival.
Collapse
Affiliation(s)
- Sethu C. Nair
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21218
| | - Justin T. Munro
- Department of Chemistry, Pennsylvania State University, University Park, PA16802
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA16802
| | - Alexis Mann
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21218
| | - Manuel Llinás
- Department of Chemistry, Pennsylvania State University, University Park, PA16802
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA16802
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA16802
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
4
|
Creation and preclinical evaluation of genetically attenuated malaria parasites arresting growth late in the liver. NPJ Vaccines 2022; 7:139. [PMCID: PMC9636417 DOI: 10.1038/s41541-022-00558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractWhole-sporozoite (WSp) malaria vaccines induce protective immune responses in animal malaria models and in humans. A recent clinical trial with a WSp vaccine comprising genetically attenuated parasites (GAP) which arrest growth early in the liver (PfSPZ-GA1), showed that GAPs can be safely administered to humans and immunogenicity is comparable to radiation-attenuated PfSPZ Vaccine. GAPs that arrest late in the liver stage (LA-GAP) have potential for increased potency as shown in rodent malaria models. Here we describe the generation of four putative P. falciparum LA-GAPs, generated by CRISPR/Cas9-mediated gene deletion. One out of four gene-deletion mutants produced sporozoites in sufficient numbers for further preclinical evaluation. This mutant, PfΔmei2, lacking the mei2-like RNA gene, showed late liver growth arrest in human liver-chimeric mice with human erythrocytes, absence of unwanted genetic alterations and sensitivity to antimalarial drugs. These features of PfΔmei2 make it a promising vaccine candidate, supporting further clinical evaluation. PfΔmei2 (GA2) has passed regulatory approval for safety and efficacy testing in humans based on the findings reported in this study.
Collapse
|
5
|
Akuh OA, Elahi R, Prigge ST, Seeber F. The ferredoxin redox system - an essential electron distributing hub in the apicoplast of Apicomplexa. Trends Parasitol 2022; 38:868-881. [PMID: 35999149 PMCID: PMC9481715 DOI: 10.1016/j.pt.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022]
Abstract
The apicoplast, a relict plastid found in most species of the phylum Apicomplexa, harbors the ferredoxin redox system which supplies electrons to enzymes of various metabolic pathways in this organelle. Recent reports in Toxoplasma gondii and Plasmodium falciparum have shown that the iron-sulfur cluster (FeS)-containing ferredoxin is essential in tachyzoite and blood-stage parasites, respectively. Here we review ferredoxin's crucial contribution to isoprenoid and lipoate biosynthesis as well as tRNA modification in the apicoplast, highlighting similarities and differences between the two species. We also discuss ferredoxin's potential role in the initial reductive steps required for FeS synthesis as well as recent evidence that offers an explanation for how NADPH required by the redox system might be generated in Plasmodium spp.
Collapse
Affiliation(s)
- Ojo-Ajogu Akuh
- FG16 Parasitology, Robert Koch-Institute, Berlin, Germany; Division of Biomedical Science and Biochemistry, Australian National University, Canberra, Australia
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA; The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA; The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Frank Seeber
- FG16 Parasitology, Robert Koch-Institute, Berlin, Germany.
| |
Collapse
|
6
|
Buchanan HD, Goodman CD, McFadden GI. Roles of the apicoplast across the life cycles of rodent and human malaria parasites. J Eukaryot Microbiol 2022; 69:e12947. [PMID: 36070203 PMCID: PMC9828729 DOI: 10.1111/jeu.12947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Malaria parasites are diheteroxenous, requiring two hosts-a vertebrate and a mosquito-to complete their life cycle. Mosquitoes are the definitive host where malaria parasite sex occurs, and vertebrates are the intermediate host, supporting asexual amplification and more significant geographic spread. In this review, we examine the roles of a single malaria parasite compartment, the relict plastid known as the apicoplast, at each life cycle stage. We focus mainly on two malaria parasite species-Plasmodium falciparum and P. berghei-comparing the changing, yet ever crucial, roles of their apicoplasts.
Collapse
Affiliation(s)
- Hayley D. Buchanan
- Department of Infectious Diseases, Faculty of Medicine, Dentistry and Health Sciences, Melbourne Medical SchoolThe University of MelbourneMelbourneVic.Australia,Faculty of Science, School of BioSciencesThe University of MelbourneMelbourneVic.Australia
| | - Christopher D. Goodman
- Faculty of Science, School of BioSciencesThe University of MelbourneMelbourneVic.Australia
| | - Geoffrey I. McFadden
- Faculty of Science, School of BioSciencesThe University of MelbourneMelbourneVic.Australia
| |
Collapse
|
7
|
Rei Yan SL, Wakasuqui F, Du X, Groves MR, Wrenger C. Lipoic Acid Metabolism as a Potential Chemotherapeutic Target Against Plasmodium falciparum and Staphylococcus aureus. Front Chem 2021; 9:742175. [PMID: 34805091 PMCID: PMC8600131 DOI: 10.3389/fchem.2021.742175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Lipoic acid (LA) is an organic compound that plays a key role in cellular metabolism. It participates in a posttranslational modification (PTM) named lipoylation, an event that is highly conserved and that occurs in multimeric metabolic enzymes of very distinct microorganisms such as Plasmodium sp. and Staphylococcus aureus, including pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KDH). In this mini review, we revisit the recent literature regarding LA metabolism in Plasmodium sp. and Staphylococcus aureus, by covering the lipoate ligase proteins in both microorganisms, the role of lipoate ligase proteins and insights for possible inhibitors of lipoate ligases.
Collapse
Affiliation(s)
- Sun Liu Rei Yan
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences-ICB, University of São Paulo, São Paulo, Brazil
| | - Felipe Wakasuqui
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences-ICB, University of São Paulo, São Paulo, Brazil
| | - Xiaochen Du
- Structural Biology in Drug Design, Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Matthew R Groves
- Structural Biology in Drug Design, Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences-ICB, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Swift RP, Rajaram K, Elahi R, Liu HB, Prigge ST. Roles of Ferredoxin-Dependent Proteins in the Apicoplast of Plasmodium falciparum Parasites. mBio 2021; 13:e0302321. [PMID: 35164549 PMCID: PMC8844926 DOI: 10.1128/mbio.03023-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022] Open
Abstract
Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form a redox system that is hypothesized to play a central role in the maintenance and function of the apicoplast organelle of malaria parasites. The Fd/FNR system provides reducing power to various iron-sulfur cluster (FeS)-dependent proteins in the apicoplast and is believed to help to maintain redox balance in the organelle. While the Fd/FNR system has been pursued as a target for antimalarial drug discovery, Fd, FNR, and the FeS proteins presumably reliant on their reducing power play an unknown role in parasite survival and apicoplast maintenance. To address these questions, we generated genetic deletions of these proteins in a parasite line containing an apicoplast bypass system. Through these deletions, we discovered that Fd, FNR, and certain FeS proteins are essential for parasite survival but found that none are required for apicoplast maintenance. Additionally, we addressed the question of how Fd and its downstream FeS proteins obtain FeS cofactors by deleting the FeS transfer proteins SufA and NfuApi. While individual deletions of these proteins revealed their dispensability, double deletion resulted in synthetic lethality, demonstrating a redundant role in providing FeS clusters to Fd and other essential FeS proteins. Our data support a model in which the reducing power from the Fd/FNR system to certain downstream FeS proteins is essential for the survival of blood-stage malaria parasites but not for organelle maintenance, while other FeS proteins are dispensable for this stage of parasite development. IMPORTANCE Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form one of the few known redox systems in the apicoplast of malaria parasites and provide reducing power to iron-sulfur (FeS) cluster proteins within the organelle. While the Fd/FNR system has been explored as a drug target, the essentiality and roles of this system and the identity of its downstream FeS proteins have not been determined. To answer these questions, we generated deletions of these proteins in an apicoplast metabolic bypass line (PfMev) and determined the minimal set of proteins required for parasite survival. Moving upstream of this pathway, we also generated individual and dual deletions of the two FeS transfer proteins that deliver FeS clusters to Fd and downstream FeS proteins. We found that both transfer proteins are dispensable, but double deletion displayed a synthetic lethal phenotype, demonstrating their functional redundancy. These findings provide important insights into apicoplast biochemistry and drug development.
Collapse
Affiliation(s)
- Russell P. Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hans B. Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|