1
|
Zhan Q, He Q, Tiedje KE, Day KP, Pascual M. Hyper-diverse antigenic variation and resilience to transmission-reducing intervention in falciparum malaria. Nat Commun 2024; 15:7343. [PMID: 39187488 PMCID: PMC11347654 DOI: 10.1038/s41467-024-51468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Intervention efforts against falciparum malaria in high-transmission regions remain challenging, with rapid resurgence typically following their relaxation. Such resilience co-occurs with incomplete immunity and a large transmission reservoir from high asymptomatic prevalence. Incomplete immunity relates to the large antigenic variation of the parasite, with the major surface antigen of the blood stage of infection encoded by the multigene and recombinant family known as var. With a stochastic agent-based model, we investigate the existence of a sharp transition in resurgence ability with intervention intensity and identify molecular indicators informative of its proximity. Their application to survey data with deep sampling of var sequences from individual isolates in northern Ghana suggests that the transmission system was brought close to transition by intervention with indoor residual spraying. These results indicate that sustaining and intensifying intervention would have pushed malaria dynamics to a slow-rebound regime with an increased probability of local parasite extinction.
Collapse
Affiliation(s)
- Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Mercedes Pascual
- Department of Biology, New York University, New York, NY, 10003, USA.
- Department of Environmental Studies, New York University, New York, NY, 10003, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
2
|
Hawadak J, Arya A, Chaudhry S, Singh V. Genetic diversity and natural selection analysis of VAR2CSA and vir genes: implication for vaccine development. Genomics Inform 2024; 22:11. [PMID: 39010183 PMCID: PMC11247734 DOI: 10.1186/s44342-024-00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/27/2023] [Indexed: 07/17/2024] Open
Abstract
Variable surface antigens (VSAs) encoded by var and vir genes in Plasmodium falciparum and Plasmodium vivax, respectively, are known to be involved in malaria pathogenesis and host immune escape through antigenic variations. Knowledge of the genetic diversity of these antigens is essential for malaria control and effective vaccine development. In this study, we analysed the genetic diversity and evolutionary patterns of two fragments (DBL2X and DBL3X) of VAR2CSA gene and four vir genes (vir 4, vir 12, vir 21 and vir 27) from different endemic regions, including Southeast Asia and sub-Saharan Africa. High levels of segregating sites (S) and haplotype diversity (Hd) were observed in both var and vir genes. Among vir genes, vir 12 (S = 131, Hd = 0.996) and vir 21 (S = 171, Hd = 892) were found to be more diverse as compared to vir 4 (S = 11, Hd = 0.748) and vir 27 (S = 23, Hd = 0.814). DBL2X (S = 99, Hd = 0.996) and DBL3X (S = 307, Hd = 0.999) fragments showed higher genetic diversity. Our analysis indicates that var and vir genes are highly diverse and follow the similar evolutionary pattern globally. Some codons showed signatures of positive or negative selection pressure, but vir and var genes are likely to be under balancing selection. This study highlights the high variability of var and vir genes and underlines the need of functional experimental studies to determine the most relevant allelic forms for effective progress towards vaccine formulation and testing.
Collapse
Affiliation(s)
- Joseph Hawadak
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India
| | - Aditi Arya
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India
| | - Shewta Chaudhry
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research (NIMR), Delhi, 110077, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
He Q, Chaillet JK, Labbé F. Antigenic strain diversity predicts different biogeographic patterns of maintenance and decline of antimalarial drug resistance. eLife 2024; 12:RP90888. [PMID: 38363295 PMCID: PMC10942604 DOI: 10.7554/elife.90888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
The establishment and spread of antimalarial drug resistance vary drastically across different biogeographic regions. Though most infections occur in sub-Saharan Africa, resistant strains often emerge in low-transmission regions. Existing models on resistance evolution lack consensus on the relationship between transmission intensity and drug resistance, possibly due to overlooking the feedback between antigenic diversity, host immunity, and selection for resistance. To address this, we developed a novel compartmental model that tracks sensitive and resistant parasite strains, as well as the host dynamics of generalized and antigen-specific immunity. Our results show a negative correlation between parasite prevalence and resistance frequency, regardless of resistance cost or efficacy. Validation using chloroquine-resistant marker data supports this trend. Post discontinuation of drugs, resistance remains high in low-diversity, low-transmission regions, while it steadily decreases in high-diversity, high-transmission regions. Our study underscores the critical role of malaria strain diversity in the biogeographic patterns of resistance evolution.
Collapse
Affiliation(s)
- Qixin He
- Department of Biological Sciences, Purdue UniversityWest LafayetteUnited States
| | - John K Chaillet
- Department of Biological Sciences, Purdue UniversityWest LafayetteUnited States
| | - Frédéric Labbé
- Department of Ecology and Evolution, University of ChicagoChicagoUnited States
| |
Collapse
|
4
|
Nebie I, Palacpac NMQ, Bougouma EC, Diarra A, Ouédraogo A, D’Alessio F, Houard S, Tiono AB, Cousens S, Horii T, Sirima SB. Persistence of Anti-SE36 Antibodies Induced by the Malaria Vaccine Candidate BK-SE36/CpG in 5-10-Year-Old Burkinabe Children Naturally Exposed to Malaria. Vaccines (Basel) 2024; 12:166. [PMID: 38400149 PMCID: PMC10892924 DOI: 10.3390/vaccines12020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Information on the dynamics and decline/persistence of antibody titres is important in vaccine development. A recent vaccine trial in malaria-exposed, healthy African adults and children living in a malaria hyperendemic and seasonal area (Ouagadougou, Burkina Faso) was the first study in which BK-SE36/CpG was administered to different age groups. In 5- to 10-year-old children, the risk of malaria infection was markedly lower in the BK-SE36/CpG arm compared to the control arm. We report here data on antibody titres measured in this age-group after the high malaria transmission season of 2021 (three years after the first vaccine dose was administered). At Year 3, 83% of children had detectable anti-SE36 total IgG antibodies. Geometric mean antibody titres and the proportion of children with detectable anti-SE36 antibodies were markedly higher in the BK-SE36/CpG arm than the control (rabies) arm. The information obtained in this study will guide investigators on future vaccine/booster schedules for this promising blood-stage malaria vaccine candidate.
Collapse
Affiliation(s)
- Issa Nebie
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Edith Christiane Bougouma
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Amidou Diarra
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Alphonse Ouédraogo
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Flavia D’Alessio
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany; (F.D.); (S.H.)
| | - Sophie Houard
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany; (F.D.); (S.H.)
| | - Alfred B. Tiono
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Simon Cousens
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK;
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Sodiomon B. Sirima
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| |
Collapse
|
5
|
Zhan Q, He Q, Tiedje KE, Day KP, Pascual M. Hyper-diverse antigenic variation and resilience to transmission-reducing intervention in falciparum malaria. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.01.24301818. [PMID: 38370729 PMCID: PMC10871444 DOI: 10.1101/2024.02.01.24301818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Intervention against falciparum malaria in high transmission regions remains challenging, with relaxation of control efforts typically followed by rapid resurgence. Resilience to intervention co-occurs with incomplete immunity, whereby children eventually become protected from severe disease but not infection and a large transmission reservoir results from high asymptomatic prevalence across all ages. Incomplete immunity relates to the vast antigenic variation of the parasite, with the major surface antigen of the blood stage of infection encoded by the multigene family known as var. Recent deep sampling of var sequences from individual isolates in northern Ghana showed that parasite population structure exhibited persistent features of high-transmission regions despite the considerable decrease in prevalence during transient intervention with indoor residual spraying (IRS). We ask whether despite such apparent limited impact, the transmission system had been brought close to a transition in both prevalence and resurgence ability. With a stochastic agent-based model, we investigate the existence of such a transition to pre-elimination with intervention intensity, and of molecular indicators informative of its approach. We show that resurgence ability decreases sharply and nonlinearly across a narrow region of intervention intensities in model simulations, and identify informative molecular indicators based on var gene sequences. Their application to the survey data indicates that the transmission system in northern Ghana was brought close to transition by IRS. These results suggest that sustaining and intensifying intervention would have pushed malaria dynamics to a slow-rebound regime with an increased probability of local parasite extinction.
Collapse
Affiliation(s)
- Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago; Chicago, IL, 60637, USA
| | - Qixin He
- Department of Biological Sciences, Purdue University; West Lafayette, IN, 47907, USA
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne; Melbourne, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne; Melbourne, Australia
| | - Mercedes Pascual
- Department of Biology, New York University; New York, NY, 10012, USA
- Department of Environmental Studies, New York University; New York, NY, 10012, USA
- Santa Fe Institute; Santa Fe, NM, 87501, USA
| |
Collapse
|
6
|
Ruybal-Pesántez S, McCann K, Vibin J, Siegel S, Auburn S, Barry AE. Molecular markers for malaria genetic epidemiology: progress and pitfalls. Trends Parasitol 2024; 40:147-163. [PMID: 38129280 DOI: 10.1016/j.pt.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Over recent years, progress in molecular markers for genotyping malaria parasites has enabled informative studies of epidemiology and transmission dynamics. Results have highlighted the value of these tools for surveillance to support malaria control and elimination strategies. There are many different types and panels of markers available for malaria parasite genotyping, and for end users, the nuances of these markers with respect to 'use case', resolution, and accuracy, are not well defined. This review clarifies issues surrounding different molecular markers and their application to malaria control and elimination. We describe available marker panels, use cases, implications for different transmission settings, limitations, access, cost, and data accuracy. The information provided can be used as a guide for molecular epidemiology and surveillance of malaria.
Collapse
Affiliation(s)
- Shazia Ruybal-Pesántez
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Institute of Microbiology, Universidad San Francisco de Quito, Quito, Ecuador
| | - Kirsty McCann
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Jessy Vibin
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | | | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Alyssa E Barry
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
7
|
He Q, Chaillet JK, Labbé F. Antigenic strain diversity predicts different biogeographic patterns of maintenance and decline of anti-malarial drug resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531320. [PMID: 37987011 PMCID: PMC10659383 DOI: 10.1101/2023.03.06.531320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The establishment and spread of anti-malarial drug resistance vary drastically across different biogeographic regions. Though most infections occur in Sub-Saharan Africa, resistant strains often emerge in low-transmission regions. Existing models on resistance evolution lack consensus on the relationship between transmission intensity and drug resistance, possibly due to overlooking the feedback between antigenic diversity, host immunity, and selection for resistance. To address this, we developed a novel compartmental model that tracks sensitive and resistant parasite strains, as well as the host dynamics of generalized and antigen-specific immunity. Our results show a negative correlation between parasite prevalence and resistance frequency, regardless of resistance cost or efficacy. Validation using chloroquine-resistant marker data supports this trend. Post discontinuation of drugs, resistance remains high in low-diversity, low-transmission regions, while it steadily decreases in high-diversity, high-transmission regions. Our study underscores the critical role of malaria strain diversity in the biogeographic patterns of resistance evolution.
Collapse
Affiliation(s)
- Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - John K. Chaillet
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Frédéric Labbé
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
de Roos AM, He Q, Pascual M. An immune memory-structured SIS epidemiological model for hyperdiverse pathogens. Proc Natl Acad Sci U S A 2023; 120:e2218499120. [PMID: 37910552 PMCID: PMC10636369 DOI: 10.1073/pnas.2218499120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
A hyperdiverse class of pathogens of humans and wildlife, including the malaria parasite Plasmodium falciparum, relies on multigene families to encode antigenic variation. As a result, high (asymptomatic) prevalence is observed despite high immunity in local populations under high-transmission settings. The vast diversity of "strains" and genes encoding this variation challenges the application of established models for the population dynamics of such infectious diseases. Agent-based models have been formulated to address theory on strain coexistence and structure, but their complexity can limit application to gain insights into population dynamics. Motivated by P. falciparum malaria, we develop an alternative formulation in the form of a structured susceptible-infected-susceptible population model in continuous time, where individuals are classified not only by age, as is standard, but also by the diversity of parasites they have been exposed to and retain in their specific immune memory. We analyze the population dynamics and bifurcation structure of this system of partial-differential equations, showing the existence of alternative steady states and an associated tipping point with transmission intensity. We attribute the critical transition to the positive feedback between parasite genetic diversity and force of infection. Basins of attraction show that intervention must drastically reduce diversity to prevent a rebound to high infection levels. Results emphasize the importance of explicitly considering pathogen diversity and associated specific immune memory in the population dynamics of hyperdiverse epidemiological systems. This statement is discussed in a more general context for ecological competition systems with hyperdiverse trait spaces.
Collapse
Affiliation(s)
- André M. de Roos
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam1090 GE, The Netherlands
- Santa Fe Institute, Santa Fe, NM87501
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
| | - Mercedes Pascual
- Santa Fe Institute, Santa Fe, NM87501
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL60637
| |
Collapse
|
9
|
Ghansah A, Tiedje KE, Argyropoulos DC, Onwona CO, Deed SL, Labbé F, Oduro AR, Koram KA, Pascual M, Day KP. Comparison of molecular surveillance methods to assess changes in the population genetics of Plasmodium falciparum in high transmission. FRONTIERS IN PARASITOLOGY 2023; 2:1067966. [PMID: 38031549 PMCID: PMC10686283 DOI: 10.3389/fpara.2023.1067966] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
A major motivation for developing molecular methods for malaria surveillance is to measure the impact of control interventions on the population genetics of Plasmodium falciparum as a potential marker of progress towards elimination. Here we assess three established methods (i) single nucleotide polymorphism (SNP) barcoding (panel of 24-biallelic loci), (ii) microsatellite genotyping (panel of 12-multiallelic loci), and (iii) varcoding (fingerprinting var gene diversity, akin to microhaplotyping) to identify changes in parasite population genetics in response to a short-term indoor residual spraying (IRS) intervention. Typical of high seasonal transmission in Africa, multiclonal infections were found in 82.3% (median 3; range 1-18) and 57.8% (median 2; range 1-12) of asymptomatic individuals pre- and post-IRS, respectively, in Bongo District, Ghana. Since directly phasing multilocus haplotypes for population genetic analysis is not possible for biallelic SNPs and microsatellites, we chose ~200 low-complexity infections biased to single and double clone infections for analysis. Each genotyping method presented a different pattern of change in diversity and population structure as a consequence of variability in usable data and the relative polymorphism of the molecular markers (i.e., SNPs < microsatellites < var). Varcoding and microsatellite genotyping showed the overall failure of the IRS intervention to significantly change the population structure from pre-IRS characteristics (i.e., many diverse genomes of low genetic similarity). The 24-SNP barcode provided limited information for analysis, largely due to the biallelic nature of SNPs leading to a high proportion of double-allele calls and a view of more isolate relatedness compared to microsatellites and varcoding. Relative performance, suitability, and cost-effectiveness of the methods relevant to sample size and local malaria elimination in high-transmission endemic areas are discussed.
Collapse
Affiliation(s)
- Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Dionne C. Argyropoulos
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Christiana O. Onwona
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Samantha L. Deed
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Frédéric Labbé
- Department Ecology and Evolution, The University of Chicago, Chicago, IL, United States
| | - Abraham R. Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Kwadwo A. Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Mercedes Pascual
- Department Ecology and Evolution, The University of Chicago, Chicago, IL, United States
- Santa Fe Institute, Santa Fe, NM, United States
| | - Karen P. Day
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Ruybal-Pesántez S, Sáenz FE, Deed SL, Johnson EK, Larremore DB, Vera-Arias CA, Tiedje KE, Day KP. Molecular epidemiology of continued Plasmodium falciparum disease transmission after an outbreak in Ecuador. FRONTIERS IN TROPICAL DISEASES 2023; 4:1085862. [PMID: 39525803 PMCID: PMC11546077 DOI: 10.3389/fitd.2023.1085862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
To better understand the factors underlying the continued incidence of clinical episodes of falciparum malaria in E-2025 countries targeting elimination, we characterized the molecular epidemiology of Plasmodium falciparum disease transmission after a clonal outbreak in Ecuador. Here we study disease transmission by documenting the diversity and population structure of the major variant surface antigen of the blood stages of P. falciparum encoded by the var multigene family. We used a high-resolution genotyping method, "varcoding", involving targeted amplicon sequencing to fingerprint the DBLα encoding region of var genes to describe both antigenic var diversity and var repertoire similarity or relatedness in parasite isolates from clinical cases. We identified nine genetic varcodes in 58 P. falciparum isolates causing clinical disease in 2013-2015. Network analyses revealed that four of the varcodes were highly related to the outbreak varcode, with identification of possible diversification of the outbreak parasites by recombination as seen in three of those varcodes. The majority of clinical cases in Ecuador were associated with parasites with highly related or recombinant varcodes to the outbreak clone and due to local transmission rather than recent importation of parasites from other endemic countries. Sharing of types in Ecuadorian varcodes to those sampled in South American varcodes reflects historical parasite importation of some varcodes, especially from Colombia and Peru. Our findings highlight the translational application of varcoding for outbreak surveillance in epidemic/unstable malaria transmission, such as in E-2025 countries, and point to the need for surveillance of local reservoirs of infection in Ecuador to achieve the malaria elimination goal by 2025.
Collapse
Affiliation(s)
- Shazia Ruybal-Pesántez
- School of BioSciences/Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Fabián E. Sáenz
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Samantha L. Deed
- School of BioSciences/Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Erik K. Johnson
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO, United States
| | - Daniel B. Larremore
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Claudia A. Vera-Arias
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Kathryn E. Tiedje
- School of BioSciences/Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Karen P. Day
- School of BioSciences/Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Burkitt lymphoma risk shows geographic and temporal associations with Plasmodium falciparum infections in Uganda, Tanzania, and Kenya. Proc Natl Acad Sci U S A 2023; 120:e2211055120. [PMID: 36595676 PMCID: PMC9926229 DOI: 10.1073/pnas.2211055120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Endemic Burkitt lymphoma (eBL) is a pediatric cancer coendemic with malaria in sub-Saharan Africa, suggesting an etiological link between them. However, previous cross-sectional studies of limited geographic areas have not found a convincing association. We used spatially detailed data from the Epidemiology of Burkitt Lymphoma in East African Children and Minors (EMBLEM) study to assess this relationship. EMBLEM is a case-control study of eBL from 2010 through 2016 in six regions of Kenya, Uganda, and Tanzania. To measure the intensity of exposure to the malaria parasite, Plasmodium falciparum, among children in these regions, we used high-resolution spatial data from the Malaria Atlas Project to estimate the annual number of P. falciparum infections from 2000 through 2016 for each of 49 districts within the study region. Cumulative P. falciparum exposure, calculated as the sum of annual infections by birth cohort, varied widely, with a median of 47 estimated infections per child by age 10, ranging from 4 to 315 infections. eBL incidence increased 39% for each 100 additional lifetime P. falciparum infections (95% CI: 6.10 to 81.04%) with the risk peaking among children aged 5 to 11 and declining thereafter. Alternative models using estimated annual P. falciparum infections 0 to 10 y before eBL onset were inconclusive, suggesting that eBL risk is a function of cumulative rather than recent cross-sectional exposure. Our findings provide population-level evidence that eBL is a phenotype related to heavy lifetime exposure to P. falciparum malaria and support emphasizing the link between malaria and eBL.
Collapse
|
12
|
Tan MH, Shim H, Chan YB, Day KP. Unravelling var complexity: Relationship between DBLα types and var genes in Plasmodium falciparum. FRONTIERS IN PARASITOLOGY 2023; 1. [PMID: 36998722 PMCID: PMC10060044 DOI: 10.3389/fpara.2022.1006341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The enormous diversity and complexity of var genes that diversify rapidly by recombination has led to the exclusion of assembly of these genes from major genome initiatives (e.g., Pf6). A scalable solution in epidemiological surveillance of var genes is to use a small ‘tag’ region encoding the immunogenic DBLα domain as a marker to estimate var diversity. As var genes diversify by recombination, it is not clear the extent to which the same tag can appear in multiple var genes. This relationship between marker and gene has not been investigated in natural populations. Analyses of in vitro recombination within and between var genes have suggested that this relationship would not be exclusive. Using a dataset of publicly-available assembled var sequences, we test this hypothesis by studying DBLα-var relationships for four study sites in four countries: Pursat (Cambodia) and Mae Sot (Thailand), representing low malaria transmission, and Navrongo (Ghana) and Chikwawa (Malawi), representing high malaria transmission. In all study sites, DBLα-var relationships were shown to be predominantly 1-to-1, followed by a second largest proportion of 1-to-2 DBLα-var relationships. This finding indicates that DBLα tags can be used to estimate not just DBLα diversity but var gene diversity when applied in a local endemic area. Epidemiological applications of this result are discussed.
Collapse
Affiliation(s)
- Mun Hua Tan
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute, Melbourne, VIC, Australia
| | - Heejung Shim
- School of Mathematics and Statistics/Melbourne Integrative Genomics, The University of Melbourne, Melbourne, VIC, Australia
| | - Yao-ban Chan
- School of Mathematics and Statistics/Melbourne Integrative Genomics, The University of Melbourne, Melbourne, VIC, Australia
| | - Karen P. Day
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute, Melbourne, VIC, Australia
- CORRESPONDENCE Karen P. Day,
| |
Collapse
|
13
|
de Koning-Ward TF, Boddey JA, Fowkes FJ. Editorial: Molecular Approaches to Malaria 2020. Int J Parasitol 2022; 52:705-706. [DOI: 10.1016/j.ijpara.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|