1
|
Moncada-Diaz MJ, Rodríguez-Almonacid CC, Quiceno-Giraldo E, Khuong FTH, Muskus C, Karamysheva ZN. Molecular Mechanisms of Drug Resistance in Leishmania spp. Pathogens 2024; 13:835. [PMID: 39452707 PMCID: PMC11510721 DOI: 10.3390/pathogens13100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The protozoan parasite Leishmania causes leishmaniasis, a neglected tropical disease, that disproportionately affects underdeveloped countries. This disease has major health, economic, and social implications, particularly because of the limited treatment options, high cost, the severe side effects associated with available therapeutics, and the high rate of treatment failure caused by the parasites' growing resistance to current medications. In this review, we describe first the common strategies used by pathogens to develop drug resistance and then focus on the arsenal of available drugs to treat leishmaniasis, their modes of action, and the molecular mechanisms contributing to drug resistance in Leishmania spp., including the role of genomic, transcriptional, and translational control. We focus more specifically on our recent discovery of translational reprogramming as a major driver of drug resistance leading to coordinated changes in the translation of transcripts and orchestrating changes in metabolome and lipidome to support drug resistance. A thorough understanding of these mechanisms is essential to identify the key elements needed to combat resistance and improve leishmaniasis treatment methods.
Collapse
Affiliation(s)
- Maria Juliana Moncada-Diaz
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| | - Cristian Camilo Rodríguez-Almonacid
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Eyson Quiceno-Giraldo
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Francis T. H. Khuong
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Zemfira N. Karamysheva
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| |
Collapse
|
2
|
Paul A, Roy PK, Babu NK, Singh S. Clotrimazole causes membrane depolarization and induces sub G 0 cell cycle arrest in Leishmania donovani. Acta Trop 2024; 252:107139. [PMID: 38307362 DOI: 10.1016/j.actatropica.2024.107139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Clotrimazole is an FDA approved drug and is widely used as an antifungal agent. An extensive body of research is available about its mechanism of action on various cell types but its mode of killing of Leishmania donovani parasites is unknown. L. donovani causes Visceral Leishmaniasis which is a public health problem with limited treatment options. Its present chemotherapy is expensive, has adverse effects and is plagued with drug resistance issues. In this study we have explored the possibility of repurposing clotrimazole as an antileishmanial drug. We have assessed its efficacy on the parasites and attempted to understand its mode of action. We found that it has a half-maximal inhibitory concentration (IC50) of 35.75 ± 1.06 μM, 12.75 ± 0.35 μM and 73 ± 1.41 μM in promastigotes, intracellular amastigotes and macrophages, respectively. Clotrimazole is 5.73 times more selective for the intracellular amastigotes as compared to the mammalian cell. Effect of clotrimazole was reduced by ergosterol supplementation. It leads to impaired parasite morphology. It alters plasma membrane permeability and disrupts plasma membrane potential. Mitochondrial function is compromised as is evident from increased ROS generation, depolarized mitochondrial membrane and decreased ATP levels. Cell cycle analysis of clotrimazole treated parasites shows arrest at sub-G0 phase suggesting apoptotic mode of cell death.
Collapse
Affiliation(s)
- Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India
| | - Pradyot Kumar Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India
| | - Neerupudi Kishore Babu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India.
| |
Collapse
|
3
|
Gutierrez Guarnizo SA, Tikhonova EB, Karamyshev AL, Muskus CE, Karamysheva ZN. Translational reprogramming as a driver of antimony-drug resistance in Leishmania. Nat Commun 2023; 14:2605. [PMID: 37147291 PMCID: PMC10163012 DOI: 10.1038/s41467-023-38221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
Leishmania is a unicellular protozoan that has a limited transcriptional control and mostly uses post-transcriptional regulation of gene expression, although the molecular mechanisms of the process are still poorly understood. Treatments of leishmaniasis, pathologies associated with Leishmania infections, are limited due to drug resistance. Here, we report dramatic differences in mRNA translation in antimony drug-resistant and sensitive strains at the full translatome level. The major differences (2431 differentially translated transcripts) were demonstrated in the absence of the drug pressure supporting that complex preemptive adaptations are needed to efficiently compensate for the loss of biological fitness once they are exposed to the antimony. In contrast, drug-resistant parasites exposed to antimony activated a highly selective translation of only 156 transcripts. This selective mRNA translation is associated with surface protein rearrangement, optimized energy metabolism, amastins upregulation, and improved antioxidant response. We propose a novel model that establishes translational control as a major driver of antimony-resistant phenotypes in Leishmania.
Collapse
Affiliation(s)
- Sneider Alexander Gutierrez Guarnizo
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
- Programa de Estudio y Control de Enfermedades Tropicales, Universidad de Antioquia. Medellín, Medellín, 050010, Colombia
| | - Elena B Tikhonova
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| | - Carlos E Muskus
- Programa de Estudio y Control de Enfermedades Tropicales, Universidad de Antioquia. Medellín, Medellín, 050010, Colombia.
| | | |
Collapse
|
4
|
Ghosh S, Kumar V, Verma A, Sharma T, Pradhan D, Selvapandiyan A, Salotra P, Singh R. Genome-wide analysis reveals allelic variation and chromosome copy number variation in paromomycin-resistant Leishmania donovani. Parasitol Res 2022; 121:3121-3132. [PMID: 36056959 DOI: 10.1007/s00436-022-07645-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
In the absence of adequate diagnosis and treatment, leishmaniasis remains a major public health concern on a global scale. Drug resistance remains a key obstacle in controlling and eliminating visceral leishmaniasis. The therapeutic gap due to lack of target-specific medicine and vaccine can be minimized by obtaining parasite's genomic information. This study compared whole-genome sequence of paromomycin-resistant parasite (K133PMM) developed through in vitro adaptation and selection with sensitive Leishmania clinical isolate (K133WT). We found a large number of upstream and intergenic gene variations in K133PMM. There were 259 single nucleotide polymorphisms (SNPs), 187 insertion-deletion (InDels), and 546 copy number variations (CNVs) identified. Most of the genomic variations were found in the gene's upstream and non-coding regions. Ploidy estimation revealed chromosome 5 in tetrasomy and 6, 9, and 12 in trisomy, uniquely in K133PMM. These contain the genes for protein degradation, parasite motility, autophagy, cell cycle maintenance, and drug efflux membrane transporters. Furthermore, we also observed reduction in ploidy of chromosomes 15, 20, and 23, in the resistant parasite containing mostly the genes for hypothetical proteins and membrane transporters. We chronicled correlated genomic conversion and aneuploidy in parasites and hypothesize that this led to rapid evolutionary changes in response to drug induced pressure, which causes them to become resistant.
Collapse
Affiliation(s)
- Sushmita Ghosh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.,Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Vinay Kumar
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Aditya Verma
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Tanya Sharma
- ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi, 110029, India
| | - Dibyabhaba Pradhan
- ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi, 110029, India
| | | | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.
| |
Collapse
|
5
|
Transcriptome Analysis of Intracellular Amastigotes of Clinical Leishmania infantum Lines from Therapeutic Failure Patients after Infection of Human Macrophages. Microorganisms 2022; 10:microorganisms10071304. [PMID: 35889023 PMCID: PMC9324091 DOI: 10.3390/microorganisms10071304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Leishmaniasis is considered to be one of the most neglected tropical diseases affecting humans and animals around the world. Due to the absence of an effective vaccine, current treatment is based on chemotherapy. However, the continuous appearance of drug resistance and therapeutic failure (TF) lead to an early obsolescence of treatments. Identification of the factors that contribute to TF and drug resistance in leishmaniasis will constitute a useful tool for establishing future strategies to control this disease. In this manuscript, we evaluated the transcriptomic changes in the intracellular amastigotes of the Leishmania infantum parasites isolated from patients with leishmaniasis and TF at 96 h post-infection of THP-1 cells. The adaptation of the parasites to their new environment leads to expression alterations in the genes involved mainly in the transport through cell membranes, energy and redox metabolism, and detoxification. Specifically, the gene that codes for the prostaglandin f2α synthase seems to be relevant in the pathogenicity and TF since it appears substantially upregulated in all the L. infantum lines. Overall, our results show that at the late infection timepoint, the transcriptome of the parasites undergoes significant changes that probably improve the survival of the Leishmania lines in the host cells, contributing to the TF phenotype as well as drug therapy evasion.
Collapse
|
6
|
Kumari A, Jaiswal T, Kumar V, Hura N, Kumar G, Babu NK, Acharya A, Roy PK, Guchhait SK, Singh S. Identification of 2-arylquinazolines with alkyl-polyamine motifs as potent antileishmanial agents: synthesis and biological evaluation studies. RSC Med Chem 2022; 13:320-326. [PMID: 35434631 PMCID: PMC8942235 DOI: 10.1039/d1md00336d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/04/2022] [Indexed: 11/19/2023] Open
Abstract
2-Arylquinazolines with a range of alkyl polyamines as side chain/ring functional motifs at the 4th-position were considered for antileishmanial study with the rationale that related heterocyclic scaffolds and polyamine functionalities are present in drugs, clinical trial agents, natural products and anti-parasitic/leishmanial agents. Synthesis involves construction of the 2-arylquinazolin-4-one ring and deoxyamination via deoxychlorination followed by SNAr-based amination or a methodology of SNAr-deoxyamination driven by BOP-mediated hydroxyl-activation. Various alkyl-polyamines important for activities were incorporated. A total of 26 compounds were prepared and screened against Leishmania donovani (Ld) promastigote cells using the MTT assay. Most of the investigated series of compounds showed characteristic leishmanicidal properties. Several compounds showed pronounced leishmanicidal activities (IC50: 5-6.5 μM) with higher efficiency than the antileishmanial drug miltefosine (IC50: 10.5 μM), and relatively less cytotoxicity to macrophage host cells (SI: 9.27-13.5) compared to miltefosine (SI: 3.42). Important pharmacophoric skeletons were identified.
Collapse
Affiliation(s)
- Anjila Kumari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research S.A.S. Nagar 160062 India
| | - Tara Jaiswal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research S.A.S. Nagar 160062 India
| | - Vinay Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research S.A.S. Nagar 160062 India
| | - Neha Hura
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research S.A.S. Nagar 160062 India
| | - Gulshan Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research S.A.S. Nagar 160062 India
| | - Neerupudi Kishore Babu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research S.A.S. Nagar 160062 India
| | - Ayan Acharya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research S.A.S. Nagar 160062 India
| | - Pradyot K Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research S.A.S. Nagar 160062 India
| | - Sankar K Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research S.A.S. Nagar 160062 India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research S.A.S. Nagar 160062 India
| |
Collapse
|
7
|
|
8
|
Medina J, Cruz-Saavedra L, Patiño LH, Muñoz M, Ramírez JD. Comparative analysis of the transcriptional responses of five Leishmania species to trivalent antimony. Parasit Vectors 2021; 14:419. [PMID: 34419127 PMCID: PMC8380399 DOI: 10.1186/s13071-021-04915-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leishmaniasis is a neglected tropical disease caused by several species of Leishmania. The resistance phenotype of these parasites depends on the characteristics of each species, which contributes to increased therapeutic failures. Understanding the mechanism used by the parasite to survive under treatment pressure in order to identify potential common and specific therapeutic targets is essential for the control of leishmaniasis. The aim of this study was to investigate the expression profiles and potential shared and specific resistance markers of the main Leishmania species of medical importance [subgenus L. (Leishmania): L. donovani, L. infantum and L. amazonensis; subgenus L. (Viannia): L. panamensis and L. braziliensis)] resistant and sensitive to trivalent stibogluconate (SbIII). METHODS We conducted comparative analysis of the transcriptomic profiles (only coding sequences) of lines with experimentally induced resistance to SbIII from biological replicates of five Leishmania species available in the databases of four articles based on ortholog attribution. Simultaneously, we carried out functional analysis of ontology and reconstruction of metabolic pathways of the resulting differentially expressed genes (DEGs). RESULTS Resistant lines for each species had differential responses in metabolic processes, compound binding, and membrane components concerning their sensitive counterpart. One hundred and thirty-nine metabolic pathways were found, with the three main pathways comprising cysteine and methionine metabolism, glycolysis, and the ribosome. Differentially expressed orthologous genes assigned to species-specific responses predominated, with 899 self-genes. No differentially expressed genes were found in common among the five species. Two common upregulated orthologous genes were found among four species (L. donovani, L. braziliensis, L. amazonensis, and L. panamensis) related to an RNA-binding protein and the NAD(P)H cytochrome-B5-oxidoreductase complex, associated with transcriptional control and de novo synthesis of linoleic acid, critical mechanisms in resistance to antimonials. CONCLUSION Herein, we identified potential species-specific genes related to resistance to SbIII. Therefore, we suggest that future studies consider a treatment scheme that is species-specific. Despite the limitations of our study, this is the first approach toward unraveling the pan-genus genetic mechanisms of resistance in leishmaniasis.
Collapse
Affiliation(s)
- Julián Medina
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
9
|
Hendrickx S, Reis-Cunha JL, Forrester S, Jeffares DC, Caljon G. Experimental Selection of Paromomycin Resistance in Leishmania donovani Amastigotes Induces Variable Genomic Polymorphisms. Microorganisms 2021; 9:microorganisms9081546. [PMID: 34442625 PMCID: PMC8398221 DOI: 10.3390/microorganisms9081546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023] Open
Abstract
The relatively high post-treatment relapse rates of paromomycin (PMM) in visceral leishmaniasis treatment and the swift emergence of experimental drug resistance challenge its broad application and urge for rational use and monitoring of resistance. However, no causal molecular mechanisms to Leishmania PMM resistance have been identified so far. To gain insights into potential resistance mechanisms, twelve experimentally selected Leishmania donovani clonal lines and the non-cloned preselection population, with variable degrees of PMM resistance, were subjected to whole genome sequencing. To identify genomic variations potentially associated with resistance, SNPs, Indels, chromosomal somy and gene copy number variations were compared between the different parasite lines. A total of 11 short nucleotide variations and the copy number alterations in 39 genes were correlated to PMM resistance. Some of the identified genes are involved in transcription, translation and protein turn-over (transcription elongation factor-like protein, RNA-binding protein, ribosomal protein L1a, 60S ribosomal protein L6, eukaryotic translation initiation factor 4E-1, proteasome regulatory non-ATP-ase subunit 3), virulence (major surface protease gp63, protein-tyrosine phosphatase 1-like protein), mitochondrial function (ADP/ATP mitochondrial carrier-like protein), signaling (phosphatidylinositol 3-related kinase, protein kinase putative and protein-tyrosine phosphatase 1-like protein) and vesicular trafficking (ras-related protein RAB1). These results indicate that, in Leishmania, the aminoglycoside PMM affects protein translational processes and underlines the complex and probably multifactorial origin of resistance.
Collapse
Affiliation(s)
- Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Antwerp, Belgium;
| | - João Luís Reis-Cunha
- Department of Biology and York Biomedical Research Institute, University of York, York YO31 5DD, UK; (J.L.R.-C.); (S.F.)
| | - Sarah Forrester
- Department of Biology and York Biomedical Research Institute, University of York, York YO31 5DD, UK; (J.L.R.-C.); (S.F.)
| | - Daniel C. Jeffares
- Department of Biology and York Biomedical Research Institute, University of York, York YO31 5DD, UK; (J.L.R.-C.); (S.F.)
- Correspondence: (D.C.J.); (G.C.); Tel.: +32-3-265-26-01 (G.C.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Antwerp, Belgium;
- Correspondence: (D.C.J.); (G.C.); Tel.: +32-3-265-26-01 (G.C.)
| |
Collapse
|
10
|
Freitas-Mesquita AL, Dos-Santos ALA, Meyer-Fernandes JR. Involvement of Leishmania Phosphatases in Parasite Biology and Pathogeny. Front Cell Infect Microbiol 2021; 11:633146. [PMID: 33968798 PMCID: PMC8100340 DOI: 10.3389/fcimb.2021.633146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
In the Leishmania lifecycle, the motile promastigote form is transmitted from the sand fly vector to a mammalian host during a blood meal. Inside vertebrate host macrophages, the parasites can differentiate into the amastigote form and multiply, causing leishmaniasis, one of the most significant neglected tropical diseases. Leishmania parasites face different conditions throughout their development inside sand flies. Once in the mammalian host, the parasites have to overcome the microbicide repertoire of the cells of the immune system to successfully establish the infection. In this context, the expression of protein phosphatases is of particular interest. Several members of the serine/threonine-specific protein phosphatase (STP), protein tyrosine phosphatase (PTP), and histidine acid phosphatase (HAcP) families have been described in different Leishmania species. Although their physiological roles have not been fully elucidated, many studies suggest they have an involvement with parasite biology and pathogeny. Phosphatases play a role in adaptation to nutrient starvation during parasite passage through the sand fly midgut. They are also important to parasite virulence, mainly due to the modulation of host cytokine production and impairment of the microbiocidal potential of macrophages. Furthermore, recent whole-genome expression analyses have shown that different phosphatases are upregulated in metacyclic promastigotes, the infective form of the mammalian host. Leishmania phosphatases are also upregulated in drug-resistant strains, probably due to the increase in drug efflux related to the activation of ABC transporters. Throughout this review, we will describe the physiological roles that have been attributed to Leishmania endogenous phosphatases, including their involvement in the adaptation, survival, and proliferation of the parasites inside their hosts.
Collapse
Affiliation(s)
- Anita Leocadio Freitas-Mesquita
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz Araújo Dos-Santos
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Ghosh S, Verma A, Kumar V, Pradhan D, Selvapandiyan A, Salotra P, Singh R. Genomic and Transcriptomic Analysis for Identification of Genes and Interlinked Pathways Mediating Artemisinin Resistance in Leishmania donovani. Genes (Basel) 2020; 11:E1362. [PMID: 33213096 PMCID: PMC7698566 DOI: 10.3390/genes11111362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022] Open
Abstract
Current therapy for visceral leishmaniasis (VL), compromised by drug resistance, toxicity, and high cost, demands for more effective, safer, and low-cost drugs. Artemisinin has been found to be an effectual drug alternative in experimental models of leishmaniasis. Comparative genome and transcriptome analysis of in vitro-adapted artesunate-resistant (K133AS-R) and -sensitive wild-type (K133WT) Leishmania donovani parasites was carried out using next-generation sequencing and single-color DNA microarray technology, respectively, to identify genes and interlinked pathways contributing to drug resistance. Whole-genome sequence analysis of K133WT vs. K133AS-R parasites revealed substantial variation among the two and identified 240 single nucleotide polymorphisms (SNPs), 237 insertion deletions (InDels), 616 copy number variations (CNVs) (377 deletions and 239 duplications), and trisomy of chromosome 12 in K133AS-R parasites. Transcriptome analysis revealed differential expression of 208 genes (fold change ≥ 2) in K133AS-R parasites. Functional categorization and analysis of modulated genes of interlinked pathways pointed out plausible adaptations in K133AS-R parasites, such as (i) a dependency on lipid and amino acid metabolism for generating energy, (ii) reduced DNA and protein synthesis leading to parasites in the quiescence state, and (iii) active drug efflux. The upregulated expression of cathepsin-L like protease, amastin-like surface protein, and amino acid transporter and downregulated expression of the gene encoding ABCG2, pteridine receptor, adenylatecyclase-type receptor, phosphoaceylglucosamine mutase, and certain hypothetical proteins are concordant with genomic alterations suggesting their potential role in drug resistance. The study provided an understanding of the molecular basis linked to artemisinin resistance in Leishmania parasites, which may be advantageous for safeguarding this drug for future use.
Collapse
Affiliation(s)
- Sushmita Ghosh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India; (S.G.); (A.V.); (V.K.); (P.S.)
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India;
| | - Aditya Verma
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India; (S.G.); (A.V.); (V.K.); (P.S.)
| | - Vinay Kumar
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India; (S.G.); (A.V.); (V.K.); (P.S.)
| | - Dibyabhaba Pradhan
- ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi 110029, India;
| | | | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India; (S.G.); (A.V.); (V.K.); (P.S.)
| | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India; (S.G.); (A.V.); (V.K.); (P.S.)
| |
Collapse
|
12
|
High Throughput Approaches to Unravel the Mechanism of Action of a New Vanadium-Based Compound against Trypanosoma cruzi. Bioinorg Chem Appl 2020; 2020:1634270. [PMID: 32351549 PMCID: PMC7171612 DOI: 10.1155/2020/1634270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022] Open
Abstract
Treatment for Chagas disease, a parasitosis caused by Trypanosoma cruzi, has always been based on two drugs, nifurtimox and benznidazole, despite the toxic side effects described after prolonged prescription. In this work, we study a new prospective antitrypanosomal drug based on vanadium, here named VIVO(5Brsal)(aminophen). We found a good IC50 value, (3.76 ± 0.08) μM, on CL Brener epimastigotes. The analysis of cell death mechanism allowed us to rule out the implication of a mechanism based on early apoptosis or necrosis. Recovery assays revealed a trypanostatic effect, accompanied by cell shape and motility alterations. An uptake mostly associated with the insoluble fraction of the parasites was deduced through vanadium determinations. Concordantly, no drastic changes of the parasite transcriptome were detected after 6 h of treatment. Instead, proteomic analysis uncovered the modulation of proteins involved in different processes such as energy and redox metabolism, transport systems, detoxifying pathways, ribosomal protein synthesis, and proteasome protein degradation. Overall, the results here presented lead us to propose that VIVO(5Brsal)(aminophen) exerts a trypanostatic effect on T. cruzi affecting parasite insoluble proteins.
Collapse
|
13
|
Verma A, Nayek A, Kumar A, Singh R, Salotra P. Elucidation of role of an acetyltransferase like protein in paromomycin resistance in Leishmania donovani using in silico and in vitro approaches. J Biomol Struct Dyn 2019; 38:4449-4460. [PMID: 31625467 DOI: 10.1080/07391102.2019.1682674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Paromomycin, an aminoglycoside antibiotic, is an effective treatment for VL (visceral leishmaniasis) in India. The modification of aminoglycoside antibiotics by enzymes such as aminoglycoside acetyltransferases is the predominant mechanism of resistance to antibiotics in bacterial system. In the present study, we identified and characterized LdATLP (an acetyltransferase-like protein) and elucidated its role in paromomycin resistance in Leishmania donovani. Gene encoding LdATLP was consistently up-regulated (>2fold) in three distinct paromomycin resistant in comparison with sensitive parasites, although the gene sequence was identical in the two. In silico analysis revealed that LdATLP consisted of conserved GNAT (GCN5-related N-Acetyltransferase) domain which is characteristic of aminoglycoside N-acetyltransferases. Evolutionary relationship among LdATLP of Leishmania and aminoglycoside acetyltransferases of bacteria was established by phylogenetic analysis. The 3D structure of LdATLP, predicted by ab-initio modeling, constituted 6 α-helices and 6 β-sheets. A few residues, such as R175, R177, E196, R197, V198, V200, K202, R205, C206, D208, G210, R211, R215, A234, S237, S238, K239, D240, F241 and Y242 of GNAT domain were predicted to be present at active site. Molecular docking of LdATLP with paromomycin or indolicidin (broad spectrum inhibitor of aminoglycoside modifying enzymes), followed by molecular dynamics simulation of docked complex suggested that both paromomycin and indolicidin bind to LdATLP with comparable free energy of binding. In vitro studies revealed that in the presence of indolicidin, paromomycin resistant parasites exhibited reversion of phenotype into sensitive parasites with marked increase in paromomycin susceptibility, suggesting the role of LdATLP in paromomycin resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditya Verma
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India.,Faculty of Health and Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Arnab Nayek
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Amit Kumar
- ICMR Computational Genomics Center, Division of ISRM, ICMR, New Delhi, India
| | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| |
Collapse
|
14
|
Identifying miltefosine-resistant key genes in protein-protein interactions network and experimental verification in Iranian Leishmania major. Mol Biol Rep 2019; 46:5371-5388. [PMID: 31385238 DOI: 10.1007/s11033-019-04992-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/19/2019] [Indexed: 12/23/2022]
Abstract
Drug resistance is a complex phenomenon during leishmaniasis chemotherapy. In this study, the genes and pathways involved in miltefosine (MIL)-resistant Leishmania were identified using microarray data and in silico approaches. GSE30685 and GSE45496 were obtained from GEO database and analyzed with GEO2R tool to identify genes involved in MIL-resistant Leishmania. 177 differentially expressed genes (DEGs) were selected from these GSEs, which about half of them were uncharacterized/hypothetical proteins. The interactions between DEGs were investigated using STRING database and protein-protein interaction (PPI) networks. Five hub nodes were found in the PPI network. The gene ontology (GO) analysis of the resulting network revealed that DNA replication (GO:0006260) and ATP hydrolysis coupled proton transport (GO:0015991) were the most enriched GO term. Iranian MIL-resistant Leishmania major (L. major) parasites were generated by exposure of wild-type isolates to the increasing concentrations of MIL over a period of 5 months. Proof of mRNA expression levels of the obtained hub genes was assessed in Iranian wild-type and acquired resistant L. major parasites by real-time PCR. A significant higher expression level of LDBPK_150170 (encoding protein phosphatase 2C, PP2C), was only observed in Iranian L. major parasites resistance to MIL. Moreover, the RT-PCR results showed that the expression of metacyclic marker (small hydrophilic endoplasmic reticulum-associated protein, SHERP) and MIL-resistant marker (Leishmania MIL-transporter, LMT) was significantly increased and decreased, respectively, in Iranian MIL-resistant L. major parasites. Taken together, these data suggested that PP2C as well as SHERP and LMT genes may be prospective targets for the treatment of MIL-resistant Leishmania.
Collapse
|
15
|
Verma A, Ghosh S, Salotra P, Singh R. Artemisinin-resistant Leishmania parasite modulates host cell defense mechanism and exhibits altered expression of unfolded protein response genes. Parasitol Res 2019; 118:2705-2713. [PMID: 31359134 DOI: 10.1007/s00436-019-06404-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 07/19/2019] [Indexed: 02/01/2023]
Abstract
Artemisinin, extracted from a medicinal herb Artemisia annua, is widely used to treat malaria and has shown potent anticancer activity. Artemisinin has been found to be effective against experimental visceral and cutaneous leishmaniasis. Despite extensive research to understand the complex mechanism of resistance to artemisinin, several questions remain unanswered. The artesunate (ART)-resistant line of Leishmania donovani was selected and cellular mechanisms associated with resistance to artemisinin were investigated. ART-resistant (AS-R) parasites showed reduced susceptibility towards ART both at promastigote and amastigote stage compared with ART sensitive (WT) parasites. WT and AS-R parasites were both more susceptible to ART at the early log phase of growth compared with late log phase. AS-R parasites were more infective to the host macrophages (p < 0.05). Evaluation of parasites' tolerance towards host microbicidal mechanisms revealed that AS-R parasites were more tolerant to complement-mediated lysis and nitrosative stress. ROS levels were modulated in presence of ART in AS-R parasites infected macrophages. Interestingly, infection of macrophages by AS-R parasites led to modulated levels of host interleukins, IL-2 and IL-10, in addition to nitric oxide. Additionally, AS-R parasites showed upregulated expression of genes of unfolded protein response pathway including methyltransferase domain-containing protein (HSP40) and flagellar attachment zone protein (prefoldin), that are reported to be associated with ART resistance in Plasmodium falciparum malaria. This study presents in vitro model of artemisinin-resistant Leishmania parasite and cellular mechanisms associated with ART resistance in Leishmania.
Collapse
Affiliation(s)
- Aditya Verma
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Sushmita Ghosh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.
| |
Collapse
|
16
|
Complete assembly of the Leishmania donovani (HU3 strain) genome and transcriptome annotation. Sci Rep 2019; 9:6127. [PMID: 30992521 PMCID: PMC6467909 DOI: 10.1038/s41598-019-42511-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/02/2019] [Indexed: 01/05/2023] Open
Abstract
Leishmania donovani is a unicellular parasite that causes visceral leishmaniasis, a fatal disease in humans. In this study, a complete assembly of the genome of L. donovani is provided. Apart from being the first published genome of this strain (HU3), this constitutes the best assembly for an L. donovani genome attained to date. The use of a combination of sequencing platforms enabled to assemble, without any sequence gap, the 36 chromosomes for this species. Additionally, based on this assembly and using RNA-seq reads derived from poly-A + RNA, the transcriptome for this species, not yet available, was delineated. Alternative SL addition sites and heterogeneity in the poly-A addition sites were commonly observed for most of the genes. After a complete annotation of the transcriptome, 2,410 novel transcripts were defined. Additionally, the relative expression for all transcripts present in the promastigote stage was determined. Events of cis-splicing have been documented to occur during the maturation of the transcripts derived from genes LDHU3_07.0430 and LDHU3_29.3990. The complete genome assembly and the availability of the gene models (including annotation of untranslated regions) are important pieces to understand how differential gene expression occurs in this pathogen, and to decipher phenotypic peculiarities like tissue tropism, clinical disease, and drug susceptibility.
Collapse
|