1
|
Gangwar U, Choudhury H, Shameem R, Singh Y, Bansal A. Recent development in CRISPR-Cas systems for human protozoan diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:109-160. [PMID: 39266180 DOI: 10.1016/bs.pmbts.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Protozoan parasitic diseases pose a substantial global health burden. Understanding the pathogenesis of these diseases is crucial for developing intervention strategies in the form of vaccine and drugs. Manipulating the parasite's genome is essential for gaining insights into its fundamental biology. Traditional genomic manipulation methods rely on stochastic homologous recombination events, which necessitates months of maintaining the cultured parasites under drug pressure to generate desired transgenics. The introduction of mega-nucleases (MNs), zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs) greatly reduced the time required for obtaining a desired modification. However, there is a complexity associated with the design of these nucleases. CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated proteins) is the latest gene editing tool that provides an efficient and convenient method for precise genomic manipulations in protozoan parasites. In this chapter, we have elaborated various strategies that have been adopted for the use of CRISPR-Cas9 system in Plasmodium, Leishmania and Trypanosoma. We have also discussed various applications of CRISPR-Cas9 pertaining to understanding of the parasite biology, development of drug resistance mechanism, gene drive and diagnosis of the infection.
Collapse
Affiliation(s)
- Utkarsh Gangwar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Risha Shameem
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Yashi Singh
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
2
|
Queffeulou M, Leprohon P, Fernandez-Prada C, Ouellette M, Mejía-Jaramillo AM. CRISPR-Cas9 high-throughput screening to study drug resistance in Leishmania infantum. mBio 2024; 15:e0047724. [PMID: 38864609 PMCID: PMC11253630 DOI: 10.1128/mbio.00477-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024] Open
Abstract
Parasites of the genus Leishmania pose a global health threat with limited treatment options. New drugs are urgently needed, and genomic screens have the potential to accelerate target discovery, mode of action, and resistance mechanisms against these new drugs. We describe here our effort in developing a genome-wide CRISPR-Cas9 screen in Leishmania, an organism lacking a functional nonhomologous end joining system that must rely on microhomology-mediated end joining, single-strand annealing, or homologous recombination for repairing Cas9-induced double-stranded DNA breaks. A new vector for cloning and expressing single guide RNAs (sgRNAs) was designed and proven to be effective in a small pilot project while enriching specific sgRNAs during drug selection. We then developed a whole-genome library of 49,754 sgRNAs, targeting all the genes of Leishmania infantum. This library was transfected in L. infantum expressing Cas9, and these cells were selected for resistance to two antileishmanials, miltefosine and amphotericin B. The sgRNAs the most enriched in the miltefosine screen targeted the miltefosine transporter gene, but sgRNAs targeting genes coding for a RING-variant protein and a transmembrane protein were also enriched. The sgRNAs the most enriched by amphotericin B targeted the sterol 24 C methyltransferase genes and a hypothetical gene. Through gene disruption experiments, we proved that loss of function of these genes was associated with resistance. This study describes the feasibility of carrying out whole-genome CRISPR-Cas9 screens in Leishmania provided that a strong selective pressure is applied. Such a screen can be used for accelerating the development of urgently needed antileishmanial drugs.IMPORTANCELeishmaniasis, a global health threat, lacks adequate treatment options and drug resistance exacerbates the challenge. This study introduces a CRISPR-Cas9 screening approach in Leishmania infantum, unraveling mechanisms of drug resistance at a genome-wide scale. Our screen was applied against two main antileishmanial drugs, and guides were enriched upon drug selection. These guides targeted known and new targets, hence validating the use of this screen against Leishmania. This strategy provides a powerful tool to expedite drug discovery as well as potential therapeutic targets against this neglected tropical disease.
Collapse
Affiliation(s)
- Marine Queffeulou
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Christopher Fernandez-Prada
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Ana María Mejía-Jaramillo
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
3
|
Abdi Ghavidel A, Aghamiri S, Raee P, Mohammadi-Yeganeh S, Noori E, Bandehpour M, Kazemi B, Jajarmi V. Recent Advances in CRISPR/Cas9-Mediated Genome Editing in Leishmania Strains. Acta Parasitol 2024; 69:121-134. [PMID: 38127288 DOI: 10.1007/s11686-023-00756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Genome manipulation of Leishmania species and the creation of modified strains are widely employed strategies for various purposes, including gene function studies, the development of live attenuated vaccines, and the engineering of host cells for protein production. OBJECTIVE Despite the introduction of novel manipulation approaches like CRISPR/Cas9 technology with significant advancements in recent years, the development of a reliable protocol for efficiently and precisely altering the genes of Leishmania strains remains a challenging endeavor. Following the successful adaptation of the CRISPR/Cas9 system for higher eukaryotic cells, several research groups have endeavored to apply this system to manipulate the genome of Leishmania. RESULTS Despite the substantial differences between Leishmania and higher eukaryotes, the CRISPR/Cas9 system has been effectively tested and applied in Leishmania. CONCLUSION: This comprehensive review summarizes all the CRISPR/Cas9 systems that have been employed in Leishmania, providing details on their methods and the expression systems for Cas9 and gRNA. The review also explores the various applications of the CRISPR system in Leishmania, including the deletion of multicopy gene families, the development of the Leishmania vaccine, complete gene deletions, investigations into chromosomal translocations, protein tagging, gene replacement, large-scale gene knockout, genome editing through cytosine base replacement, and its innovative use in the detection of Leishmania. In addition, the review offers an up-to-date overview of all double-strand break repair mechanisms in Leishmania.
Collapse
Affiliation(s)
- Afshin Abdi Ghavidel
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Effat Noori
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Jajarmi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
da Silva Lira Filho A, Lafleur A, Marcet-Palacios M, Olivier M. Identification of potential novel proteomic markers of Leishmania spp.-derived exosomes. Front Cell Infect Microbiol 2024; 14:1354636. [PMID: 38440791 PMCID: PMC10910114 DOI: 10.3389/fcimb.2024.1354636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Extracellular vesicles (EVs) are heterogenous cell-derived membrane-bound structures which can be subdivided into three distinct classes according to distinct morphological characteristics, cellular origins, and functions. Small EVs, or exosomes, can be produced by the protozoan parasite Leishmania through the evolutionarily conserved ESCRT pathway, and act as effectors of virulence and drivers of pathogenesis within mammalian hosts. Techniques for the identification of EVs of non-mammalian origin, however, remain inaccurate in comparison to their well-characterized mammalian counterparts. Thus, we still lack reliable and specific markers for Leishmania-derived exosomes, which poses a significant challenge to the field. Methods Herein, we utilized serial differential ultracentrifugation to separate Leishmania-derived EV populations into three distinct fractions. Nanoparticle tracking analysis and transmission electron microscopy were used to validate their morphological characteristics, and bioinformatic analysis of LC-MS/MS proteomics corroborated cellular origins and function. Discussion Proteomic data indicated potential novel proteic markers of Leishmania-derived exosomes, including proteins involved in endosomal machinery and the ESCRT pathway, as well as the parasitic phosphatase PRL-1. Further investigation is required to determine the specificity and sensitivity of these markers.
Collapse
Affiliation(s)
- Alonso da Silva Lira Filho
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Andrea Lafleur
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Marcelo Marcet-Palacios
- Department of Medicine, Alberta Respiratory Centre, University of Alberta, Edmonton, AB, Canada
- Department of Biological Sciences Technology, Laboratory Research and Biotechnology, Northern Alberta Institute of Technology, Edmonton, AB, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
5
|
Bernardo L, Ibarra-Meneses AV, Douanne N, Corbeil A, Solana JC, Beaudry F, Carrillo E, Moreno J, Fernandez-Prada C. Potential selection of antimony and methotrexate cross-resistance in Leishmania infantum circulating strains. PLoS Negl Trop Dis 2024; 18:e0012015. [PMID: 38422164 DOI: 10.1371/journal.pntd.0012015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/12/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) resolution depends on a wide range of factors, including the instauration of an effective treatment coupled to a functional host immune system. Patients with a depressed immune system, like the ones receiving methotrexate (MTX), are at higher risk of developing VL and refusing antileishmanial drugs. Moreover, the alarmingly growing levels of antimicrobial resistance, especially in endemic areas, contribute to the increasing the burden of this complex zoonotic disease. PRINCIPAL FINDINGS To understand the potential links between immunosuppressants and antileishmanial drugs, we have studied the interaction of antimony (Sb) and MTX in a Leishmania infantum reference strain (LiWT) and in two L. infantum clinical strains (LiFS-A and LiFS-B) naturally circulating in non-treated VL dogs in Spain. The LiFS-A strain was isolated before Sb treatment in a case that responded positively to the treatment, while the LiFS-B strain was recovered from a dog before Sb treatment, with the dog later relapsing after the treatment. Our results show that, exposure to Sb or MTX leads to an increase in the production of reactive oxygen species (ROS) in LiWT which correlates with a sensitive phenotype against both drugs in promastigotes and intracellular amastigotes. LiFS-A was sensitive against Sb but resistant against MTX, displaying high levels of protection against ROS when exposed to MTX. LiFS-B was resistant to both drugs. Evaluation of the melting proteomes of the two LiFS, in the presence and absence of Sb and MTX, showed a differential enrichment of direct and indirect targets for both drugs, including common and unique pathways. CONCLUSION Our results show the potential selection of Sb-MTX cross-resistant parasites in the field, pointing to the possibility to undermine antileishmanial treatment of those patients being treated with immunosuppressant drugs in Leishmania endemic areas.
Collapse
Affiliation(s)
- Lorena Bernardo
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Ana Victoria Ibarra-Meneses
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Noelie Douanne
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Audrey Corbeil
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Jose Carlos Solana
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Francis Beaudry
- Département de Biomédecine, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Quebec, Canada
| | - Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Christopher Fernandez-Prada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
6
|
Khandibharad S, Singh S. Synthetic biology for combating leishmaniasis. Front Microbiol 2024; 15:1338749. [PMID: 38362504 PMCID: PMC10867266 DOI: 10.3389/fmicb.2024.1338749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the Leishmania genus. Despite the efforts to control and treat the disease, it still remains a major public health problem in many countries. Synthetic biology is a rapidly evolving interdisciplinary field that combines biology, engineering, and computer science to design and construct novel biological systems. In recent years, synthetic biology approaches have shown great promise for developing new and effective strategies to combat leishmaniasis. In this perspective, we summarize the recent advances in the use of synthetic biology for the development of vaccines, diagnostic tools, and novel therapeutics for leishmaniasis.
Collapse
Affiliation(s)
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, Pune, India
| |
Collapse
|
7
|
Gupta R, Singh M, Pathania R. Chemical genetic approaches for the discovery of bacterial cell wall inhibitors. RSC Med Chem 2023; 14:2125-2154. [PMID: 37974958 PMCID: PMC10650376 DOI: 10.1039/d3md00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Antimicrobial resistance (AMR) in bacterial pathogens is a worldwide health issue. The innovation gap in discovering new antibiotics has remained a significant hurdle in combating the AMR problem. Currently, antibiotics target various vital components of the bacterial cell envelope, nucleic acid and protein biosynthesis machinery and metabolic pathways essential for bacterial survival. The critical role of the bacterial cell envelope in cell morphogenesis and integrity makes it an attractive drug target. While a significant number of in-clinic antibiotics target peptidoglycan biosynthesis, several components of the bacterial cell envelope have been overlooked. This review focuses on various antibacterial targets in the bacterial cell wall and the strategies employed to find their novel inhibitors. This review will further elaborate on combining forward and reverse chemical genetic approaches to discover antibacterials that target the bacterial cell envelope.
Collapse
Affiliation(s)
- Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Mangal Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| |
Collapse
|
8
|
Urán Landaburu L, Didier Garnham M, Agüero F. Targeting trypanosomes: how chemogenomics and artificial intelligence can guide drug discovery. Biochem Soc Trans 2023; 51:195-206. [PMID: 36606702 DOI: 10.1042/bst20220618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
Trypanosomatids are protozoan parasites that cause human and animal neglected diseases. Despite global efforts, effective treatments are still much needed. Phenotypic screens have provided several chemical leads for drug discovery, but the mechanism of action for many of these chemicals is currently unknown. Recently, chemogenomic screens assessing the susceptibility or resistance of parasites carrying genome-wide modifications started to define the mechanism of action of drugs at large scale. In this review, we discuss how genomics is being used for drug discovery in trypanosomatids, how integration of chemical and genomics data from these and other organisms has guided prioritisations of candidate therapeutic targets and additional chemical starting points, and how these data can fuel the expansion of drug discovery pipelines into the era of artificial intelligence.
Collapse
Affiliation(s)
- Lionel Urán Landaburu
- Instituto de Investigaciones Biotecnológicas (IIB), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
- Escuela de Bio y Nanociencias (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| | - Mercedes Didier Garnham
- Instituto de Investigaciones Biotecnológicas (IIB), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
- Escuela de Bio y Nanociencias (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas (IIB), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
- Escuela de Bio y Nanociencias (EByN), Universidad Nacional de San Martín, San Martín, Argentina
| |
Collapse
|
9
|
Abstract
Leishmaniasis (visceral and cutaneous), Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries. Although the situation has improved for human African trypanosomiasis, there remains an urgent need for new medicines to treat leishmaniasis and Chagas disease; the clinical development pipeline is particularly sparse for Chagas disease. In this Review, we describe recent advances in our understanding of the biology of the causative pathogens, particularly from the drug discovery perspective, and we explore the progress that has been made in the development of new drug candidates and the identification of promising molecular targets. We also explore the challenges in developing new clinical candidates and discuss potential solutions to overcome such hurdles.
Collapse
|
10
|
Bigot S, Leprohon P, Vasquez A, Bhadoria R, Skouta R, Ouellette M. Thiophene derivatives activity against the protozoan parasite Leishmania infantum. Int J Parasitol Drugs Drug Resist 2022; 21:13-20. [PMID: 36525934 PMCID: PMC9772499 DOI: 10.1016/j.ijpddr.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022]
Abstract
Treatments against leishmaniasis are limited and the development of new molecules is crucial. One class of developmental drug that has shown activity against the parasite Leishmania are thiophene derivatives. Here we synthetized thirty-eight novel thiophene compounds and characterized their activity and potential for resistance against L. infantum. Half of the molecules had an EC50 in the low micromolar range, the piperidine derivatives being more potent than the tetramethylpyran derivatives. Resistance was challenging to select for, and resistant cells could only be raised against one (GC1-19) of the four most active compounds. Using chemogenomic screens we show that a gene conversion event at the ABCG2 locus as well as the overexpression of a tryparedoxin peroxidase are responsible for a weak but significant resistance to the GC1-19 drug candidate. Together, our results suggest that thiophene is a scaffold of interest for further drug development against leishmaniasis.
Collapse
Affiliation(s)
- Sophia Bigot
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Canada,Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec City, Quebec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Canada,Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec City, Quebec, Canada
| | - Abimael Vasquez
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | - Rohit Bhadoria
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | - Rachid Skouta
- Department of Biology, University of Massachusetts, Amherst, MA, USA,Department of Chemistry, University of Massachusetts, Amherst, MA, USA,Corresponding author. University of Massachusetts Amherst, MA, 01003, USA.
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Canada,Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec City, Quebec, Canada,Corresponding author. Centre de Recherche du CHU Québec, 2705, Boulevard Laurier, Quebec City, Quebec, G1V 4G2, Canada.
| |
Collapse
|
11
|
Dhanya TM, Anjali Krishna G, Savitha DP, Shanty AA, Divya KM, Priya SK, Mohanan PV. A review on the synthesis and biological relevance of benzo[ b]thiophene derivatives. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2145476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- T. M. Dhanya
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala, India
| | - G. Anjali Krishna
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala, India
| | - D. P. Savitha
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala, India
| | - A. A. Shanty
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala, India
- St. Teresa's College, Kochi, Kerala, India
| | - K. M. Divya
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala, India
- Department of Chemistry, NSS College, Cherthala, India
| | - Shenoi K. Priya
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala, India
| | - P. V. Mohanan
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala, India
| |
Collapse
|
12
|
da Silva W, Ribeiro IC, Agripino JDM, da Silva VHF, de Souza LÂ, Oliveira TA, Bressan GC, Vasconcellos RDS, Dumas C, Pelletier J, Sévigny J, Papadopoulou B, Fietto JLR. Leishmania infantum NTPDase1 and NTPDase2 play an important role in infection and nitric oxide production in macrophages. Acta Trop 2022; 237:106732. [DOI: 10.1016/j.actatropica.2022.106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
|
13
|
Ibarra-Meneses AV, Corbeil A, Wagner V, Beaudry F, do Monte-Neto RL, Fernandez-Prada C. Exploring direct and indirect targets of current antileishmanial drugs using a novel thermal proteomics profiling approach. Front Cell Infect Microbiol 2022; 12:954144. [PMID: 35992178 PMCID: PMC9381709 DOI: 10.3389/fcimb.2022.954144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis (VL), caused by Leishmania infantum, is an oft-fatal neglected tropical disease. In the absence of an effective vaccine, the control of leishmaniasis relies exclusively on chemotherapy. Due to the lack of established molecular/genetic markers denoting parasite resistance, clinical treatment failure is often used as an indicator. Antimony-based drugs have been the standard antileishmanial treatment for more than seven decades, leading to major drug resistance in certain regions. Likewise, drug resistance to miltefosine and amphotericin B continues to spread at alarming rates. In consequence, innovative approaches are needed to accelerate the identification of antimicrobial drug targets and resistance mechanisms. To this end, we have implemented a novel approach based on thermal proteome profiling (TPP) to further characterize the mode of action of antileishmanials antimony, miltefosine and amphotericin B, as well as to better understand the mechanisms of drug resistance deployed by Leishmania. Proteins become more resistant to heat-induced denaturation when complexed with a ligand. In this way, we used multiplexed quantitative mass spectrometry-based proteomics to monitor the melting profile of thousands of expressed soluble proteins in WT, antimony-resistant, miltefosine-resistant, and amphotericin B-resistant L. infantum parasites, in the presence (or absence) of the above-mentioned drugs. Bioinformatics analyses were performed, including data normalization, melting profile fitting, and identification of proteins that underwent changes (fold change > 4) caused by complexation with a drug. With this unique approach, we were able to narrow down the regions of the L. infantum proteome that interact with antimony, miltefosine, and amphotericin B; validating previously-identified and unveiling novel drug targets. Moreover, analyses revealed candidate proteins potentially involved in drug resistance. Interestingly, we detected thermal proximity coaggregation for several proteins belonging to the same metabolic pathway (i.e., tryparedoxin peroxidase and aspartate aminotransferase in proteins exposed to antimony), highlighting the importance of these pathways. Collectively, our results could serve as a jumping-off point for the future development of innovative diagnostic tools for the detection and evaluation of antimicrobial-resistant Leishmania populations, as well as open the door for new on-target therapies.
Collapse
Affiliation(s)
- Ana Victoria Ibarra-Meneses
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Audrey Corbeil
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Victoria Wagner
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Francis Beaudry
- Département de Biomédecine, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de recherche sur le cerveau et l’apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
| | - Rubens L. do Monte-Neto
- Biotechnology Applied to Pathogens (BAP) - Instituto René Rachou – Fundação Oswaldo Cruz/Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Christopher Fernandez-Prada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- *Correspondence: Christopher Fernandez-Prada,
| |
Collapse
|
14
|
Mutation Characteristics and Phylogenetic Analysis of Five Leishmania Clinical Isolates. Animals (Basel) 2022; 12:ani12030321. [PMID: 35158645 PMCID: PMC8833617 DOI: 10.3390/ani12030321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Leishmaniasis, a neglected tropical disease, is caused by infection with the Leishmania species, threatening millions of people in approximately 100 endemic countries. The emergence of antimony-resistant Leishmania strains have brought difficulties to the treatment and elimination of leishmaniasis. This study performed genome-wide resequencing and phylogenetic analysis of five isolates from the Leishmania donovani complex, focusing on finding mutations related to antimony resistance and virulence of the newly isolated Leishmania strain L_HCZ in 2016. By combining whole-genome sequencing and whole-genome phylogenetic analysis, Leishmania isolates L_801, L_9044 and L_Liu were identified as Leishmania donovani, and L_HCZ as Leishmania infantum. By discovering genome-wide single-nucleotide polymorphisms and structural variations, we identified mutations of drug resistance-related genes in the antimony-resistant Leishmania isolate L_HCZ. The new Leishmania isolate L_HCZ has strong virulence and strong drug resistance, which should be taken seriously by the relevant health departments and scientific researchers. Abstract Leishmaniasis is a neglected tropical disease threatening millions of people worldwide. The emergence of antimony-resistant Leishmania strains have brought difficulties to the treatment and elimination of leishmaniasis. This study performed genome sequencing, phylogenetic analysis and mutation analysis of five Leishmania clinical isolates, especially the Leishmania strain L_HCZ isolated in 2016, which shows strong virulence and antimony resistance. By phylogenetic analysis, four isolates (L_DD8, L_801, L_Liu and L_9044) were identified as Leishmania donovani, the isolate L_HCZ was identified as Leishmania infantum and the isolate L_DD8 as a standard strain of L.donovani. Genome-wide mutation analysis was applied to identify mutations related to the drug resistance and virulence of the newly isolated L_HCZ. Compared with the other four Leishmania isolates, L_HCZ had the most mutations in genes associated with antimony resistance, including the ABC transporter, ascorbate-dependent peroxidase, gamma–glutamylcysteine synthetase, glucose-6-phosphate 1-dehydrogenase, ATP-binding cassette protein subfamily A and multi-drug resistance protein-like genes. Among the genes associated with virulence, L_HCZ had the most mutations in cysteine peptidase A, cysteine peptidase B, cysteine peptidase C, heat-shock protein 70, gp63, acid phosphatase, kinesin k39, kinesin, phosphoglycan beta 1, amastin-like surface protein and amastin-like proteins. The mutations in L_HCZ might possibly contribute to its antimony resistance and strong virulence in clinical patients. Whole-genome resequencing has exhibited broad application prospects and may be put into clinical use in the future for parasite identifying and epidemiological investigations.
Collapse
|
15
|
Santi AMM, Murta SMF. Impact of Genetic Diversity and Genome Plasticity of Leishmania spp. in Treatment and the Search for Novel Chemotherapeutic Targets. Front Cell Infect Microbiol 2022; 12:826287. [PMID: 35141175 PMCID: PMC8819175 DOI: 10.3389/fcimb.2022.826287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
Leishmaniasis is one of the major public health concerns in Latin America, Africa, Asia, and Europe. The absence of vaccines for human use and the lack of effective vector control programs make chemotherapy the main strategy to control all forms of the disease. However, the high toxicity of available drugs, limited choice of therapeutic agents, and occurrence of drug-resistant parasite strains are the main challenges related to chemotherapy. Currently, only a small number of drugs are available for leishmaniasis treatment, including pentavalent antimonials (SbV), amphotericin B and its formulations, miltefosine, paromomycin sulphate, and pentamidine isethionate. In addition to drug toxicity, therapeutic failure of leishmaniasis is a serious concern. The occurrence of drug-resistant parasites is one of the causes of therapeutic failure and is closely related to the diversity of parasites in this genus. Owing to the enormous plasticity of the genome, resistance can occur by altering different metabolic pathways, demonstrating that resistance mechanisms are multifactorial and extremely complex. Genetic variability and genome plasticity cause not only the available drugs to have limitations, but also make the search for new drugs challenging. Here, we examined the biological characteristics of parasites that hinder drug discovery.
Collapse
|
16
|
Beilstein S, El Phil R, Sahraoui SS, Scapozza L, Kaiser M, Mäser P. Laboratory Selection of Trypanosomatid Pathogens for Drug Resistance. Pharmaceuticals (Basel) 2022; 15:ph15020135. [PMID: 35215248 PMCID: PMC8879015 DOI: 10.3390/ph15020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
The selection of parasites for drug resistance in the laboratory is an approach frequently used to investigate the mode of drug action, estimate the risk of emergence of drug resistance, or develop molecular markers for drug resistance. Here, we focused on the How rather than the Why of laboratory selection, discussing different experimental set-ups based on research examples with Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. The trypanosomatids are particularly well-suited to illustrate different strategies of selecting for drug resistance, since it was with African trypanosomes that Paul Ehrlich performed such an experiment for the first time, more than a century ago. While breakthroughs in reverse genetics and genome editing have greatly facilitated the identification and validation of candidate resistance mutations in the trypanosomatids, the forward selection of drug-resistant mutants still relies on standard in vivo models and in vitro culture systems. Critical questions are: is selection for drug resistance performed in vivo or in vitro? With the mammalian or with the insect stages of the parasites? Under steady pressure or by sudden shock? Is a mutagen used? While there is no bona fide best approach, we think that a methodical consideration of these questions provides a helpful framework for selection of parasites for drug resistance in the laboratory.
Collapse
Affiliation(s)
- Sabina Beilstein
- Department Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; (S.B.); (M.K.)
- Swiss TPH, University of Basel, Petersplatz 1, 4002 Basel, Switzerland
| | - Radhia El Phil
- School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland; (R.E.P.); (S.S.S.); (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Suzanne Sherihan Sahraoui
- School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland; (R.E.P.); (S.S.S.); (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland; (R.E.P.); (S.S.S.); (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Marcel Kaiser
- Department Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; (S.B.); (M.K.)
- Swiss TPH, University of Basel, Petersplatz 1, 4002 Basel, Switzerland
| | - Pascal Mäser
- Department Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; (S.B.); (M.K.)
- Swiss TPH, University of Basel, Petersplatz 1, 4002 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-284-8338
| |
Collapse
|
17
|
Decreased glutamate transport in acivicin resistant Leishmania tarentolae. PLoS Negl Trop Dis 2021; 15:e0010046. [PMID: 34914690 PMCID: PMC8718007 DOI: 10.1371/journal.pntd.0010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/30/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Studies of drug resistance in the protozoan parasites of the genus Leishmania have been helpful in revealing biochemical pathways as potential drug targets. The chlorinated glutamine analogue acivicin has shown good activity against Leishmania cells and was shown to target several enzymes containing amidotransferase domains. We selected a Leishmania tarentolae clone for acivicin resistance. The genome of this resistant strain was sequenced and the gene coding for the amidotransferase domain-containing GMP synthase was found to be amplified. Episomal expression of this gene in wild-type L. tarentolae revealed a modest role in acivicin resistance. The most prominent defect observed in the resistant mutant was reduced uptake of glutamate, and through competition experiments we determined that glutamate and acivicin, but not glutamine, share the same transporter. Several amino acid transporters (AATs) were either deleted or mutated in the resistant cells. Some contributed to the acivicin resistance phenotype although none corresponded to the main glutamate transporter. Through sequence analysis one AAT on chromosome 22 corresponded to the main glutamate transporter. Episomal expression of the gene coding for this transporter in the resistant mutant restored glutamate transport and acivicin susceptibility. Its genetic knockout led to reduced glutamate transport and acivicin resistance. We propose that acivicin binds covalently to this transporter and as such leads to decreased transport of glutamate and acivicin thus leading to acivicin resistance. Studies of drug resistance in the protozoan parasites of the genus Leishmania have been helpful in revealing biochemical pathways as potential drug targets. Here we report on the characterization at the genomics and metabolomics levels of a L. tarentolae strain made resistant to acivicin, an analogue of glutamine with activity against this parasite. We found that resistance to acivicin is accompanied by a reduced uptake and intracellular levels of glutamate and that both are expected to share the same transporter. Through gene overexpression and disruption studies we identified the main amino acid transporter responsible for glutamate uptake.
Collapse
|
18
|
Horn D. Genome-scale RNAi screens in African trypanosomes. Trends Parasitol 2021; 38:160-173. [PMID: 34580035 DOI: 10.1016/j.pt.2021.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022]
Abstract
Genome-scale genetic screens allow researchers to rapidly identify the genes and proteins that impact a particular phenotype of interest. In African trypanosomes, RNA interference (RNAi) knockdown screens have revealed mechanisms underpinning drug resistance, drug transport, prodrug metabolism, quorum sensing, genome replication, and gene expression control. RNAi screening has also been remarkably effective at highlighting promising potential antitrypanosomal drug targets. The first ever RNAi library screen was implemented in African trypanosomes, and genome-scale RNAi screens and other related approaches continue to have a major impact on trypanosomatid research. Here, I review those impacts in terms of both discovery and translation.
Collapse
Affiliation(s)
- David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
19
|
Rosa-Teijeiro C, Wagner V, Corbeil A, d'Annessa I, Leprohon P, do Monte-Neto RL, Fernandez-Prada C. Three different mutations in the DNA topoisomerase 1B in Leishmania infantum contribute to resistance to antitumor drug topotecan. Parasit Vectors 2021; 14:438. [PMID: 34454601 PMCID: PMC8399852 DOI: 10.1186/s13071-021-04947-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/11/2021] [Indexed: 11/30/2022] Open
Abstract
Background The evolution of drug resistance is one of the biggest challenges in leishmaniasis and has prompted the need for new antileishmanial drugs. Repurposing of approved drugs is a faster and very attractive strategy that is gaining supporters worldwide. Different anticancer topoisomerase 1B (TOP1B) inhibitors have shown strong antileishmanial activity and promising selective indices, supporting the potential repurposing of these drugs. However, cancer cells and Leishmania share the ability to become rapidly resistant. The aim of this study was to complete a whole-genome exploration of the effects caused by exposure to topotecan in order to highlight the potential mechanisms deployed by Leishmania to favor its survival in the presence of a TOP1B inhibitor. Methods We used a combination of stepwise drug resistance selection, whole-genome sequencing, functional validation, and theoretical approaches to explore the propensity of and potential mechanisms deployed by three independent clones of L. infantum to resist the action of TOP1B inhibitor topotecan. Results We demonstrated that L. infantum is capable of becoming resistant to high concentrations of topotecan without impaired growth ability. No gene deletions or amplifications were identified from the next-generation sequencing data in any of the three resistant lines, ruling out the overexpression of efflux pumps as the preferred mechanism of topotecan resistance. We identified three different mutations in the large subunit of the leishmanial TOP1B (Top1BF187Y, Top1BG191A, and Top1BW232R). Overexpression of these mutated alleles in the wild-type background led to high levels of resistance to topotecan. Computational molecular dynamics simulations, in both covalent and non-covalent complexes, showed that these mutations have an effect on the arrangement of the catalytic pentad and on the interaction of these residues with surrounding amino acids and DNA. This altered architecture of the binding pocket results in decreased persistence of topotecan in the ternary complex. Conclusions This work helps elucidate the previously unclear potential mechanisms of topotecan resistance in Leishmania by mutations in the large subunit of TOP1B and provides a valuable clue for the design of improved inhibitors to combat resistance in both leishmaniasis and cancer. Our data highlights the importance of including drug resistance evaluation in drug discovery cascades. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04947-4.
Collapse
Affiliation(s)
- Chloé Rosa-Teijeiro
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Victoria Wagner
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Audrey Corbeil
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Ilda d'Annessa
- Medtronic EMEA, Study and Scientific Solutions, Milan, Italy
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Quebec City, Canada
| | | | - Christopher Fernandez-Prada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada. .,The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada. .,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
20
|
Genome mutations of the Turkish strain Leishmania infantum_TR01. INFECTION GENETICS AND EVOLUTION 2021; 92:104907. [PMID: 33971306 DOI: 10.1016/j.meegid.2021.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE Today, almost 15 years have passed since the whole genome sequence (WGS) of a Leishmania parasite was completed for the first time. However, information on the genetics of these parasites remains to be elucidated. Genome-based studies may contribute to control strategies for leishmaniasis. The increase in genetically based studies, particularly whole-genome sequencing studies on Leishmania, will contribute to the control of leishmaniasis, which is a common and neglected disease worldwide. Our previous study obtained the Leishmania infantum_TR01 (Lin_TR01) genome sequence (Guldemir et al., 2020). In the present study, we focused on the mutations detected in the genome and aimed to investigate the effects of these mutations. METHODS In our previous study, the whole-genome sequence of the L. infantum_TR01 strain was obtained (Guldemir et al., 2020). In the present study, 3153 polymorphisms were detected in bioinformatics analysis performed on the Geneious 11.0.5. (www.geneious.com) platform. Herein, the L. infantum JPCM5 strain was used as the reference genome for genome mapping. Polymorphic regions were determined using the Find Variations/SNPs program on the Geneious platform. We further analyzed these polymorphisms detected in the previous study. Additionally, a literature review was performed by searching the PubMed database for proteins with polymorphisms. RESULTS In our previous study (Guldemir et al., 2020), the genomic DNA sequence was submitted to the NCBI GenBank (www.ncbi.nlm.nih.gov) database and registered under the name Leishmania infantum_TR01 (Lin_TR01) and project accession number PRJNA437593. As a result of the annotation of the genome, 3153 polymorphisms were identified. In this study, 166 protein-coding polymorphisms were found among the 3153 polymorphisms, affecting 63 different proteins. Fourteen of them were studied, and the remaining 49 proteins were not studied. The 14 proteins examined in terms of the mutations detected in this study were related to virulence (n = 5), vaccine candidates (n = 2), diagnosis/typing (n = 4), drug resistance (n = 2), drug targets (n = 3) and vital function (n = 1). CONCLUSION As mentioned previously, the acquisition of the Lin_TR01 genome was described in our previous study (Guldemir et al., 2020). The present meta-analytical study is the first comparison report of whole-genome sequence-based polymorphisms between the Turkish strain Leishmania infantum_TR01 and reference Leishmania infantum JPCM5 strain and evaluated polymorphisms and proteins. In this study, we focused on the mutations detected in the genome, and the effects of these mutations were investigated and evaluated together with the current literature. In our previous study, a high-quality WGS of Leishmania infantum was successfully obtained for the first time in Turkey (1). In this study, the comparison of both genomes will contribute to providing the scientific community with a solid infrastructure for postgenomic investigations of the parasite.
Collapse
|
21
|
Dong G, Wagner V, Minguez-Menendez A, Fernandez-Prada C, Olivier M. Extracellular vesicles and leishmaniasis: Current knowledge and promising avenues for future development. Mol Immunol 2021; 135:73-83. [PMID: 33873096 DOI: 10.1016/j.molimm.2021.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/09/2023]
Abstract
Extracellular vesicles (EVs) are small, membrane-bound "delivery trucks" that are present in the extracellular environment, including biological fluids. EVs are capable of inducing changes in the physiological status of neighboring cells through the transfer of key macromolecules, and are thought to play a role in a number of pathological processes. Leishmaniasis, caused by the protozoan parasite Leishmania, is an important example. The biology of Leishmania EVs has been studied in detail, and findings point to their role in exacerbation of disease and potential involvement in the perpetuation of drug resistance. Furthermore, the use of EVs for development of vaccines has been explored, as well as their potential use in a number of fields as biomarkers of disease and drug resistance. Here we discuss the latest findings on EVs, with a particular focus on Leishmania, as well as potential avenues for their future development and clinical applications.
Collapse
Affiliation(s)
- George Dong
- Infectious Diseases and Immunology in Global Health Program (IDIGH), The Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Victoria Wagner
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, QC, Canada; The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, QC, Canada
| | | | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, QC, Canada; The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, QC, Canada.
| | - Martin Olivier
- Infectious Diseases and Immunology in Global Health Program (IDIGH), The Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Departments of Medicine, Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
22
|
Grünebast J, Clos J. Leishmania: Responding to environmental signals and challenges without regulated transcription. Comput Struct Biotechnol J 2020; 18:4016-4023. [PMID: 33363698 PMCID: PMC7744640 DOI: 10.1016/j.csbj.2020.11.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
Here we describe the non-canonical control of gene expression in Leishmania, a single-cell parasite that is responsible for one of the major neglected tropical diseases. We discuss the lack of regulated RNA synthesis, the post-transcriptional gene regulation including RNA stability and regulated translation. We also show that genetic adaptations such as mosaic aneuploidy, gene copy number variations and DNA sequence polymorphisms are important means for overcoming drug challenge and environmental diversity. These mechanisms are discussed in the context of the unique flow of genetic information found in Leishmania and related protists.
Collapse
Affiliation(s)
- Janne Grünebast
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Joachim Clos
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
23
|
Application of CRISPR/Cas9-Based Reverse Genetics in Leishmania braziliensis: Conserved Roles for HSP100 and HSP23. Genes (Basel) 2020; 11:genes11101159. [PMID: 33007987 PMCID: PMC7601497 DOI: 10.3390/genes11101159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 01/18/2023] Open
Abstract
The protozoan parasite Leishmania (Viannia) braziliensis (L. braziliensis) is the main cause of human tegumentary leishmaniasis in the New World, a disease affecting the skin and/or mucosal tissues. Despite its importance, the study of the unique biology of L. braziliensis through reverse genetics analyses has so far lagged behind in comparison with Old World Leishmania spp. In this study, we successfully applied a cloning-free, PCR-based CRISPR–Cas9 technology in L. braziliensis that was previously developed for Old World Leishmania major and New World L. mexicana species. As proof of principle, we demonstrate the targeted replacement of a transgene (eGFP) and two L. braziliensis single-copy genes (HSP23 and HSP100). We obtained homozygous Cas9-free HSP23- and HSP100-null mutants in L. braziliensis that matched the phenotypes reported previously for the respective L. donovani null mutants. The function of HSP23 is indeed conserved throughout the Trypanosomatida as L. majorHSP23 null mutants could be complemented phenotypically with transgenes from a range of trypanosomatids. In summary, the feasibility of genetic manipulation of L. braziliensis by CRISPR–Cas9-mediated gene editing sets the stage for testing the role of specific genes in that parasite’s biology, including functional studies of virulence factors in relevant animal models to reveal novel therapeutic targets to combat American tegumentary leishmaniasis.
Collapse
|
24
|
Yagoubat A, Corrales RM, Bastien P, Lévêque MF, Sterkers Y. Gene Editing in Trypanosomatids: Tips and Tricks in the CRISPR-Cas9 Era. Trends Parasitol 2020; 36:745-760. [DOI: 10.1016/j.pt.2020.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/19/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022]
|
25
|
Douanne N, Dong G, Douanne M, Olivier M, Fernandez-Prada C. Unravelling the proteomic signature of extracellular vesicles released by drug-resistant Leishmania infantum parasites. PLoS Negl Trop Dis 2020; 14:e0008439. [PMID: 32628683 PMCID: PMC7365475 DOI: 10.1371/journal.pntd.0008439] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/16/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Leishmaniasis constitutes the 9th largest disease burden among all infectious diseases. Control of this disease is based on a short list of chemotherapeutic agents headed by pentavalent antimonials, followed by miltefosine and amphotericin B; drugs that are far from ideal due to host toxicity, elevated cost, limited access, and high rates of drug resistance. Knowing that the composition of extracellular vesicles (EVs) can vary according to the state of their parental cell, we hypothesized that EVs released by drug-resistant Leishmania infantum parasites could contain unique and differently enriched proteins depending on the drug-resistance mechanisms involved in the survival of their parental cell line. To assess this possibility, we studied EV production, size, morphology, and protein content of three well-characterized drug-resistant L. infantum cell lines and a wild-type strain. Our results are the first to demonstrate that drug-resistance mechanisms can induce changes in the morphology, size, and distribution of L. infantum EVs. In addition, we identified L. infantum’s core EV proteome. This proteome is highly conserved among strains, with the exception of a handful of proteins that are enriched differently depending on the drug responsible for induction of antimicrobial resistance. Furthermore, we obtained the first snapshot of proteins enriched in EVs released by antimony-, miltefosine- and amphotericin-resistant parasites. These include several virulence factors, transcription factors, as well as proteins encoded by drug-resistance genes. This detailed study of L. infantum EVs sheds new light on the potential roles of EVs in Leishmania biology, particularly with respect to the parasite’s survival in stressful conditions. This work outlines a crucial first step towards the discovery of EV-based profiles capable of predicting response to antileishmanial agents. Visceral leishmaniasis is a life-threatening disease caused by Leishmania infantum parasites, which are transmitted by sand flies. In the absence of vaccines, current control of this disease is based on chemotherapy, which is comprised of a very limited arsenal threatened by the emergence and spread of drug-resistant strains. In the shadow of growing concern and treatment failure due to resistance, the characterization of extracellular vesicles (EVs) released by drug-resistant L. infantum parasites could shed some light on the complex nature of drug resistance in Leishmania and increase our understanding of the biology of the parasite. EVs are vesicles secreted by all eukaryotic cells whose contents (proteins, DNA/RNAs, lipids) vary as a function of their cellular origin. Our results demonstrate for the first time that EVs released by drug-resistant parasites are enriched in unique protein markers that reflect the drug-resistance mechanisms involved in the survival of parental cells. These unique proteins included several virulence and transcription factors, as well as drug-resistance genes; this offers a potential benefit for drug-resistant parasites in terms of parasite-to-parasite communication and host-parasite interactions. Collectively, our initial results could serve as a jumping-off point for the future development of novel EV-based diagnostic tools for the detection and appraisal of antimicrobial-resistant Leishmania populations.
Collapse
Affiliation(s)
- Noélie Douanne
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - George Dong
- The Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Mélanie Douanne
- Department of Biology, Health and Ecology, “Ecole Pratique des Hautes Etudes”, Paris, France
| | - Martin Olivier
- The Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- * E-mail: (MO); (CFP)
| | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- * E-mail: (MO); (CFP)
| |
Collapse
|
26
|
Bhattacharya A, Corbeil A, do Monte-Neto RL, Fernandez-Prada C. Of Drugs and Trypanosomatids: New Tools and Knowledge to Reduce Bottlenecks in Drug Discovery. Genes (Basel) 2020; 11:genes11070722. [PMID: 32610603 PMCID: PMC7397081 DOI: 10.3390/genes11070722] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis (Leishmania species), sleeping sickness (Trypanosoma brucei), and Chagas disease (Trypanosoma cruzi) are devastating and globally spread diseases caused by trypanosomatid parasites. At present, drugs for treating trypanosomatid diseases are far from ideal due to host toxicity, elevated cost, limited access, and increasing rates of drug resistance. Technological advances in parasitology, chemistry, and genomics have unlocked new possibilities for novel drug concepts and compound screening technologies that were previously inaccessible. In this perspective, we discuss current models used in drug-discovery cascades targeting trypanosomatids (from in vitro to in vivo approaches), their use and limitations in a biological context, as well as different examples of recently discovered lead compounds.
Collapse
Affiliation(s)
- Arijit Bhattacharya
- Department of Microbiology, Adamas University, Kolkata, West Bengal 700 126, India;
| | - Audrey Corbeil
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | | | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Correspondence: ; Tel.: +1-450-773-8521 (ext. 32802)
| |
Collapse
|
27
|
Van den Kerkhof M, Sterckx YGJ, Leprohon P, Maes L, Caljon G. Experimental Strategies to Explore Drug Action and Resistance in Kinetoplastid Parasites. Microorganisms 2020; 8:E950. [PMID: 32599761 PMCID: PMC7356981 DOI: 10.3390/microorganisms8060950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Kinetoplastids are the causative agents of leishmaniasis, human African trypanosomiasis, and American trypanosomiasis. They are responsible for high mortality and morbidity in (sub)tropical regions. Adequate treatment options are limited and have several drawbacks, such as toxicity, need for parenteral administration, and occurrence of treatment failure and drug resistance. Therefore, there is an urgency for the development of new drugs. Phenotypic screening already allowed the identification of promising new chemical entities with anti-kinetoplastid activity potential, but knowledge on their mode-of-action (MoA) is lacking due to the generally applied whole-cell based approach. However, identification of the drug target is essential to steer further drug discovery and development. Multiple complementary techniques have indeed been used for MoA elucidation. In this review, the different 'omics' approaches employed to define the MoA or mode-of-resistance of current reference drugs and some new anti-kinetoplastid compounds are discussed.
Collapse
Affiliation(s)
- Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| |
Collapse
|
28
|
Douanne N, Wagner V, Roy G, Leprohon P, Ouellette M, Fernandez-Prada C. MRPA-independent mechanisms of antimony resistance in Leishmania infantum. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:28-37. [PMID: 32413766 PMCID: PMC7225602 DOI: 10.1016/j.ijpddr.2020.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022]
Abstract
Control of both human and canine leishmaniasis is based on a very short list of chemotherapeutic agents, headed by antimonial derivatives (Sb). The utility of these molecules is severely threatened by high rates of drug resistance. The ABC transporter MRPA is one of the few key Sb resistance proteins described to date, whose role in detoxification has been thoroughly studied in Leishmania parasites. Nonetheless, its rapid amplification during drug selection complicates the discovery of other mechanisms potentially involved in Sb resistance. In this study, stepwise drug-resistance selection and next-generation sequencing were combined in the search for novel Sb-resistance mechanisms deployed by parasites when MRPA is abolished by targeted gene disruption. The gene mrpA is not essential in L. infantum, and its disruption leads to an Sb hypersensitive phenotype in both promastigotes and amastigotes. Five independent mrpA-/- mutants were selected for antimony resistance. These mutants displayed major changes in their ploidy, as well as extrachromosomal linear amplifications of the subtelomeric region of chromosome 23, which includes the genes coding for ABCC1 and ABCC2. Overexpression of ABCC2, but not of ABCC1, resulted in increased Sb tolerance in the mrpA-/- mutant. SNP analyses revealed three different heterozygous mutations in the gene coding for a serine acetyltransferase (SAT) involved in de novo cysteine synthesis in Leishmania. Overexpression of satQ390K, satG321R and satG325R variants led to a 2-3.2 -fold increase in Sb resistance in mrpA-/- parasites. Only satG321R and satG325R induced increased Sb resistance in wild-type parasites. These results reinforce and expand knowledge on the complex nature of Sb resistance in Leishmania parasites.
Collapse
Affiliation(s)
- Noélie Douanne
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Victoria Wagner
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Gaetan Roy
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Christopher Fernandez-Prada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire Université de Montréal, Saint-Hyacinthe, Québec, Canada; Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
29
|
Zhang WW, Lypaczewski P, Matlashewski G. Application of CRISPR/Cas9-Mediated Genome Editing in Leishmania. Methods Mol Biol 2020; 2116:199-224. [PMID: 32221923 DOI: 10.1007/978-1-0716-0294-2_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CRISPR-Cas9 is an RNA guided endonuclease derived from the bacterium Streptococcus pyogenes. Due to its simplicity, versatility, and high efficiency, it has been widely used for genome editing in a variety of organisms including the protozoan parasite Leishmania, the causative agent of human leishmaniasis. Compared to the traditional homologous recombination gene targeting method, CRISPR-Cas9 has been shown to be a more efficient method to delete or disrupt Leishmania genes, generate point mutations, and add tags to endogenous genes. Notably, the stable CRISPR expression systems were shown to delete multicopy family Leishmania genes and genes present in multiploid chromosomes, identify essential Leishmania genes, and create specific chromosome translocations. In this chapter, we describe detailed procedures on using the stable CRISPR expression system for genome editing in Leishmania. These procedures include CRISPR targeting site selection, gRNA design, cloning single and double gRNA coding sequences into the Leishmania CRISPR vector pLdCN, oligonucleotide donor and drug resistance selection donor design, Leishmania cell transfection, screening, and isolation of CRISPR-edited mutants. As the principles of gene editing are generally similar, many of these procedures could also apply to the transient Leishmania CRISPR systems described by other labs.
Collapse
Affiliation(s)
- Wen-Wei Zhang
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Patrick Lypaczewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
30
|
Coupling chemical mutagenesis to next generation sequencing for the identification of drug resistance mutations in Leishmania. Nat Commun 2019; 10:5627. [PMID: 31819054 PMCID: PMC6901541 DOI: 10.1038/s41467-019-13344-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Current genome-wide screens allow system-wide study of drug resistance but detecting small nucleotide variants (SNVs) is challenging. Here, we use chemical mutagenesis, drug selection and next generation sequencing to characterize miltefosine and paromomycin resistant clones of the parasite Leishmania. We highlight several genes involved in drug resistance by sequencing the genomes of 41 resistant clones and by concentrating on recurrent SNVs. We associate genes linked to lipid metabolism or to ribosome/translation functions with miltefosine or paromomycin resistance, respectively. We prove by allelic replacement and CRISPR-Cas9 gene-editing that the essential protein kinase CDPK1 is crucial for paromomycin resistance. We have linked CDPK1 in translation by functional interactome analysis, and provide evidence that CDPK1 contributes to antimonial resistance in the parasite. This screen is powerful in exploring networks of drug resistance in an organism with diploid to mosaic aneuploid genome, hence widening the scope of its applicability. Here, Bhattacharya et al. chemically mutagenize Leishmania and identify genes associated with resistance to miltefosine and paromomycin by next generation sequencing. The study shows that a protein kinase (CDPK1) can mediate resistance to paromomycin by affecting translation.
Collapse
|
31
|
Bhattacharya A, Sharma M, Pakkinathan C, Rosen BP, Leprohon P, Ouellette M. Genomewide Analysis of Mode of Action of the S-Adenosylmethionine Analogue Sinefungin in Leishmania infantum. mSystems 2019; 4:e00416-19. [PMID: 31615876 PMCID: PMC6794121 DOI: 10.1128/msystems.00416-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
To further our understanding of one-carbon metabolism in the protozoan parasite Leishmania, we conducted genomic screens to study how the parasite responded to sinefungin (SNF) selection. SNF is a structural analogue of S-adenosylmethionine (AdoMet), a key methyl group donor to a number of biomolecules. One screen consisted of sequencing SNF-resistant mutants generated by stepwise selection with gradually increasing drug concentrations. These studies demonstrated deletion of the AdoMet transporter (AdoMetT1) by intergenic recombination as a crucial loss-of-function marker for SNF resistance. The second screen consisted of Cos-seq, a gain-of-function cosmid-based genomewide functional screen with increasing SNF concentration coupled to next-generation sequencing. Cosmids enriched in that screen and sequenced led to the identification of (i) the AdoMet synthetase (METK) as the major SNF target, (ii) an mRNA [(guanine-N7)-methyltransferase (CMT1)], (iii) a leucine carboxyl methyltransferase (LCMT), (iv) two tryparedoxin genes, and (v) two protein phosphatase regulatory genes. Further functional exploration indicated that LCMT interacts with one phosphatase catalytic subunit (PP2AC) and that mutation of the C-terminal leucine residue of PP2AC affects sinefungin susceptibility. These holistic screens led to the identification of transporters, biosynthetic genes, RNA and protein methyltransferases, as well as phosphatases linked to AdoMet-mediated functions in Leishmania IMPORTANCE The two main cellular metabolic one-carbon donors are reduced folates and S-adenosylmethionine, whose biosynthetic pathways have proven highly effective in chemotherapeutic interventions in various cell types. Sinefungin, a nucleoside analogue of S-adenosylmethionine, was shown to have potent activity against the protozoan parasite Leishmania Here, we studied resistance to sinefungin using whole-genome approaches as a way to further our understanding of the role of S-adenosylmethionine in this parasite and to reveal novel potential drug targets. These approaches allowed the characterization of novel features related to S-adenosylmethionine function in Leishmania which could further help in the development of sinefungin-like compounds against this pathogenic parasite.
Collapse
Affiliation(s)
- Arijit Bhattacharya
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center, Quebec, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, Quebec, Canada
| | - Mansi Sharma
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center, Quebec, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, Quebec, Canada
| | - Charles Pakkinathan
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Philippe Leprohon
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center, Quebec, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, Quebec, Canada
| | - Marc Ouellette
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center, Quebec, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, Quebec, Canada
| |
Collapse
|
32
|
Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Leishmania. mSphere 2019; 4:4/4/e00408-19. [PMID: 31434745 PMCID: PMC6706467 DOI: 10.1128/msphere.00408-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
CRISPR-Cas9 genome editing relies on an efficient double-strand DNA break (DSB) and repair. Contrary to mammalian cells, the protozoan parasite Leishmania lacks the most efficient nonhomologous end-joining pathway and uses microhomology-mediated end joining (MMEJ) and, occasionally, homology-directed repair to repair DSBs. Here, we reveal that Leishmania predominantly uses single-strand annealing (SSA) (>90%) instead of MMEJ (<10%) for DSB repair (DSBR) following CRISPR targeting of the miltefosine transporter gene, resulting in 9-, 18-, 20-, and 29-kb sequence deletions and multiple gene codeletions. Strikingly, when targeting the Leishmania donovani LdBPK_241510 gene, SSA even occurred by using direct repeats 77 kb apart, resulting in the codeletion of 15 Leishmania genes, though with a reduced frequency. These data strongly indicate that DSBR is not efficient in Leishmania, which explains why more than half of DSBs led to cell death and why the CRISPR gene-targeting efficiency is low compared with that in other organisms. Since direct repeat sequences are widely distributed in the Leishmania genome, we predict that many DSBs created by CRISPR are repaired by SSA. It is also revealed that DNA polymerase theta is involved in both MMEJ and SSA in Leishmania Collectively, this study establishes that DSBR mechanisms and their competence in an organism play an important role in determining the outcome and efficacy of CRISPR gene targeting. These observations emphasize the use of donor DNA templates to improve gene editing specificity and efficiency in Leishmania In addition, we developed a novel Staphylococcus aureus Cas9 constitutive expression vector (pLdSaCN) for gene targeting in Leishmania IMPORTANCE Due to differences in double-strand DNA break (DSB) repair mechanisms, CRISPR-Cas9 gene editing efficiency can vary greatly in different organisms. In contrast to mammalian cells, the protozoan parasite Leishmania uses microhomology-mediated end joining (MMEJ) and, occasionally, homology-directed repair (HDR) to repair DSBs but lacks the nonhomologous end-joining pathway. Here, we show that Leishmania predominantly uses single-strand annealing (SSA) instead of MMEJ for DSB repairs (DSBR), resulting in large deletions that can include multiple genes. This strongly indicates that the overall DSBR in Leishmania is inefficient and therefore can influence the outcome of CRISPR-Cas9 gene editing, highlighting the importance of using a donor DNA to improve gene editing fidelity and efficiency in Leishmania.
Collapse
|
33
|
Wagner V, Minguez-Menendez A, Pena J, Fernández-Prada C. Innovative Solutions for the Control of Leishmaniases: Nanoscale Drug Delivery Systems. Curr Pharm Des 2019; 25:1582-1592. [DOI: 10.2174/1381612825666190621154552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/15/2019] [Indexed: 12/26/2022]
Abstract
Background:
Leishmania are sandfly-transmitted protozoan parasites that harbour within the macrophages
of a mammalian host and cause leishmaniasis, a serious zoonotic disease that threatens the lives of millions
worldwide. Its numerous forms (cutaneous, mucocutaneous, and visceral) are currently treated with a sparse
arsenal of drugs, specifically antimonials, amphotericin B, miltefosine, and paromomycin, for which drug resistance
and clinical failure are rampant. Medicine is presently trending towards nanotechnology to aid in the successful
delivery of drugs. Vehicles such as lipid-based nanocarriers, polymer-based nanoparticles, and metal ions
and oxides have been previously demonstrated to improve bioavailability of drugs and decrease toxicity for the
patient. These cutting-edge solutions can be combined with existing active molecules, as well as novel drugs or
plant extracts with promising antileishmanial activity.
Conclusion:
This review explores the current evidence for the treatment of leishmaniases using nanoscale drug
delivery systems (specifically lipid-, polymer- and metal-based systems) and encourages further development of
the aforementioned nanotechnologies for treatment of Leishmania.
Collapse
Affiliation(s)
- Victoria Wagner
- Departement de Pathologie et Microbiologie, Faculte de Medecine Veterinaire Universite de Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Aida Minguez-Menendez
- Departement de Pathologie et Microbiologie, Faculte de Medecine Veterinaire Universite de Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Joan Pena
- Departement de Pathologie et Microbiologie, Faculte de Medecine Veterinaire Universite de Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Christopher Fernández-Prada
- Departement de Pathologie et Microbiologie, Faculte de Medecine Veterinaire Universite de Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
34
|
Chemogenomic Profiling of Antileishmanial Efficacy and Resistance in the Related Kinetoplastid Parasite Trypanosoma brucei. Antimicrob Agents Chemother 2019; 63:AAC.00795-19. [PMID: 31160283 PMCID: PMC6658743 DOI: 10.1128/aac.00795-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/23/2019] [Indexed: 01/01/2023] Open
Abstract
The arsenal of drugs used to treat leishmaniasis, caused by Leishmania spp., is limited and beset by toxicity and emergent resistance. Furthermore, our understanding of drug mode of action and potential routes to resistance is limited. Forward genetic approaches have revolutionized our understanding of drug mode of action in the related kinetoplastid parasite Trypanosoma brucei. The arsenal of drugs used to treat leishmaniasis, caused by Leishmania spp., is limited and beset by toxicity and emergent resistance. Furthermore, our understanding of drug mode of action and potential routes to resistance is limited. Forward genetic approaches have revolutionized our understanding of drug mode of action in the related kinetoplastid parasite Trypanosoma brucei. Therefore, we screened our genome-scale T. brucei RNA interference (RNAi) library against the current antileishmanial drugs sodium stibogluconate (antimonial), paromomycin, miltefosine, and amphotericin B. Identification of T. brucei orthologues of the known Leishmania antimonial and miltefosine plasma membrane transporters effectively validated our approach, while a cohort of 42 novel drug efficacy determinants provides new insights and serves as a resource. Follow-up analyses revealed the antimonial selectivity of the aquaglyceroporin TbAQP3. A lysosomal major facilitator superfamily transporter contributes to paromomycin-aminoglycoside efficacy. The vesicle-associated membrane protein TbVAMP7B and a flippase contribute to amphotericin B and miltefosine action and are potential cross-resistance determinants. Finally, multiple phospholipid-transporting flippases, including the T. brucei orthologue of the Leishmania miltefosine transporter, a putative β-subunit/CDC50 cofactor, and additional membrane-associated hits, affect amphotericin B efficacy, providing new insights into mechanisms of drug uptake and action. The findings from this orthology-based chemogenomic profiling approach substantially advance our understanding of antileishmanial drug action and potential resistance mechanisms and should facilitate the development of improved therapies as well as surveillance for drug-resistant parasites.
Collapse
|
35
|
To kill a piroplasm: genetic technologies to advance drug discovery and target identification in Babesia. Int J Parasitol 2019; 49:153-163. [DOI: 10.1016/j.ijpara.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022]
|
36
|
Cos-Seq: A High-Throughput Gain-of-Function Screen for Drug Resistance Studies in Leishmania. Methods Mol Biol 2019; 1971:141-167. [PMID: 30980302 DOI: 10.1007/978-1-4939-9210-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leishmania is still a major cause of mortality and morbidity worldwide. Few efficient drugs are available, and resistance threatens actual treatments. In order to improve knowledge about the mode of action of current drugs and those in development, as well as to understand the mechanisms pertaining to their resistance, we recently described a sensitive and high-throughput method termed Cos-Seq. Here we provide a detailed protocol for every step of the procedure, from library construction to drug selection, cosmid extraction, and next-generation sequencing of extracted cosmids. A section on the bioinformatics of Cos-Seq is also included. Cos-Seq facilitates the identification of gain-of-function resistance mechanisms and drug targets and is a useful tool in resistance and drug development studies.
Collapse
|
37
|
Abstract
Postgenomic analyses of Leishmania biology benefit from rapid and precise methods for gene manipulation. Traditional methods of gene knockout or tagging by homologous recombination have limitations: they tend to be slow and require successive transfection and selection rounds to knock out multiple alleles of a gene. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 systems overcome these limitations. We describe here in detail a simple, rapid, and scalable method for CRISPR-Cas9-mediated gene knockout and tagging in Leishmania. This method details how to use simple PCR to generate (1) templates for single guide RNA (sgRNA) transcription in cells expressing Cas9 and T7 RNA polymerase and (2) drug-selectable editing cassettes, using a modular set of plasmids as templates. pT plasmids allow for amplification of drug resistance genes for knockouts and pPLOT plasmids provide a choice of different tags to generate N- or C-terminally tagged proteins. We describe how to use an online platform ( LeishGEdit.net ) for automated primer design and how to perform PCRs and transfections in small batches or on 96-well plates for large-scale knockout or tagging screens. This method allows generation of knockout mutants or tagged cell lines within 1 week.
Collapse
Affiliation(s)
- Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|