1
|
Hampton N, Smith V, Brewer MT, Jesudoss Chelladurai JRJ. Strain-level variations of Dirofilaria immitis microfilariae in two biochemical assays. PLoS One 2024; 19:e0307261. [PMID: 39018313 PMCID: PMC11253964 DOI: 10.1371/journal.pone.0307261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND The increase in reports of resistance to macrocyclic lactones in the canine heartworm, Dirofilaria immitis is alarming. While DNA based tests have been well-validated, they can be expensive. In a previous study, we showed that two biochemical tests adapted to a 96- well plate format and read in a spectrophotometer could detect differences among lab validated D. immitis isolates. The two tests- Resazurin reduction and Hoechst 33342 efflux-detect metabolism and P-glycoprotein activity respectively in microfilariae isolated from infected dog blood. METHODS Our objective was to optimize the two assays further by testing various assay parameters in D. immitis isolates not tested previously. We tested microfilarial seeding density, incubation time and the effect of in vitro treatment with ivermectin and doxycycline in five other D. immitis isolates-JYD-34, Big Head, Berkeley, Georgia III and LOL. All assays were performed in 3 technical replicates and 2-4 biological replicates. To understand the molecular basis of the assays, we also performed qPCR for selected drug metabolism and elimination associated genes of the ABC transporter and cytochrome P450 gene families. RESULTS Metabolism and ABC transporter activity as detected by these assays varied between strains. Anthelmintic status (resistant or susceptible) did not correlate with metabolism or P-gp efflux. Basal transcriptional variations were found between strains in ABC transporter and cytochrome P450 genes. CONCLUSIONS These assays provide a greater understanding of the biochemical variation among isolates of D. immitis, which can be exploited in the future to develop in vitro diagnostic tests capable of differentiating susceptible and resistant isolates.
Collapse
Affiliation(s)
- Naomi Hampton
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States of America
| | - Vicki Smith
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States of America
| | - Matthew T. Brewer
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, Iowa, United States of America
| | - Jeba R. J. Jesudoss Chelladurai
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States of America
| |
Collapse
|
2
|
Mwacalimba K, Sheehy J, Adolph C, Savadelis M, Kryda K, Poulsen Nautrup B. A review of moxidectin vs. other macrocyclic lactones for prevention of heartworm disease in dogs with an appraisal of two commercial formulations. Front Vet Sci 2024; 11:1377718. [PMID: 38978634 PMCID: PMC11229481 DOI: 10.3389/fvets.2024.1377718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Macrocyclic lactones (MLs) are the only drug class currently licensed for heartworm disease prophylaxis. Macrocyclic lactones kill third- and fourth-stage larvae of Dirofilaria immitis, thus preventing the development of adult worms in dogs, which are responsible for heartworm disease, a potentially life-threatening condition. Despite considerable overlap in terms of endectocide spectrum, several important differences distinguish moxidectin from other MLs. Moxidectin has beneficial pharmacokinetic characteristics, such as a longer half-life and greater tissue distribution compared to ivermectin. Additionally, moxidectin has a greater margin of safety compared to ivermectin in dogs with ABCB1 (previously MDR1) gene-defect, which is commonly recognized in collies and other breeds. Multiple laboratory studies have shown that moxidectin is more effective than other commonly used heartworm preventives against resistant strains of D. immitis. This improved efficacy benefits individual dogs and helps reduce the risk of spreading resistant strains within the community. Despite the presence of proven resistant strains in the United States, non-compliance with preventive measures remains a major factor contributing to the diagnosis of heartworm disease in dogs. In retrospective analyses, the oral moxidectin combination product Simparica Trio® (sarolaner, moxidectin, and pyrantel) was associated with increased compliance, resulting in more time of protection compared to dogs receiving flea/tick and heartworm preventive products separately. Compliance with the extended-release moxidectin injectables ProHeart® 6 and ProHeart® 12 was higher than with monthly heartworm preventives, as they provide 6 months or a full year of protection with one single injection, respectively, and revenues remain in the veterinary clinics as injectable moxidectin cannot be sourced through online retailers.
Collapse
Affiliation(s)
| | - Jenifer Sheehy
- Veterinary Professional Services, Zoetis, Parsippany, NJ, United States
| | | | - Molly Savadelis
- Veterinary Medicine Research and Development, Zoetis, Kalamazoo, MI, United States
| | - Kristina Kryda
- Veterinary Medicine Research and Development, Zoetis, Kalamazoo, MI, United States
| | | |
Collapse
|
3
|
Hess JA, Eberhard ML, Segura-Lepe M, Grundner-Culemann K, Kracher B, Shryock J, Harrington J, Abraham D. A rodent model for Dirofilaria immitis, canine heartworm: parasite growth, development, and drug sensitivity in NSG mice. Sci Rep 2023; 13:976. [PMID: 36653420 PMCID: PMC9849205 DOI: 10.1038/s41598-023-27537-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Heartworm disease, caused by Dirofilaria immitis, remains a significant threat to canines and felines. The development of parasites resistant to macrocyclic lactones (ML) has created a significant challenge to the control of the infection. The goal of this study was to determine if mice lacking a functional immune response would be susceptible to D. immitis. Immunodeficient NSG mice were susceptible to the infection, sustaining parasites for at least 15 weeks, with infective third-stage larvae molting and developing into the late fourth-stage larvae. Proteomic analysis of host responses to the infection revealed a complex pattern of changes after infection, with at least some of the responses directed at reducing immune control mechanisms that remain in NSG mice. NSG mice were infected with isolates of D. immitis that were either susceptible or resistant to MLs, as a population. The susceptible isolate was killed by ivermectin whereas the resistant isolate had improved survivability, while both isolates were affected by moxidectin. It was concluded that D. immitis survives in NSG mice for at least 15 weeks. NSG mice provide an ideal model for monitoring host responses to the infection and for testing parasites in vivo for susceptibility to direct chemotherapeutic activity of new agents.
Collapse
Affiliation(s)
- Jessica A Hess
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | - Jeffrey Shryock
- Boehringer Ingelheim Animal Health USA Inc., 6498 Jade Road, Fulton, MO, USA
| | - John Harrington
- Boehringer Ingelheim Animal Health USA Inc., 1730 Olympic Dr, Athens, GA, USA
| | - David Abraham
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Noack S, Harrington J, Carithers DS, Kaminsky R, Selzer PM. Heartworm disease - Overview, intervention, and industry perspective. Int J Parasitol Drugs Drug Resist 2021; 16:65-89. [PMID: 34030109 PMCID: PMC8163879 DOI: 10.1016/j.ijpddr.2021.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Dirofilaria immitis, also known as heartworm, is a major parasitic threat for dogs and cats around the world. Because of its impact on the health and welfare of companion animals, heartworm disease is of huge veterinary and economic importance especially in North America, Europe, Asia and Australia. Within the animal health market many different heartworm preventive products are available, all of which contain active components of the same drug class, the macrocyclic lactones. In addition to compliance issues, such as under-dosing or irregular treatment intervals, the occurrence of drug-resistant heartworms within the populations in the Mississippi River areas adds to the failure of preventive treatments. The objective of this review is to provide an overview of the disease, summarize the current disease control measures and highlight potential new avenues and best practices for treatment and prevention.
Collapse
Affiliation(s)
- Sandra Noack
- Boehringer Ingelheim Animal Health, Binger Str. 173, 55216, Ingelheim am Rhein, Germany
| | - John Harrington
- Boehringer Ingelheim Animal Health, 1730 Olympic Drive, 30601, Athens, GA, USA
| | - Douglas S Carithers
- Boehringer Ingelheim Animal Health, 3239 Satellite Blvd, 30096, Duluth, GA, USA
| | - Ronald Kaminsky
- paraC Consulting, Altenstein 13, 79685, Häg-Ehrsberg, Germany
| | - Paul M Selzer
- Boehringer Ingelheim Animal Health, Binger Str. 173, 55216, Ingelheim am Rhein, Germany.
| |
Collapse
|
5
|
Hübner MP, Townson S, Gokool S, Tagboto S, Maclean MJ, Verocai GG, Wolstenholme AJ, Frohberger SJ, Hoerauf A, Specht S, Scandale I, Harder A, Glenschek-Sieberth M, Hahnel SR, Kulke D. Evaluation of the in vitro susceptibility of various filarial nematodes to emodepside. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 17:27-35. [PMID: 34339934 PMCID: PMC8347670 DOI: 10.1016/j.ijpddr.2021.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 11/25/2022]
Abstract
Filariae are vector-borne nematodes responsible for an enormous burden of disease. Human lymphatic filariasis, caused by Wuchereria bancrofti, Brugia malayi, and Brugia timori, and onchocerciasis (caused by Onchocerca volvulus) are neglected parasitic diseases of major public health significance in tropical regions. To date, therapeutic efforts to eliminate human filariasis have been hampered by the lack of a drug with sufficient macrofilaricidal and/or long-term sterilizing effects that is suitable for use in mass drug administration (MDA) programs, particularly in areas co-endemic with Loa loa, the causative agent of loiasis. Emodepside, a semi-synthetic cyclooctadepsipeptide, has been shown to have broad-spectrum efficacy against gastrointestinal nematodes in a variety of mammalian hosts, and has been approved as an active ingredient in dewormers for cats and dogs. This paper evaluates, compares (where appropriate) and summarizes the in vitro effects of emodepside against a range of filarial nematodes at various developmental stages. Emodepside inhibited the motility of all tested stages of filariae frequently used as surrogate species for preclinical investigations (Acanthocheilonema viteae, Brugia pahangi, Litomosoides sigmodontis, Onchocerca gutturosa, and Onchocerca lienalis), human-pathogenic filariae (B. malayi) and filariae of veterinary importance (Dirofilaria immitis) in a concentration-dependent manner. While motility of all filariae was inhibited, both stage- and species-specific differences were observed. However, whether these differences were detected because of stage- and/or species-specific factors or as a consequence of variations in protocol parameters among the participating laboratories (such as purification of the parasites, read-out units, composition of media, incubation conditions, duration of incubation etc.) remains unclear. This study, however, clearly shows that emodepside demonstrates broad-spectrum in vitro activity against filarial nematode species across different genera and can therefore be validated as a promising candidate for the treatment of human filariases, including onchocerciasis and lymphatic filariasis.
Collapse
Affiliation(s)
- Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| | - Simon Townson
- Griffin Institute (formerly Northwick Park Institute for Medical Research), London, HA1 3UJ, United Kingdom.
| | - Suzanne Gokool
- Griffin Institute (formerly Northwick Park Institute for Medical Research), London, HA1 3UJ, United Kingdom.
| | - Senyo Tagboto
- Griffin Institute (formerly Northwick Park Institute for Medical Research), London, HA1 3UJ, United Kingdom.
| | - Mary J Maclean
- National Institutes of Health, National Eye Institute, Clinical and Translational Immunology Section, Laboratory of Immunology, 10 Center Drive, Building 10, Room 10N113, Bethesda, MD, 20892, USA.
| | - Guilherme G Verocai
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, (current Address: INRAE Centre Val de Loire, 37380 Nouzilly, France), Athens, GA, 30602, USA; Department of Veterinary Pathobiology, College of Veterinary & Biomedical Sciences, Texas A&M University, 4467 TAMU College Station, TX, 77843, USA.
| | - Adrian J Wolstenholme
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, (current Address: INRAE Centre Val de Loire, 37380 Nouzilly, France), Athens, GA, 30602, USA.
| | - Stefan J Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| | - Sabine Specht
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland.
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland.
| | - Achim Harder
- Independent Scholar, Europaring 54, 51109, Cologne, Germany.
| | | | - Steffen R Hahnel
- Elanco Animal Health, Alfred-Nobel-Str. 50, 40789, Monheim, Germany.
| | - Daniel Kulke
- Elanco Animal Health, Alfred-Nobel-Str. 50, 40789, Monheim, Germany; Iowa State University, Department of Biomedical Sciences, 2008 Vet Med, Ames, IA, 50011, United States.
| |
Collapse
|
6
|
Wilson NE, Reaves BJ, Wolstenholme AJ. Lack of detectable short-term effects of a single dose of ivermectin on the human immune system. Parasit Vectors 2021; 14:304. [PMID: 34090504 PMCID: PMC8179708 DOI: 10.1186/s13071-021-04810-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 12/03/2022] Open
Abstract
Background Ivermectin is widely used in human and animal medicine to treat and prevent parasite nematode infections. It has been suggested that its mode of action requires the host immune system, as it is difficult to reproduce its clinical efficacy in vitro. We therefore studied the effects of a single dose of ivermectin (Stromectol®—0.15 mg/kg) on cytokine levels and immune cell gene expression in human volunteers. This dose reduces bloodstream microfilariae rapidly and for several months when given in mass drug administration programmes. Methods Healthy volunteers with no travel history to endemic regions were given 3–4 tablets, depending on their weight, of either ivermectin or a placebo. Blood samples were drawn immediately prior to administration, 4 h and 24 h afterwards, and complete blood counts performed. Serum levels of 41 cytokines and chemokines were measured using Luminex® and expression levels of 770 myeloid-cell-related genes determined using the NanoString nCounter®. Cytokine levels at 4 h and 24 h post-treatment were compared to the levels pre-treatment using simple t tests to determine if any individual results required further investigation, taking p = < 0.05 as the level of significance. NanoString data were analysed on the proprietary software, nSolver™. Results No significant differences were observed in complete blood counts or cytokine levels at either time point between people given ivermectin versus placebo. Only three genes showed a significant change in expression in peripheral blood mononuclear cells 4 h after ivermectin was given; there were no significant changes 24 h after drug administration or in polymorphonuclear cells at either time point. Leukocytes isolated from those participants given ivermectin showed no difference in their ability to kill Brugia malayi microfilariae in vitro. Conclusions Overall, our data do not support a direct effect of ivermectin, when given at the dose used in current filarial elimination programmes, on the human immune system. Trial registration ClinicalTrials.gov NCT03459794 Registered 9th March 2018, Retrospectively registered https://clinicaltrials.gov/ct2/show/NCT03459794?term=NCT03459794&draw=2&rank=1. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04810-6.
Collapse
Affiliation(s)
- Natalie E Wilson
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Barbara J Reaves
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Adrian J Wolstenholme
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA. .,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA. .,INRAE Centre Val du Loire, 37380, Nouzilly, France.
| |
Collapse
|
7
|
High-content approaches to anthelmintic drug screening. Trends Parasitol 2021; 37:780-789. [PMID: 34092518 DOI: 10.1016/j.pt.2021.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022]
Abstract
Most anthelmintics were discovered through in vivo screens using animal models of infection. Developing in vitro assays for parasitic worms presents several challenges. The lack of in vitro life cycle culture protocols requires harvesting worms from vertebrate hosts or vectors, limiting assay throughput. Once worms are removed from the host environment, established anthelmintics often show no obvious phenotype - raising concerns about the predictive value of many in vitro assays. However, with recent progress in understanding how anthelmintics subvert host-parasite interactions, and breakthroughs in high-content imaging and machine learning, in vitro assays have the potential to discern subtle cryptic parasite phenotypes. These may prove better endpoints than conventional in vitro viability assays.
Collapse
|
8
|
Moreno Y, Geary TG, Tritten L. When Secretomes Meet Anthelmintics: Lessons for Therapeutic Interventions. Trends Parasitol 2021; 37:468-475. [PMID: 33563557 DOI: 10.1016/j.pt.2021.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
Helminth secretomes comprise many potential immunomodulators. The molecular and functional diversity of these entities and their importance at the host-parasite interface have been increasingly recognized. It is now common to hypothesize that parasite-derived molecules (PDMs) are essential mediators used by parasites to establish and remain in their hosts. Suppression of PDM release has been reported for two anthelmintic drug classes, the benzimidazoles and macrocyclic lactones, the mechanisms of action of which remain incompletely resolved. We propose that bringing together recent insights from different streams of parasitology research, for example, immunoparasitology and pharmacology, will stimulate the development of new ways to alter the host-parasite interface in the search for novel anthelmintic strategies.
Collapse
Affiliation(s)
- Yovany Moreno
- Boehringer-Ingelheim Animal Health, Duluth, GA, USA.
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC, Canada; School of Biological Sciences, Queen's University - Belfast, Belfast, UK
| | - Lucienne Tritten
- Institute of Parasitology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
9
|
Neff E, Evans CC, Jimenez Castro PD, Kaplan RM, Dharmarajan G. Drug Resistance in Filarial Parasites Does Not Affect Mosquito Vectorial Capacity. Pathogens 2020; 10:2. [PMID: 33375024 PMCID: PMC7822010 DOI: 10.3390/pathogens10010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Parasite drug resistance presents a major obstacle to controlling and eliminating vector-borne diseases affecting humans and animals. While vector-borne disease dynamics are affected by factors related to parasite, vertebrate host and vector, research on drug resistance in filarial parasites has primarily focused on the parasite and vertebrate host, rather than the mosquito. However, we expect that the physiological costs associated with drug resistance would reduce the fitness of drug-resistant vs. drug-susceptible parasites in the mosquito wherein parasites are not exposed to drugs. Here we test this hypothesis using four isolates of the dog heartworm (Dirofilaria immitis)-two drug susceptible and two drug resistant-and two vectors-the yellow fever mosquito (Aedes aegypti) and the Asian tiger mosquito (Ae. albopictus)-as our model system. Our data indicated that while vector species had a significant effect on vectorial capacity, there was no significant difference in the vectorial capacity of mosquitoes infected with drug-resistant vs. drug-susceptible parasites. Consequently, contrary to expectations, our data indicate that drug resistance in D. immitis does not appear to reduce the transmission efficiency of these parasites, and thus the spread of drug-resistant parasites in the vertebrate population is unlikely to be mitigated by reduced fitness in the mosquito vector.
Collapse
Affiliation(s)
- Erik Neff
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29802, USA
| | - Christopher C. Evans
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (C.C.E.); (P.D.J.C.); (R.M.K.)
| | - Pablo D. Jimenez Castro
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (C.C.E.); (P.D.J.C.); (R.M.K.)
- Grupo de Parasitología Veterinaria, Universidad Nacional de Colombia, Bogotá 11001000, Colombia
| | - Ray M. Kaplan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (C.C.E.); (P.D.J.C.); (R.M.K.)
| | - Guha Dharmarajan
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29802, USA
| |
Collapse
|
10
|
Verma S, Kulke D, McCall JW, Martin RJ, Robertson AP. Recording drug responses from adult Dirofilaria immitis pharyngeal and somatic muscle cells. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 15:1-8. [PMID: 33348209 PMCID: PMC7753077 DOI: 10.1016/j.ijpddr.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Despite being considered one of the most pathogenic helminth infections of companion animals, members of macrocyclic lactone class are the only drugs available for the prevention of heartworm disease caused by Dirofilaria immitis. Alarmingly, heartworm prevention is at risk; several studies confirm the existence of macrocyclic lactone resistance in D. immitis populations across the United States. To safeguard the long term prevention and control of this disease, the identification and development of novel anthelmintics is urgently needed. To identify novel, resistance-breaking drugs, it is highly desirable to: Unfortunately, none of the three above statements can be answered sufficiently for D. immitis and most of our hypotheses derive from surrogate species and/or in vitro studies. Therefore, the present study aims to improve our fundamental understanding of the neuromuscular system of the canine heartworm by establishing new methods allowing the investigation of body wall and pharyngeal muscle responses and their modulation by anthelmintics. We found that the pharynx of adult D. immitis responds to both ivermectin and moxidectin with EC50s in the low micromolar range. We also demonstrate that the somatic muscle cells have robust responses to 30 μM acetylcholine, levamisole, pyrantel and nicotine. This is important preliminary data, demonstrating the feasibility of electrophysiological studies in this important parasite.
Collapse
Affiliation(s)
- S Verma
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - D Kulke
- Drug Discovery and External Innovation, Bayer Animal Health GmbH, 51373, Leverkusen, Germany.
| | | | - R J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - A P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
11
|
Loghry HJ, Yuan W, Zamanian M, Wheeler NJ, Day TA, Kimber MJ. Ivermectin inhibits extracellular vesicle secretion from parasitic nematodes. J Extracell Vesicles 2020; 10:e12036. [PMID: 33318780 PMCID: PMC7726798 DOI: 10.1002/jev2.12036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Lymphatic filariasis (LF) is a disease caused by parasitic filarial nematodes that is endemic in 49 countries of the world and affects or threatens over 890 million people. Strategies to control LF rely heavily on mass administration of anthelmintic drugs including ivermectin (IVM), a macrocyclic lactone drug considered an Essential Medicine by the WHO. However, despite its widespread use the therapeutic mode of action of IVM against filarial nematodes is not clear. We have previously reported that filarial nematodes secrete extracellular vesicles (EVs) and that their cargo has immunomodulatory properties. Here we investigate the effects of IVM and other anti-filarial drugs on parasitic nematode EV secretion, motility, and protein secretion. We show that inhibition of EV secretion was a specific property of IVM, which had consistent and significant inhibitory effects across nematode life stages and species, with the exception of male parasites. IVM inhibited EV secretion, but not parasite motility, at therapeutically relevant concentrations. Protein secretion was inhibited by IVM in the microfilariae stage, but not in any other stage tested. Our data provides evidence that inhibiting the secretion of immunomodulatory EVs by parasitic nematodes could explain, at least in part, IVM mode of action and provides a phenotype for novel drug discovery.
Collapse
Affiliation(s)
- Hannah J. Loghry
- Department of Biomedical SciencesCollege of Veterinary MedicineIowa State UniversityAmesIowaUSA
| | - Wang Yuan
- Department of Biomedical SciencesCollege of Veterinary MedicineIowa State UniversityAmesIowaUSA
| | - Mostafa Zamanian
- Department of Pathobiological SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Nicolas J. Wheeler
- Department of Pathobiological SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Timothy A. Day
- Department of Biomedical SciencesCollege of Veterinary MedicineIowa State UniversityAmesIowaUSA
| | - Michael J. Kimber
- Department of Biomedical SciencesCollege of Veterinary MedicineIowa State UniversityAmesIowaUSA
| |
Collapse
|
12
|
Shin PT, Baptista RDP, O'Neill CM, Wallis C, Reaves BJ, Wolstenholme AJ. Comparative sequences of the Wolbachia genomes of drug-sensitive and resistant isolates of Dirofilaria immitis. Vet Parasitol 2020; 286:109225. [PMID: 32937243 DOI: 10.1016/j.vetpar.2020.109225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 11/25/2022]
Abstract
The recent identification of isolates of D. immitis with confirmed resistance to the macrocyclic lactone preventatives presents an opportunity for comparative genomic studies using these isolates, and examining the genetic diversity within and between them. We studied the genomes of Wolbachia endosymbionts of five isolates of D. immitis maintained at the University of Georgia. Missouri and Georgia-2 are maintained as drug susceptible isolates, and JYD-27, Yazoo-2013 and Metairie-2014 are resistant to the macrocyclic lactone preventatives. We used whole genome amplification followed by Illumina-based sequencing from 8 to 12 individual microfilariae from each of the five isolates, obtaining a depth of coverage of approximately 40-75 fold for each. The Illumina sequences were used to create new genome assemblies for all the Wolbachia isolates studied. Comparisons of the Wolbachia sequences revealed more than 3000 sequence variations in each isolate. We identified 67 loci specific in resistant isolates but not in susceptible isolates, including 18 genes affected.Phylogenetic analysis suggested that the endosymbionts of the drug-susceptible isolates are more closely related to each other than to those from any of the resistant parasites. This level of variation in the Wolbachia endosymbionts of D. immitis isolates suggests a potential for selection for resistance against drugs targeting them.
Collapse
Affiliation(s)
- Pei-Tsz Shin
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Rodrigo de Paula Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA; Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Connor M O'Neill
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Connor Wallis
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Barbara J Reaves
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Adrian J Wolstenholme
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|