1
|
Monti L, Liu LJ, Varricchio C, Lucero B, Alle T, Yang W, Bem-Shalom I, Gilson M, Brunden KR, Brancale A, Caffrey CR, Ballatore C. Structure-Activity Relationships, Tolerability and Efficacy of Microtubule-Active 1,2,4-Triazolo[1,5-a]pyrimidines as Potential Candidates to Treat Human African Trypanosomiasis. ChemMedChem 2023; 18:e202300193. [PMID: 37429821 PMCID: PMC10615688 DOI: 10.1002/cmdc.202300193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Tubulin and microtubules (MTs) are potential protein targets to treat parasitic infections and our previous studies have shown that the triazolopyrimidine (TPD) class of MT-active compounds hold promise as antitrypanosomal agents. MT-targeting TPDs include structurally related but functionally diverse congeners that interact with mammalian tubulin at either one or two distinct interfacial binding sites; namely, the seventh and vinca sites, which are found within or between α,β-tubulin heterodimers, respectively. Evaluation of the activity of 123 TPD congeners against cultured Trypanosoma brucei enabled a robust quantitative structure-activity relationship (QSAR) model and the prioritization of two congeners for in vivo pharmacokinetics (PK), tolerability and efficacy studies. Treatment of T. brucei-infected mice with tolerable doses of TPDs significantly decreased blood parasitemia within 24 h. Further, two once-weekly doses at 10 mg/kg of a candidate TPD significantly extended the survival of infected mice relative to infected animals treated with vehicle. Further optimization of dosing and/or the dosing schedule of these CNS-active TPDs may provide alternative treatments for human African trypanosomiasis.
Collapse
Affiliation(s)
- Ludovica Monti
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
- Present affiliation: Chemistry Department, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, W12 0BZ, London, UK
| | - Lawrence J Liu
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
| | - Carmine Varricchio
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF103NB, Cardiff, UK
| | - Bobby Lucero
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
| | - Thibault Alle
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
| | - Wenqian Yang
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
| | - Ido Bem-Shalom
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
| | - Michael Gilson
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
| | - Kurt R Brunden
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, 19104-6323, Philadelphia, PA, USA
| | - Andrea Brancale
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF103NB, Cardiff, UK
- Present affiliation: Vysoká škola chemicko-technologická v Praze, Department of Organic Chemistry, Technická 5, 16628, Prague 6, Czech Republic
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
| | - Carlo Ballatore
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, 92093, La Jolla, CA, USA
| |
Collapse
|
2
|
Jamabo M, Mahlalela M, Edkins AL, Boshoff A. Tackling Sleeping Sickness: Current and Promising Therapeutics and Treatment Strategies. Int J Mol Sci 2023; 24:12529. [PMID: 37569903 PMCID: PMC10420020 DOI: 10.3390/ijms241512529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Human African trypanosomiasis is a neglected tropical disease caused by the extracellular protozoan parasite Trypanosoma brucei, and targeted for eradication by 2030. The COVID-19 pandemic contributed to the lengthening of the proposed time frame for eliminating human African trypanosomiasis as control programs were interrupted. Armed with extensive antigenic variation and the depletion of the B cell population during an infectious cycle, attempts to develop a vaccine have remained unachievable. With the absence of a vaccine, control of the disease has relied heavily on intensive screening measures and the use of drugs. The chemotherapeutics previously available for disease management were plagued by issues such as toxicity, resistance, and difficulty in administration. The approval of the latest and first oral drug, fexinidazole, is a major chemotherapeutic achievement for the treatment of human African trypanosomiasis in the past few decades. Timely and accurate diagnosis is essential for effective treatment, while poor compliance and resistance remain outstanding challenges. Drug discovery is on-going, and herein we review the recent advances in anti-trypanosomal drug discovery, including novel potential drug targets. The numerous challenges associated with disease eradication will also be addressed.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Maduma Mahlalela
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Adrienne L. Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Centre (BioBRU), Rhodes University, Makhanda 6139, South Africa;
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| |
Collapse
|
3
|
Monti L, Liu LJ, Varricchio C, Lucero B, Alle T, Yang W, Bem-Shalom I, Gilson M, Brunden KR, Brancale A, Caffrey CR, Ballatore C. Structure-Activity Relationships, Tolerability and Efficacy of Microtubule-Active 1,2,4-Triazolo[1,5- a ]pyrimidines as Potential Candidates to Treat Human African Trypanosomiasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.11.532093. [PMID: 36945407 PMCID: PMC10028969 DOI: 10.1101/2023.03.11.532093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Tubulin and microtubules (MTs) are potential protein targets to treat parasitic infections and our previous studies have shown that the triazolopyrimidine (TPD) class of MT- active compounds hold promise as antitrypanosomal agents. MT-targeting TPDs include structurally related but functionally diverse congeners that interact with mammalian tubulin at either one or two distinct interfacial binding sites; namely, the seventh and vinca sites, which are found within or between α,β-tubulin heterodimers, respectively. Evaluation of the activity of 123 TPD congeners against cultured Trypanosoma brucei enabled a robust quantitative structure-activity relationship (QSAR) model and the prioritization of two congeners for in vivo pharmacokinetics (PK), tolerability and efficacy studies. Treatment of T. brucei -infected mice with tolerable doses of TPDs 3 and 4 significantly decreased blood parasitemia within 24 h. Further, two once-weekly doses of 4 at 10 mg/kg significantly extended the survival of infected mice relative to infected animals treated with vehicle. Further optimization of dosing and/or the dosing schedule of these CNS-active TPDs may provide alternative treatments for human African trypanosomiasis.
Collapse
|
4
|
Kasozi KI, MacLeod ET, Welburn SC. Systematic Review and Meta-Analysis on Human African Trypanocide Resistance. Pathogens 2022; 11:pathogens11101100. [PMID: 36297157 PMCID: PMC9612373 DOI: 10.3390/pathogens11101100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background Human African trypanocide resistance (HATr) is a challenge for the eradication of Human African Trypansomiaisis (HAT) following the widespread emergence of increased monotherapy drug treatment failures against Trypanosoma brucei gambiense and T. b. rhodesiense that are associated with changes in pathogen receptors. Methods: Electronic searches of 12 databases and 3 Google search websites for human African trypanocide resistance were performed using a keyword search criterion applied to both laboratory and clinical studies. Fifty-one publications were identified and included in this study using the PRISMA checklist. Data were analyzed using RevMan and random effect sizes were computed for the statistics at the 95% confidence interval. Results: Pentamidine/melarsoprol/nifurtimox cross-resistance is associated with loss of the T. brucei adenosine transporter 1/purine 2 gene (TbAT1/P2), aquaglyceroporins (TbAQP) 2 and 3, followed by the high affinity pentamidine melarsoprol transporter (HAPT) 1. In addition, the loss of the amino acid transporter (AAT) 6 is associated with eflornithine resistance. Nifurtimox/eflornithine combination therapy resistance is associated with AAT6 and nitroreductase loss, and high resistance and parasite regrowth is responsible for treatment relapse. In clinical studies, the TbAT1 proportion of total random effects was 68% (95% CI: 38.0−91.6); I2 = 96.99% (95% CI: 94.6−98.3). Treatment failure rates were highest with melarsoprol followed by eflornithine at 41.49% (95% CI: 24.94−59.09) and 6.56% (3.06−11.25) respectively. HATr-resistant phenotypes used in most laboratory experiments demonstrated significantly higher pentamidine resistance than other trypanocides. Conclusion: The emergence of drug resistance across the spectrum of trypanocidal agents that are used to treat HAT is a major threat to the global WHO target to eliminate HAT by 2030. T. brucei strains were largely resistant to diamidines and the use of high trypanocide concentrations in clinical studies have proved fatal in humans. Studies to develop novel chemotherapeutical agents and identify alternative protein targets could help to reduce the emergence and spread of HATr.
Collapse
Affiliation(s)
- Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9JZ, UK
- School of Medicine, Kabale University, Kabale P.O. Box 317, Uganda
- Correspondence: (K.I.K.); (S.C.W.)
| | - Ewan Thomas MacLeod
- Infection Medicine, Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Susan Christina Welburn
- Infection Medicine, Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9JZ, UK
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University, International Campus, 718 East Haizhou Road, Haining 314400, China
- Correspondence: (K.I.K.); (S.C.W.)
| |
Collapse
|