1
|
Patra S, Patra D, Dey J. Camptothecin-loaded Surface-modified Nanostructured Lipid Carriers Consisting of L-Cysteine- and L-Cystine-derived Lipids: Physicochemical Characterization and In Vitro Evaluation. Chem Asian J 2025:e00180. [PMID: 40492322 DOI: 10.1002/asia.202500180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 05/26/2025] [Accepted: 05/30/2025] [Indexed: 06/12/2025]
Abstract
Camptothecin (CPT) is a potent chemotherapeutic agent used in the treatment of colorectal, breast, ovarian, colon, and stomach cancers. However, its clinical application has been significantly restricted due to several drawbacks, including poor water solubility, nonselective toxicity, drug resistance, and inherent instability. To address some of these challenges and to enhance the stability, solubility, and biological efficacy of CPT, in this work, we have attempted to explore nanoparticulate delivery strategies using nanostructured lipid carriers (NLCs) for the targeted delivery of CPT. We have employed L-cysteine- and L-cystine-derived lipids, C12-cys-C12 and [C12-cys]2, along with isopropyl palmitate, as a co-liquid lipid to produce surface-modified NLCs. L-cystine was incorporated into the lipid structure in order to exploit its redox-sensitive disulfide (S─S) bond for stimuli-responsive delivery of CPT. Sulfur-containing L-cysteine and its oxidized form L-cystine containing S─S bond is expected to enhance anticancer drug delivery by offering improved therapeutic efficacy and biocompatibility over conventional lipids. This was confirmed by the glutathione (GSH) assay. The biocompatibility of NLC formulations was determined by in vitro MTT assay. It has been shown that compared to free CPT and cysteinelated NLC-CPT, the cystinelated NLC-CPT is more effective in killing both human hepatoma (HuH7) and colon carcinoma (Caco-2) cells.
Collapse
Affiliation(s)
- Swagata Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Dipanwita Patra
- Department of Microbiology, University of Calcutta, Kolkata, 700019, India
| | - Joykrishna Dey
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
2
|
Li Z, Li K, Teng M, Li M, Sui X, Liu B, Tian B, Fu Q. Functionality-related characteristics of hydroxypropyl-β-cyclodextrin for the complexation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Martín-Encinas E, Selas A, Palacios F, Alonso C. The design and discovery of topoisomerase I inhibitors as anticancer therapies. Expert Opin Drug Discov 2022; 17:581-601. [PMID: 35321631 DOI: 10.1080/17460441.2022.2055545] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Cancer has been identified as one of the leading causes of death worldwide. The biological target of some anticancer agents is topoisomerase I, an enzyme involved in the relaxation of supercoiled DNA. The synthesis of new compounds with antiproliferative effect and behaving as topoisomerase I inhibitors has become an active field of research. Depending on their mechanism of inhibition, they can be classified as catalytic inhibitors or poisons. AREAS COVERED This review article summarizes the state of the art for the development of selective topoisomerase I inhibitors. Collected compounds showed inhibition of the enzyme, highlighting those approved for clinical use, the combination therapies developed, as well as related drawbacks and future focus. EXPERT OPINION Research related to topoisomerase I inhibitors in cancer therapy started with camptothecin (CPT). This compound was first selected as a good anticancer agent and then topoisomerase I was identified as its therapeutic target. Derivatives of CPT irinotecan, topotecan, and belotecan are the only clinically approved inhibitors. Currently, their limitations are being addressed by different stretegies. Future studies should focus not only on developing other active molecules but also on improving the bioavailability and pharmacokinetics of potent synthetic derivatives.
Collapse
Affiliation(s)
- Endika Martín-Encinas
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Asier Selas
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Concepción Alonso
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| |
Collapse
|
4
|
Huarte J, Espuelas S, Martínez-Oharriz C, Irache JM. Nanoparticles from Gantrez-based conjugates for the oral delivery of camptothecin. Int J Pharm X 2021; 3:100104. [PMID: 34825166 PMCID: PMC8604667 DOI: 10.1016/j.ijpx.2021.100104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022] Open
Abstract
Camptothecin (CPT) exhibits a number of challenges for its oral administration, including a low aqueous solubility, a lactone ring susceptible to hydrolysis, and an affinity to the intestinal P-gp. The aim of this work was to evaluate nanoparticles from Gantrez-based conjugates as carriers for the oral delivery of CPT. For this purpose two different conjugates (G-mPEG and G-HPCD), obtained by the covalent binding of either HP-β-CD or methoxy-PEG (m-PEG) to the polymer backbone of Gantrez™ AN, were synthetized and characterized. Both excipients (m-PEG and HPCD) were selected due to their reported abilities to stabilize the lactone ring of CPT and disturb the effect of intestinal P-gp. The resulting nanoparticles (G-mPEG-NP and G-HPCD-NP) presented a similar size (about 200 nm) and zeta potential (close to −35 mV); although, G-mPEG-NP presented a higher CPT payload than G-HPCD-NP. On the contrary, in rats, nanoparticles based on Gantrez conjugates appeared to be capable of crossing the protective mucus layer and reach the intestinal epithelium, whereas conventional Gantrez nanoparticles displayed a mucoadhesive profile. Finally, the pharmacokinetic study revealed that both formulations were able to enhance the relative oral bioavailability of CPT; although this value was found to be 2.6-times higher for G-mPEG-NP than for G-HPCD-NP.
Collapse
Affiliation(s)
- Judit Huarte
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Socorro Espuelas
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | | | - Juan M Irache
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| |
Collapse
|
5
|
Enhanced Stability and Bioactivity of Natural Anticancer Topoisomerase I Inhibitors through Cyclodextrin Complexation. Pharmaceutics 2021; 13:pharmaceutics13101609. [PMID: 34683902 PMCID: PMC8537677 DOI: 10.3390/pharmaceutics13101609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022] Open
Abstract
The use of cyclodextrins as drug nano-carrier systems for drug delivery is gaining importance in the pharmaceutical industry due to the interesting pharmacokinetic properties of the resulting inclusion complexes. In the present work, complexes of the anti-cancer alkaloids camptothecin and luotonin A have been prepared with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. These cyclodextrin complexes were characterized by nuclear magnetic resonance spectroscopy (NMR). The variations in the 1H-NMR and 13C-NMR chemical shifts allowed to establish the inclusion modes of the compounds into the cyclodextrin cavities, which were supported by docking and molecular dynamics studies. The efficiency of the complexation was quantified by UV-Vis spectrophotometry and spectrofluorimetry, which showed that the protonation equilibria of camptothecin and luotonin A were drastically hampered upon formation of the inclusion complexes. The stabilization of camptothecin towards hydrolysis inside the cyclodextrin cavity was verified by the quantitation of the active lactone form by reverse phase liquid chromatography fluorimetric detection, both in basic conditions and in the presence of serum albumin. The antitumor activity of luotonin A and camptothecin complexes were studied in several cancer cell lines (breast, lung, hepatic carcinoma, ovarian carcinoma and human neuroblastoma) and an enhanced activity was found compared to the free alkaloids, particularly in the case of hydroxypropyl-β-cyclodextrin derivatives. This result shows that the cyclodextrin inclusion strategy has much potential towards reaching the goal of employing luotonin A or its analogues as stable analogues of camptothecin.
Collapse
|
6
|
Durk MR, Jones NS, Liu J, Nagapudi K, Mao C, Plise EG, Wong S, Chen JZ, Chen Y, Chinn LW, Chiang PC. Understanding the Effect of Hydroxypropyl-β-Cyclodextrin on Fenebrutinib Absorption in an Itraconazole-Fenebrutinib Drug-Drug Interaction Study. Clin Pharmacol Ther 2020; 108:1224-1232. [PMID: 32535897 PMCID: PMC7689742 DOI: 10.1002/cpt.1943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/28/2020] [Indexed: 11/07/2022]
Abstract
Cyclodextrins are widely used pharmaceutical excipients, particularly for insoluble compounds dosed orally, such as the oral solution of itraconazole, which is frequently used in clinical drug–drug interaction studies to inhibit cytochrome P450 3A. Since cyclodextrins act by forming inclusion complexes with their coformulated drug, they could have an unintended consequence of affecting absorption if they form a strong complex with the potential victim drug in an itraconazole drug–drug interaction study. This observation was made in a drug–drug interaction study with the Bruton’s tyrosine kinase (BTK) inhibitor fenebrutinib and itraconazole, in which, relative to the control group, the expected increase in fenebrutinib maximum plasma concentration (Cmax) was not observed in the itraconazole group, and a delay in time to reach maximum plasma concentration (Tmax) was observed in the itraconazole group. The in vitro binding constant between fenebrutinib and hydroxypropyl‐β‐cyclodextrin was determined to be 2 × 105 M−1, and the apparent permeability of fenebrutinib across a Madin‐Darby canine kidney cell monolayer decreased in a cyclodextrin concentration‐dependent manner. This observation was confirmed in vivo, in a pentagastrin‐pretreated dog model, in which fenebrutinib was administered with or without cyclodextrin; a reduction in Cmax, a prolonged Tmax, and increased fenebrutinib recovery in feces replicated the previous observation in healthy volunteers and supported the hypothesis that complexation with cyclodextrin decreased rate and extent of fenebrutinib absorption. Physiologically‐based pharmacokinetic modeling was used to translate the in vitro effect of cyclodextrin on fenebrutinib apparent permeability to the in vivo effect on absorption, which was then confirmed using the in vivo dog pharmacokinetic data.
Collapse
Affiliation(s)
- Matthew R Durk
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Nicholas S Jones
- Department of Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Jia Liu
- Department of Small Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California, USA
| | - Karthik Nagapudi
- Department of Small Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California, USA
| | - Chen Mao
- Department of Small Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California, USA
| | - Emile G Plise
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Susan Wong
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Jacob Z Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Yuan Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Leslie W Chinn
- Department of Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Po-Chang Chiang
- Department of Small Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
7
|
Electrospun Composites of Polycaprolactone and Porous Silicon Nanoparticles for the Tunable Delivery of Small Therapeutic Molecules. NANOMATERIALS 2018; 8:nano8040205. [PMID: 29596352 PMCID: PMC5923535 DOI: 10.3390/nano8040205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/31/2022]
Abstract
This report describes the use of an electrospun composite of poly(ε-caprolactone) (PCL) fibers and porous silicon (pSi) nanoparticles (NPs) as an effective system for the tunable delivery of camptothecin (CPT), a small therapeutic molecule. Both materials are biodegradable, abundant, low-cost, and most importantly, have no known cytotoxic effects. The composites were treated with and without sodium hydroxide (NaOH) to investigate the wettability of the porous network for drug release and cell viability measurements. CPT release and subsequent cell viability was also investigated. We observed that the cell death rate was not only affected by the addition of our CPT carrier, pSi, but also by increasing the rate of dissolution via treatment with NaOH. This is the first example of loading pSi NPs as a therapeutics nanocarrier into electronspun PCL fibers and this system opens up new possibilities for the delivery of molecular therapeutics.
Collapse
|
8
|
Encapsulation Mechanism of Oxyresveratrol by β-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin and Computational Analysis. Molecules 2017; 22:molecules22111801. [PMID: 29088059 PMCID: PMC6150350 DOI: 10.3390/molecules22111801] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
In this study, the encapsulation mechanism of oxyresveratrol and β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) was studied. As this research shows, oxyresveratrol and two cyclodextrins (CDs) were able to form inclusion complexes in a 1:1 stoichiometry. However, the interaction with HP-β-CD was more efficient, showing up as higher encapsulation constant (KF) (35,864.72 ± 3415.89 M−1). The KF values exhibited a strong dependence on temperature and pH, which decreased as they increased. From the thermodynamic parameters (ΔH0, ΔS0, and ΔG0) of the oxyresveratrol loaded β-CD (oxyresveratrol-β-CD) and HP-β-CD (oxyresveratrol-HP-β-CD), it could be seen that the complexation process was spontaneous and exothermic, and the main driving forces between oxyrsveratrol and CDs were hydrogen bonding and van der waals force. Besides, molecular docking combined with 1H-NMR were used to explain the most possible mode of interactions between oxyresveratrol and CDs.
Collapse
|
9
|
|
10
|
Chen C, Tao R, Ding D, Kong D, Fan A, Wang Z, Zhao Y. Ratiometric co-delivery of multiple chemodrugs in a single nanocarrier. Eur J Pharm Sci 2017. [DOI: 10.1016/j.ejps.2017.06.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Monteiro AP, Caminhas LD, Ardisson JD, Paniago R, Cortés ME, Sinisterra RD. Magnetic nanoparticles coated with cyclodextrins and citrate for irinotecan delivery. Carbohydr Polym 2017; 163:1-9. [DOI: 10.1016/j.carbpol.2016.11.091] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
|
12
|
Sun T, Wang Q, Bi Y, Chen X, Liu L, Ruan C, Zhao Z, Jiang C. Supramolecular amphiphiles based on cyclodextrin and hydrophobic drugs. J Mater Chem B 2017; 5:2644-2654. [DOI: 10.1039/c6tb03272a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein we report a novel “supra-prodrug-type” superamphiphile design: via a redox-sensitive self-immolative linker, a hydrophobic drug molecule was labeled with an azobenzene moiety, which was designed to be capped by a hydrophilic cyclodextrin (CD) molecule.
Collapse
Affiliation(s)
- Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education)
- State Key Laboratory of Medical Neurobiology
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University
| | - Qingbing Wang
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Yunke Bi
- Department of Neurosurgery
- Shanghai First People's Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 201620
| | - Xinli Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education)
- State Key Laboratory of Medical Neurobiology
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University
| | - Lisha Liu
- Key Laboratory of Smart Drug Delivery (Ministry of Education)
- State Key Laboratory of Medical Neurobiology
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University
| | - Chunhui Ruan
- Key Laboratory of Smart Drug Delivery (Ministry of Education)
- State Key Laboratory of Medical Neurobiology
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University
| | - Zhifeng Zhao
- Key Laboratory of Smart Drug Delivery (Ministry of Education)
- State Key Laboratory of Medical Neurobiology
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)
- State Key Laboratory of Medical Neurobiology
- Department of Pharmaceutics
- School of Pharmacy
- Fudan University
| |
Collapse
|
13
|
McInnes SJP, Michl TD, Delalat B, Al-Bataineh SA, Coad BR, Vasilev K, Griesser HJ, Voelcker NH. "Thunderstruck": Plasma-Polymer-Coated Porous Silicon Microparticles As a Controlled Drug Delivery System. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4467-4476. [PMID: 26836366 DOI: 10.1021/acsami.5b12433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Controlling the release kinetics from a drug carrier is crucial to maintain a drug's therapeutic window. We report the use of biodegradable porous silicon microparticles (pSi MPs) loaded with the anticancer drug camphothecin, followed by a plasma polymer overcoating using a loudspeaker plasma reactor. Homogenous "Teflon-like" coatings were achieved by tumbling the particles by playing AC/DC's song "Thunderstruck". The overcoating resulted in a markedly slower release of the cytotoxic drug, and this effect correlated positively with the plasma polymer coating times, ranging from 2-fold up to more than 100-fold. Ultimately, upon characterizing and verifying pSi MP production, loading, and coating with analytical methods such as time-of-flight secondary ion mass spectrometry, scanning electron microscopy, thermal gravimetry, water contact angle measurements, and fluorescence microscopy, human neuroblastoma cells were challenged with pSi MPs in an in vitro assay, revealing a significant time delay in cell death onset.
Collapse
Affiliation(s)
- Steven J P McInnes
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Thomas D Michl
- Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Bahman Delalat
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Adelaide, South Australia 5001, Australia
| | - Sameer A Al-Bataineh
- Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Bryan R Coad
- Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Krasimir Vasilev
- Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Hans J Griesser
- Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Adelaide, South Australia 5001, Australia
| |
Collapse
|
14
|
McInnes SJP, Szili EJ, Al-Bataineh SA, Vasani RB, Xu J, Alf ME, Gleason KK, Short RD, Voelcker NH. Fabrication and Characterization of a Porous Silicon Drug Delivery System with an Initiated Chemical Vapor Deposition Temperature-Responsive Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:301-8. [PMID: 26654169 DOI: 10.1021/acs.langmuir.5b03794] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This paper reports on the fabrication of a pSi-based drug delivery system, functionalized with an initiated chemical vapor deposition (iCVD) polymer film, for the sustainable and temperature-dependent delivery of drugs. The devices were prepared by loading biodegradable porous silicon (pSi) with a fluorescent anticancer drug camptothecin (CPT) and coating the surface with temperature-responsive poly(N-isopropylacrylamide-co-diethylene glycol divinyl ether) (pNIPAM-co-DEGDVE) or non-stimulus-responsive poly(aminostyrene) (pAS) via iCVD. CPT released from the uncoated oxidized pSi control with a burst release fashion (∼21 nmol/(cm(2) h)), and this was almost identical at temperatures both above (37 °C) and below (25 °C) the lower critical solution temperature (LCST) of the switchable polymer used, pNIPAM-co-DEGDVE (28.5 °C). In comparison, the burst release rate from the pSi-pNIPAM-co-DEGDVE sample was substantially slower at 6.12 and 9.19 nmol/(cm(2) h) at 25 and 37 °C, respectively. The final amount of CPT released over 16 h was 10% higher at 37 °C compared to 25 °C for pSi coated with pNIPAM-co-DEGDVE (46.29% vs 35.67%), indicating that this material can be used to deliver drugs on-demand at elevated temperatures. pSi coated with pAS also displayed sustainable drug delivery profiles, but these were independent of the release temperature. These data show that sustainable and temperature-responsive delivery systems can be produced by functionalization of pSi with iCVD polymer films. Benefits of the iCVD approach include the application of the iCVD coating after drug loading without causing degradation of the drug commonly caused by exposure to factors such as solvents or high temperatures. Importantly, the iCVD process is applicable to a wide array of surfaces as the process is independent of the surface chemistry and pore size of the nanoporous matrix being coated.
Collapse
Affiliation(s)
| | | | | | | | - Jingjing Xu
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Mahriah E Alf
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Karen K Gleason
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|
15
|
Kuttiyawong K, Saehu S, Ito K, Pongsawasdi P. Synthesis of large-ring cyclodextrin from tapioca starch by amylomaltase and complex formation with vitamin E acetate for solubility enhancement. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.10.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Luo X, Zhang H, Chen M, Wei J, Zhang Y, Li X. Antimetastasis and antitumor efficacy promoted by sequential release of vascular disrupting and chemotherapeutic agents from electrospun fibers. Int J Pharm 2014; 475:438-49. [PMID: 25218185 DOI: 10.1016/j.ijpharm.2014.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/17/2014] [Accepted: 09/06/2014] [Indexed: 01/15/2023]
Abstract
The vasculature in tumor microenvironment plays important roles in the tumor growth and metastasis, and the combination of vascular disrupting agents with chemotherapeutic drugs should be effective in inhibiting tumor progression. But the dosing schedules are essential to achieve a balance between vascular collapse and intratumoral uptake of chemotherapeutic agents. In the current study, emulsion and blend electrospinning were used to create compartmental fibers accommodating both combretastatin A-4 (CA4) and hydroxycamptothecin (HCPT). The release durations of CA4 and HCPT were modulated through the structure of fibers for dual drug loadings and the inoculation of 2-hydroxypropyl-β-cyclodextrin in fiber matrices. Under a noncontact cell coculture in Transwell, the sequential release of CA4 and HCPT indicated a sequential killing of endothelial and tumor cells. In an orthotopic breast tumor model, all the CA4/HCPT-loaded fibers showed superior antitumor efficacy and higher survival rate than fibers with loaded individual drug. Compared with fibrous mats with infiltrated free CA4 and fibers with extended release of CA4 for over 30 days, fibers with sustained release of CA4 for 3-7 days from CA4/HCPT-loaded fibers resulted in the most significant antitumor efficacy, tumor vasculature destruction, and the least tumor metastasis to lungs. A judicious selection of CA4 release durations in the combination therapy should be essential to enhance the tumor suppression efficacy and antimetastasis activity.
Collapse
Affiliation(s)
- Xiaoming Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Hong Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Maohua Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Jiaojun Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Yun Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
17
|
Castillo PM, de la Mata M, Casula MF, Sánchez-Alcázar JA, Zaderenko AP. PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1312-9. [PMID: 25247114 PMCID: PMC4168894 DOI: 10.3762/bjnano.5.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/25/2014] [Indexed: 05/27/2023]
Abstract
Camptothecin (CPT; (S)-(+)-4-ethyl-4-hydroxy-1H-pyrano[3',4':6,7]indolizino[1,2-b]quinoline-3,14-(4H,12H)-dione) is a highly cytotoxic natural alkaloid that has not yet found use as chemotherapeutic agent due to its poor water-solubility and chemical instability and, as a consequence, no effective administration means have been designed. In this work, camptothecin has been successfully loaded into iron oxide superparamagnetic nanoparticles with an average size of 14 nm. It was found that surface modification of the nanoparticles by polyethylene glycol enables loading a large amount of camptothecin. While the unloaded nanoparticles do not induce apoptosis in the H460 lung cancer cell line, the camptothecin-loaded nanoparticle formulations exhibit remarkable pro-apoptotic activity. These results indicate that camptothecin retains its biological activity after loading onto the magnetic nanoparticles. The proposed materials represent novel materials based on naturally occurring bioactive molecules loaded onto nanoparticles to be used as chemotherapeutic formulations. The procedure seems apt to be extended to other active molecules extracted from natural products. In addition, these materials offer the potential of being further implemented for combined imaging and therapeutics, as magnetic nanoparticles are known to be multifunctional tools for biomedicine.
Collapse
Affiliation(s)
- Paula M Castillo
- INSTM and Dipartimento di Scienze Chimiche e Geologiche. Università di Cagliari, Italy
- Departamento de Sistemas Físicos, Químicos y Naturales. Universidad Pablo de Olavide, Sevilla, Spain
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Sevilla, Spain
| | - Maria F Casula
- INSTM and Dipartimento di Scienze Chimiche e Geologiche. Università di Cagliari, Italy
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Sevilla, Spain
| | - Ana P Zaderenko
- Departamento de Sistemas Físicos, Químicos y Naturales. Universidad Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
18
|
Felton LA, Popescu C, Wiley C, Esposito EX, Lefevre P, Hopfinger AJ. Experimental and computational studies of physicochemical properties influence NSAID-cyclodextrin complexation. AAPS PharmSciTech 2014; 15:872-81. [PMID: 24718709 DOI: 10.1208/s12249-014-0110-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/13/2014] [Indexed: 11/30/2022] Open
Abstract
The objective of this research was to investigate physicochemical properties of an active pharmaceutical ingredient (API) that influence cyclodextrin complexation through experimental and computational studies. Native β-cyclodextrin (B-CD) and two hydroxypropyl derivatives were first evaluated by conventional phase solubility experiments for their ability to complex four poorly water-soluble nonsteroidal anti-inflammatory drugs (NSAIDs). Differential scanning calorimetry was used to confirm complexation. Secondly, molecular modeling was used to estimate Log P and aqueous solubility (S o) of the NSAIDs. Molecular dynamics simulations (MDS) were used to investigate the thermodynamics and geometry of drug-CD cavity docking. NSAID solubility increased linearly with increasing CD concentration for the two CD derivatives (displaying an AL profile), whereas increases in drug solubility were low and plateaued in the B-CD solutions (type B profile). The calculated Log P and S o of the NSAIDs were in good concordance with experimental values reported in the literature. Side chain substitutions on the B-CD moiety did not significantly influence complexation. Explicitly, complexation and the associated solubility increase were mainly dependent on the chemical structure of the NSAID. MDS indicated that each NSAID-CD complex had a distinct geometry. Moreover, complexing energy had a large, stabilizing, and fairly constant hydrophobic component for a given CD across the NSAIDs, while electrostatic and solvation interaction complex energies were quite variable but smaller in magnitude.
Collapse
|
19
|
Kessler Z, Yanowitz J. Methodological considerations for mutagen exposure in C. elegans. Methods 2014; 68:441-9. [PMID: 24768858 PMCID: PMC5449201 DOI: 10.1016/j.ymeth.2014.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 11/15/2022] Open
Abstract
Maintenance of the genome requires the continual repair of DNA lesions. Exposure of nematodes to DNA damage-inducing agents is a powerful method to rapidly ascribe a role for specific genes in DNA repair and to define epistatic relationships to other repair genes which allows for the construction of repair pathways. Despite the extensive use of these agents, however, differences in dosing, timing, and handling makes it difficult to compare results across laboratories. We provide herein a consideration of the parameters that influence the results of these exposures and detailed protocols for the exposure to mutagenic inducing agents.
Collapse
Affiliation(s)
- Zebulin Kessler
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, United States
| | - Judith Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, United States.
| |
Collapse
|
20
|
Vangara KK, Ali HI, Lu D, Liu JL, Kolluru S, Palakurthi S. SN-38-cyclodextrin complexation and its influence on the solubility, stability, and in vitro anticancer activity against ovarian cancer. AAPS PharmSciTech 2014; 15:472-82. [PMID: 24477982 DOI: 10.1208/s12249-013-0068-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 12/06/2013] [Indexed: 11/30/2022] Open
Abstract
SN-38, an active metabolite of irinotecan, is up to 1,000-fold more potent than irinotecan. But the clinical use of SN-38 is limited by its extreme hydrophobicity and instability at physiological pH. To enhance solubility and stability, SN-38 was complexed with different cyclodextrins (CDs), namely, sodium sulfobutylether β-cyclodextrin (SBEβCD), hydroxypropyl β-cyclodextrin, randomly methylated β-cyclodextrin, and methyl β-cyclodextrin, and their influence on SN-38 solubility, stability, and in vitro cytotoxicity was studied against ovarian cancer cell lines (A2780 and 2008). Phase solubility studies were conducted to understand the pattern of SN-38 solubilization. SN-38-βCD complexes were characterized by differential scanning calorimetry (DSC), X-ray powder diffraction analysis (XRPD), and Fourier transform infrared (FTIR). Stability of SN-38-SBEβCD complex in pH 7.4 phosphate-buffered saline was evaluated and compared against free SN-38. Phase solubility studies revealed that SN-38 solubility increased linearly as a function of CD concentration and the linearity was characteristic of an AP-type system. Aqueous solubility of SN-38 was enhanced by about 30-1,400 times by CD complexation. DSC, XRPD, and FTIR studies confirmed the formation of inclusion complexes, and stability studies revealed that cyclodextrin complexation significantly increased the hydrolytic stability of SN-38 at physiological pH 7.4. Cytotoxicity of SN-38-SBEβCD complex was significantly higher than SN-38 and irinotecan in both A2780 and 2008 cell lines. Results suggest that SBEβCD encapsulated SN-38 deep into the cavity forming stable inclusion complex and as a result increased the solubility, stability, and cytotoxicity of SN-38. It may be concluded that preparation of inclusion complexes with SBEβCD is a suitable approach to overcome the solubility and stability problems of SN-38 for future clinical applications.
Collapse
|
21
|
Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration. Eur J Pharm Biopharm 2013; 85:488-502. [DOI: 10.1016/j.ejpb.2013.08.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/29/2013] [Accepted: 08/17/2013] [Indexed: 01/17/2023]
|
22
|
Abstract
AbstractThe solubilisation of poorly soluble antineoplastic drug camptothecin by nonionic surfactants (polysorbates and octylphenol ethoxylates) and alkyldimethylamine oxide surfactants with the alkyl chain length 8 to 16 carbon atoms was investigated. The hydrophobicity of the solubilising agent turned out to be the primary structural parameter controlling the solubility efficiency of camptothecin in an aqueous solution. The quantitative parameter of solubilisation (drug loading coefficient) provided values in the range of 0.1–1.2% and 0.1–1.0% for alkyldimethylamine oxides and nonionic surfactants, respectively. The decreasing number of oxyethylene units and the extension of the hydrophobic part of nonionic surfactant molecule resulted in the increase of camptothecin solubility. From the dynamic light scattering measurements, the hydrodynamic diameter values of camptothecin-loaded alkyldimethylamine oxide and nonionic micelles were found in the range of 4–42 nm and 5–120 nm, respectively. The experimental values confirmed the increase in micellar size with the increasing alkyl chain length. The values of the packing parameter of camptothecin-loaded dodecyldimethylamine oxide micelles indicate their spherical shape at all the investigated surfactant concentrations. A simple computer model of camptothecin-loaded dodecyldimethylamine oxide micelle provided the diameter of the structure cross section which is consistent with the experimental values.
Collapse
|
23
|
Brain delivery of camptothecin by means of solid lipid nanoparticles: formulation design, in vitro and in vivo studies. Int J Pharm 2012; 439:49-62. [PMID: 23046667 DOI: 10.1016/j.ijpharm.2012.09.054] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/26/2012] [Accepted: 09/29/2012] [Indexed: 02/05/2023]
Abstract
For the purpose of brain delivery upon intravenous injection, formulations of camptothecin-loaded solid lipid nanoparticles (SLN), prepared by hot high pressure homogenisation, were designed. Incorporation of camptothecin in the hydrophobic and acidic environment of SLN matrix was chosen to stabilise the lactone ring, which is essential for its antitumour activity, and for avoiding premature loss of drug on the way to target camptothecin to the brain. A multivariate approach was used to assess the influence of the qualitative and quantitative composition on the physicochemical properties of camptothecin-loaded SLN in comparison to plain SLN. Mean particle sizes of ≤200 nm, homogenous size distributions and high encapsulation efficiencies (>90%) were achieved for the most suitable formulations. In vitro release studies in plasma, showed a prolonged release profile of camptothecin from SLN, confirming the physical stability of the particles under physiological pH. A higher affinity of the SLN to the porcine brain capillary endothelial cells (BCEC) was shown in comparison to macrophages. MTT studies in BCEC revealed a moderate decrease in the cell viability of camptothecin, when incorporated in SLN compared to free camptothecin in solution. In vivo studies in rats showed that fluorescently labelled SLN were detected in the brain after i.v. administration. This study indicates that the camptothecin-loaded SLN are a promising drug brain delivery system worth to explore further for brain tumour therapy.
Collapse
|
24
|
McInnes SJP, Szili EJ, Al-Bataineh SA, Xu J, Alf ME, Gleason KK, Short RD, Voelcker NH. Combination of iCVD and porous silicon for the development of a controlled drug delivery system. ACS APPLIED MATERIALS & INTERFACES 2012; 4:3566-3574. [PMID: 22720638 DOI: 10.1021/am300621k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We describe a pH responsive drug delivery system which was fabricated using a novel approach to functionalize biodegradeable porous silicon (pSi) by initiated chemical vapor deposition (iCVD). The assembly involved first loading a model drug (camptothecin, CPT) into the pores of the pSi matrix followed by capping the pores with a thin pH responsive copolymer film of poly(methacrylic acid-co-ethylene dimethacrylate) (p(MAA-co-EDMA)) via iCVD. Release of CPT from uncoated pSi was identical in two buffers at pH 1.8 and pH 7.4. In contrast, the linear release rate of CPT from the pSi matrix with the p(MAA-co-EDMA) coating was dependent on the pH; release of CPT was more than four times faster at pH 7.4 (13.1 nmol/(cm(2) h)) than at pH 1.8 (3.0 nmol/(cm(2) h)). The key advantage of this drug delivery approach over existing ones based on pSi is that the iCVD coating can be applied to the pSi matrix after drug loading without degradation of the drug because the process does not expose the drug to harmful solvents or high temperatures and is independent of the surface chemistry and pore size of the nanoporous matrix.
Collapse
Affiliation(s)
- Steven J P McInnes
- School of Chemical and Physical Sciences, Flinders University , Bedford Park, SA 5042 Australia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Antitumor activities of emulsion electrospun fibers with core loading of hydroxycamptothecin via intratumoral implantation. Int J Pharm 2012; 425:19-28. [DOI: 10.1016/j.ijpharm.2012.01.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/12/2011] [Accepted: 01/07/2012] [Indexed: 11/24/2022]
|
26
|
McInnes SJP, Irani Y, Williams KA, Voelcker NH. Controlled drug delivery from composites of nanostructured porous silicon and poly(L-lactide). Nanomedicine (Lond) 2012; 7:995-1016. [PMID: 22394185 DOI: 10.2217/nnm.11.176] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIMS Porous silicon (pSi) and poly(L-lactide) (PLLA) both display good biocompatibility and tunable degradation behavior, suggesting that composites of both materials are suitable candidates as biomaterials for localized drug delivery into the human body. The combination of a pliable and soft polymeric material with a hard inorganic porous material of high drug loading capacity may engender improved control over degradation and drug release profiles and be beneficial for the preparation of advanced drug delivery devices and biodegradable implants or scaffolds. MATERIALS & METHODS In this work, three different pSi and PLLA composite formats were prepared. The first format involved grafting PLLA from pSi films via surface-initiated ring-opening polymerization (pSi-PLLA [grafted]). The second format involved spin coating a PLLA solution onto oxidized pSi films (pSi-PLLA [spin-coated]) and the third format consisted of a melt-cast PLLA monolith containing dispersed pSi microparticles (pSi-PLLA [monoliths]). The surface characterization of these composites was performed via infrared spectroscopy, scanning electron microscopy, atomic force microscopy and water contact angle measurements. The composite materials were loaded with a model cytotoxic drug, camptothecin (CPT). Drug release from the composites was monitored via fluorimetry and the release profiles of CPT showed distinct characteristics for each of the composites studied. RESULTS In some cases, controlled CPT release was observed for more than 5 days. The PLLA spin coat on pSi and the PLLA monolith containing pSi microparticles both released a CPT payload in accordance with the Higuchi and Ritger-Peppas release models. Composite materials were also brought into contact with human lens epithelial cells to determine the extent of cytotoxicity. CONCLUSION We observed that all the CPT containing materials were highly efficient at releasing bioactive CPT, based on the cytotoxicity data.
Collapse
Affiliation(s)
- Steven J P McInnes
- Flinders University, School of Chemical & Physical Sciences, Adelaide, Australia
| | | | | | | |
Collapse
|
27
|
PVA engineered microcapsules for targeted delivery of camptothecin to HeLa cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2011.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
|
29
|
Xiao W, Chen WH, Li C, Chen JX, Zhang XZ, Zhuo RX. A plug and play polymeric template driven by supramolecular interactions. J Biomed Mater Res A 2011; 100:149-54. [PMID: 21997960 DOI: 10.1002/jbm.a.33254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 11/08/2022]
Abstract
A new "plug and play" polymeric template with the driving force of host-guest interaction between β-CD and naphthalene-modified functional groups was designed and studied. Multiple functional groups can be loaded into the template directly and conveniently. Importantly, the "plug and play" effect of the polymeric template is reversible and the functional groups could be removed from the polymeric template conveniently by adding AD-HCl. The studies on the cell viability and phagocytosis proved that the loading and unloading process of this template could be realized in vitro.
Collapse
Affiliation(s)
- Wang Xiao
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
di Cagno M, Stein PC, Skalko-Basnet N, Brandl M, Bauer-Brandl A. Solubilization of ibuprofen with β-cyclodextrin derivatives: Energetic and structural studies. J Pharm Biomed Anal 2011; 55:446-51. [DOI: 10.1016/j.jpba.2011.02.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 11/28/2022]
|
31
|
Kang SK, Lee OS, Chang SK, Chung DS, Kim HS, Chung TD. Formation of a Unique 1:2 Calcium-Calixquinone Complex in Aqueous Media. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.3.793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Jiang Y, Sha X, Zhang W, Fang X. Complex of 9-nitro-camptothecin in hydroxypropyl-β-cyclodextrin: In vitro and in vivo evaluation. Int J Pharm 2010; 397:116-21. [DOI: 10.1016/j.ijpharm.2010.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/01/2010] [Accepted: 07/08/2010] [Indexed: 11/16/2022]
|
33
|
Xie C, Li X, Luo X, Yang Y, Cui W, Zou J, Zhou S. Release modulation and cytotoxicity of hydroxycamptothecin-loaded electrospun fibers with 2-hydroxypropyl-β-cyclodextrin inoculations. Int J Pharm 2010; 391:55-64. [DOI: 10.1016/j.ijpharm.2010.02.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 01/04/2010] [Accepted: 02/10/2010] [Indexed: 11/15/2022]
|
34
|
Foulon C, Tedou J, Queruau Lamerie T, Vaccher C, Bonte J, Goossens J. Assessment of the complexation degree of camptothecin derivatives and cyclodextrins using spectroscopic and separative methodologies. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Hirlekar R, Kadam V. Preparation and characterization of inclusion complexes of carvedilol with methyl-β-cyclodextrin. J INCL PHENOM MACRO 2008. [DOI: 10.1007/s10847-008-9506-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Zhang X, Zhang Y, Zhong D, Chen Y, Li S. Investigation and Physicochemical Characterization of Clarithromycin–Citric Acid–Cyclodextrins Ternary Complexes. Drug Dev Ind Pharm 2008; 33:163-71. [PMID: 17454048 DOI: 10.1080/03639040600832801] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The purpose of this study was to investigate the effect of citric acid (CA) on the complexation of clarithromycin (CLM) with beta-cyclodextrin (betaCD) in aqueous solutions and in the solid state. A phase solubility study revealed a positive effect of CA on the drug solubility. A B(s)-type solubility with an apparent stability constant (K(c)) of 102.4 M(-1) was obtained for CLM in betaCD solution and 161.2 M(-1) for CLM in 6 mM betaCD solution. Solid ternary complexes were prepared by coevaporation and lyophilization. CLM-betaCD-CA interactions were studied in the solid state by differential scanning calorimetry (DSC), infrared spectroscopy, scanning electron microscopy and X-ray diffractometry. A part of the guest molecule was located in the betaCD host cavity. The results obtained suggest that the lyophilization method yields a higher degree of amorphous entity than coevaporation.
Collapse
Affiliation(s)
- Xiangrong Zhang
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University, Shenyang, PR China
| | | | | | | | | |
Collapse
|
37
|
Potential of poly(amidoamine) dendrimers as drug carriers of camptothecin based on encapsulation studies. Eur J Med Chem 2008; 43:1791-5. [DOI: 10.1016/j.ejmech.2007.09.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Revised: 09/24/2007] [Accepted: 09/24/2007] [Indexed: 11/22/2022]
|
38
|
Liu YY, Yu Y, Zhang GB, Tang MF. Preparation, characterization, and controlled release of novel nanoparticles based on MMA/beta-CD copolymers. Macromol Biosci 2008; 7:1250-7. [PMID: 17724789 DOI: 10.1002/mabi.200700101] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A series of random copolymers with different beta-cyclodextrin contents were synthesized by radical copolymerization of MMA with a monovinyl beta-CD monomer. The copolymers were characterized with IR spectroscopy, elemental analysis, DSC, and TGA. Based on these copolymers, their nanoparticles were prepared by using DMF, water, and acetone as solvents. Aqueous dispersions of the nanoparticles were further obtained by dialysis against water. Zetasizer Nano-ZS dynamic light scattering and transmission electron microscopy were employed to characterize the nanoparticles. Using camptothecin as a model drug molecule, the encapsulation efficiency and release behavior of the nanoparticles were investigated.
Collapse
Affiliation(s)
- Yu-Yang Liu
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710072, China.
| | | | | | | |
Collapse
|
39
|
Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 2007; 59:645-66. [PMID: 17601630 DOI: 10.1016/j.addr.2007.05.012] [Citation(s) in RCA: 1300] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 05/10/2007] [Indexed: 10/23/2022]
Abstract
Cyclodextrins are useful functional excipients that have enjoyed widespread attention and use. The basis for this popularity from a pharmaceutical standpoint, is the ability of these materials to interact with poorly water-soluble drugs and drug candidates resulting in an increase in their apparent water solubility. The mechanism for this solubilization is rooted in the ability of cyclodextrin to form non-covalent dynamic inclusion complexes in solution. Other solubilizing attribute may include the ability to form non-inclusion based complexes, the formation of aggregates and related domains and the ability of cyclodextrins to form and stabilize supersaturated drug solutions. The increase in solubility also can increase dissolution rate and thus improve the oral bioavailability of BCS Class II and IV materials. A number of cyclodextrin-based products have reached the market based on their ability to camouflage undesirable physicochemical properties. This review is intended to give a general background to the use of cyclodextrin as solubilizers as well as highlight kinetic and thermodynamic tools and parameters useful in the study of drug solubilization by cyclodextrins.
Collapse
Affiliation(s)
- Marcus E Brewster
- Chemical and Pharmaceutical Development, Johnson & Johnson Pharmaceutical Research and Development, Janssen Pharmaceutica, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | | |
Collapse
|
40
|
Moribe K, Fujito T, Tozuka Y, Yamamoto K. Solubility-dependent complexation of active pharmaceutical ingredients with trimethyl-β-cyclodextrin under supercritical fluid condition. J INCL PHENOM MACRO 2007. [DOI: 10.1007/s10847-006-9175-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Goossens JF, Mahieu C, Dias N, Bailly C, Principe P, Bonte JP, Lansiaux A, Vaccher C, Foulon C. Chiral capillary electrophoretic determination of the enantiomeric purity of homocamptothecin derivatives, promising antitumor topoisomerase I inhibitors, using highly sulfated CDs and fluorescence detection. Electrophoresis 2006; 27:4717-29. [PMID: 17091464 DOI: 10.1002/elps.200600143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
EKC methods for the enantiomeric resolution of homocamptothecin derivatives, potent anticancer agents targeting DNA topoisomerase I selected for clinical trials, were developed using highly sulfated beta-CD as chiral selectors at acidic pH. Optimal electrophoretic conditions, with migration times under 15 min, were as follows: for the neutral homocamptothecin analog 1, a BGE of 75 mM phosphate buffer pH 2.5 (H(3)PO(4) + triethanolamine)/ACN - 95/5 v/v, with 7.5% w/v highly S-beta-CD, an applied field of 0.2 kV/cm and a fused capillary temperature control of 30 +/- 0.1 degrees C (typical current approximately 175 microA); for the cationic homocamptothecin 2, a BGE of 25 mM phosphate buffer pH 2.5 (H(3)PO(4) + TEA)/ACN - 90/10 v/v, with 2.5% w/v highly S-beta-CD, an applied field of 0.15 kV/cm and a fused capillary temperature control of 25 +/- 0.1 degrees C (typical current approximately 45 muA), and both are validated. The best results in terms of LOQ were obtained by EC with fluorescence detection: 10 ng/mL and 20 ng/mL for 1 and 2, respectively (LOQ divided by 150 for 1 and 5 for 2 with respect to UV), thus making this method particularly convenient for enantiomeric purity determination of galenic forms. UV detection appears to be an alternative to fluorescence for the analysis of the main component either for the control of galenic forms or for therapeutic adaptation. Moreover, this method exhibits better performances than HPLC.
Collapse
Affiliation(s)
- Jean-François Goossens
- Laboratoire de Chimie Analytique, Faculté des Sciences Pharmaceutiques et Biologiques, Université de Lille 2, Lille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Boccio M, Sayago A, Asuero AG. A bilogarithmic method for the spectrophotometric evaluation of stability constants of 1:1 weak complexes from mole ratio data. Int J Pharm 2006; 318:70-7. [PMID: 16647826 DOI: 10.1016/j.ijpharm.2006.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
The absorbance changes that occur when the mole ratio of the components of ligand complex equilibria is varied while the concentration of one component is kept constant (mole ratio method) allow evaluating stability constants in favourable conditions. Values of the corresponding stability (association) constants are normally assigned on the basis of spectrophotometric analysis. Determination of stability constants can be performed by a number of linear procedures, but most of these, suffer from theoretical and practical drawbacks, e.g., linear transformation of the rectangular hyperbola type of binding constants, is valid only when one of the two species is present in a large excess. A rigorous treatment of the experimental mole ratio data for 1:1 weak complexes is carried out in this paper with the aim of eliminating some of the assumptions involved in the other methods usually applied for evaluating stability constants. Orthogonal regression is required in order to take into account the error in both axes. The method has been applied to literature data for the iron(III)-thiocyanate and nickel(II)-selenocyanate systems, as well as to a number of host-guest cyclodextrin complexes.
Collapse
Affiliation(s)
- Maravillas Boccio
- Department of Analytical Chemistry, Faculty of Pharmacy, The University of Seville, 41012 Seville, Spain
| | | | | |
Collapse
|
43
|
Fukazawa Y, Pluemsab W, Sakairi N, Furuike T. An Efficient Adsorption–Desorption System for Hydrophobic Phenolic Pollutants—Combined Use of Mono-6-amino-α-cyclodextrin and Cation Exchanger. CHEM LETT 2005. [DOI: 10.1246/cl.2005.1652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|