1
|
Ouyang J, Dedroog S, Van den Mooter G. New insights on the effects of blend composition on the biodegradation and permeability of Inulin-Eudragit RS film coatings for colon drug delivery. Eur J Pharm Biopharm 2023:S0939-6411(23)00143-1. [PMID: 37270158 DOI: 10.1016/j.ejpb.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Inulin has been applied in Inulin-Eudragit RS (Inu-ERS) coatings as the component responsible for degradation by human microbiota. However, studies on how bacterial enzymes can degrade polysaccharides like inulin imbedded in water insoluble polymers like Eudragit RS are still elusive. The present work aims at elucidating the complex process of enzyme triggered biodegradation of inulin with various molecular weights in isolated films with Eudragit RS. The ratio of inulin to Eudragit RS was varied to create films with different degree of hydrophilicity. The phase behavior study revealed that blends of inulin and Eudragit RS are phase separated systems. The film permeability was studied by determination of the permeability coefficient of caffeine and the fraction of inulin that was released from the films in a buffer solution with or without inulinase was quantified. Together with the morphology characterization of the Inu-ERS films with and without incubation in the enzyme solution, these results suggest that the action of the enzyme was only limited to the fraction of inulin released in the buffer solution. Inulin fully embedded in the Eudragit RS matrix was not degraded. The permeation of the model drug caffeine occurred in the phase-separated film as a result of pores formed as a consequence of inulin release. The inulin to Eudragit RS blend ratio and the molecular weight of inulin affected the percolation threshold, the release of inulin, the morphology of the film formed thereafter and the connectivity of the formed water channels, thus influencing the drug permeation properties.
Collapse
Affiliation(s)
- Jiabi Ouyang
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium
| | - Sien Dedroog
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium.
| |
Collapse
|
2
|
Azehaf H, Benzine Y, Tagzirt M, Skiba M, Karrout Y. Microbiota-sensitive drug delivery systems based on natural polysaccharides for colon targeting. Drug Discov Today 2023; 28:103606. [PMID: 37146964 DOI: 10.1016/j.drudis.2023.103606] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Colon targeting is an ongoing challenge, particularly for the oral administration of biological drugs or local treatment of inflammatory bowel disease (IBD). In both cases, drugs are known to be sensitive to the harsh conditions of the upper gastrointestinal tract (GIT) and, thus, must be protected. Here, we provide an overview of recently developed colonic site-specific drug delivery systems based on microbiota sensitivity of natural polysaccharides. Polysaccharides act as a substrate for enzymes secreted by the microbiota located in the distal part of GIT. The dosage form is adapted to the pathophysiology of the patient and, thus, a combination of bacteria-sensitive and time-controlled release or pH-dependent systems can be used for delivery.
Collapse
Affiliation(s)
- Hajar Azehaf
- University of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - Youcef Benzine
- University of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - M Tagzirt
- University of Lille, Inserm, CHU Lille, U1011, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - M Skiba
- University of Rouen, Galenic Pharmaceutical Team, INSERM U1239, UFR of Health, 22 Boulevard Gambetta, 76000 Rouen, France
| | - Youness Karrout
- University of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| |
Collapse
|
3
|
Ibrahim IM. Advances in Polysaccharide-Based Oral Colon-Targeted Delivery Systems: The Journey So Far and the Road Ahead. Cureus 2023; 15:e33636. [PMID: 36788847 PMCID: PMC9912363 DOI: 10.7759/cureus.33636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/12/2023] Open
Abstract
Various colon-targeted oral delivery systems have been explored so far to treat colorectal diseases, including timed-release systems, prodrugs, pH-based polymer coatings, and microflora-triggered systems. Among them, the microbially triggered system has gained attention. Among various oral colon-targeted delivery systems discussed, the polysaccharide-based colon-targeted delivery system has been found to be quite promising as polysaccharides remain unaffected by gastric as well as upper intestine milieu and are only digested by colonic bacteria upon reaching the colon. The major bottleneck associated with this delivery is that non-suitability of this system during the diseased state due to decrease in bacterial count at that time. This causes the failure of delivery system to release the drug even at colonic site as the polysaccharide matrix/coat cannot be digested properly due to lack of bacteria. The co-administration of probiotics is reported to compensate for the bacterial loss besides facilitating site-specific release. However, this research is also limited at the preclinical level. Hence, efforts are required to make this technology scalable and clinically applicable. This article entails in detail various oral colon-targeted delivery systems prepared so far, as well as the limitations and benefits of polysaccharide-based oral colon-targeted delivery systems.
Collapse
Affiliation(s)
- Ibrahim M Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| |
Collapse
|
4
|
Álvarez-Olguín MA, Beltrán-Barrientos LM, Hernandez-Mendoza A, González-Córdova AF, Vallejo-Cordoba B. Current trends and perspectives on bioaccessibility and bioavailability of food bioactive peptides: in vitro and ex vivo studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6824-6834. [PMID: 35716022 DOI: 10.1002/jsfa.12077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/26/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The bioaccessibility and bioavailability of food-derived bioactive compounds are important issues when assessing their in vivo physiological health-promoting effects. Food components such as proteins and peptides are exposed to different proteases and peptidases during gastrointestinal digestion and absorption. Different in vitro approaches have therefore been developed to evaluate the bioaccessibility and stability of bioactive peptides. The static simulated gastrointestinal digestion model (SGD) was widely reported to assess the bioaccessibility of bioactive peptides. On the other hand, although the dynamic SGD model may better simulate human digestion, it has rarely been explored in bioaccessibility studies of food bioactive peptides due to its high cost and lack of standardization. For bioavailability studies, the Caco-2 cell monolayer model has been used extensively for the assessment of food bioactive peptides. In fact, very few reports using alternative methods for determining transepithelial transport of bioactive peptides have been employed. In this sense, ex vivo tissue-based models such as the Ussing chamber and the everted sac gut have been used. Current evidence supports the fact that using SGD with cell-based models for evaluating the bioaccessibility, absorption, and bioavailability of food-derived bioactive peptides, is the most commonly used approach. Nevertheless, SGD with ex vivo tissue-based models such as the everted sac, remains to be further explored because it seems to be the model that better mimics the physiological process - it is also fast and inexpensive, and several compounds may be tested simultaneously. In the present review, we discuss information available on the different in vitro approaches for the determination of bioaccessibility and bioavailability of food-derived bioactive peptides with special emphasis on ex vivo tissue-based models such as the everted sac and the Ussing chamber models. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miguel A Álvarez-Olguín
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Lilia M Beltrán-Barrientos
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Adrian Hernandez-Mendoza
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Aarón F González-Córdova
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Belinda Vallejo-Cordoba
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| |
Collapse
|
5
|
Multifaceted role of synbiotics as nutraceuticals, therapeutics and carrier for drug delivery. Chem Biol Interact 2022; 368:110223. [DOI: 10.1016/j.cbi.2022.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022]
|
6
|
Gupta N, Malviya R. Role of Polysaccharides Mimetic Components in Targeted Cancer Treatment. Curr Drug Targets 2022; 23:856-868. [PMID: 35156570 DOI: 10.2174/1389450123666220214121505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/09/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
Organic or inorganic compounds are synthesized or formulated in a manner that they completely show their therapeutic actions like as a natural polysaccharide in the body. Polysaccharides, the major type of natural polymers, are efficiently biologically active, non-toxic, hydrophilic, and biodegradable and show various properties. In this manuscript, the main focus is on delivering anticancer drugs with the help of mimetic components of polysaccharides. All data collected for this manuscript was from PubMed, Elsevier, Taylor, and Francis Bentham science journals. Most chemotherapeutics are therapeutically toxin to the human body, have a narrow therapeutic index, sluggish pharmaceutical delivery mechanisms, and are poorly soluble in water. The use of mimetic components of polysaccharides leads to the enhancement of the solubility of drugs in the biological environment. The manuscript summarizes the use of mimetic components of polysaccharides along with anticancer agents which are capable to inhibit the growth of cancerous cells in the body which shows lesser adverse effects in the biological system compared to other therapies.
Collapse
Affiliation(s)
- Nandan Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Awad A, Madla CM, McCoubrey LE, Ferraro F, Gavins FK, Buanz A, Gaisford S, Orlu M, Siepmann F, Siepmann J, Basit AW. Clinical translation of advanced colonic drug delivery technologies. Adv Drug Deliv Rev 2022; 181:114076. [PMID: 34890739 DOI: 10.1016/j.addr.2021.114076] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Targeted drug delivery to the colon offers a myriad of benefits, including treatment of local diseases, direct access to unique therapeutic targets and the potential for increasing systemic drug bioavailability and efficacy. Although a range of traditional colonic delivery technologies are available, these systems exhibit inconsistent drug release due to physiological variability between and within individuals, which may be further exacerbated by underlying disease states. In recent years, significant translational and commercial advances have been made with the introduction of new technologies that incorporate independent multi-stimuli release mechanisms (pH and/or microbiota-dependent release). Harnessing these advanced technologies offers new possibilities for drug delivery via the colon, including the delivery of biopharmaceuticals, vaccines, nutrients, and microbiome therapeutics for the treatment of both local and systemic diseases. This review details the latest advances in colonic drug delivery, with an emphasis on emerging therapeutic opportunities and clinical technology translation.
Collapse
|
8
|
Craggs M, Gibson GR, Whalley P, Collins CD. Bioaccessibility of Difenoconazole in Rice Following Industry Standard Processing and Preparation Procedures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10167-10173. [PMID: 32786844 PMCID: PMC7499419 DOI: 10.1021/acs.jafc.0c02648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For pesticide registration a post application assessment is made on the safety of any residue remaining in the edible portion of the treated crop. This assessment does not typically consider the bioaccessibility of pesticide residues. The effects of this on potential exposure to incurred difenoconazole residues passing through the human gastrointestinal tract were studied, including the impact of commodity processing. It has previously been demonstrated that solvent extraction methods have the potential to overestimate the bioaccessible fraction, so in vitro simulated gut systems may offer a better approach to determine residue bioaccessibility to refine the risk assessment process. The bioaccessibility of difenoconazole residues associated with processed rice samples was assessed using in vitro intestinal extraction and colonic fermentation methods. The mean bioaccessibility following intestinal digestion was 33.3% with a range from 13% to 70.6%. Quantification of the colonic bioaccessible fraction was not possible due to compound metabolism. Mechanical processing methods generally increased the residue bioaccessibility, while chemical methods resulted in a decrease. Both mechanical and chemical processing methods reduced the total difenoconazole residue level by ca. 50%.
Collapse
Affiliation(s)
- M Craggs
- Product Safety, Jealott's Hill International Research Centre, Syngenta International AG, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - G R Gibson
- Food Microbial Sciences Unit, School of Food Biosciences, University of Reading, Reading RG6 6AP, United Kingdom
| | - P Whalley
- Product Safety, Jealott's Hill International Research Centre, Syngenta International AG, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - C D Collins
- Department of Soil Science, School of Human & Environmental Sciences, University of Reading, Whiteknights, Reading RG6 6DW, United Kingdom
| |
Collapse
|
9
|
Barros PD, Dias IFT, Zanin GD, Bunhak ÉJ. Development and evaluation of dapsone tablets coated for specific colon release. Drug Dev Ind Pharm 2020; 46:246-252. [PMID: 31951762 DOI: 10.1080/03639045.2020.1716375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Objective: Drug release systems based on colonic microbiota have been explored with the use of polysaccharides, which are biodegradable. In order to modulate the release into the colon, dapsone tablets were developed, coated with Surelease® and chondroitin sulfate (SC).Methods: The formulation was developed using the wet granulation method, in the form of 9-millimetre circular tablets. The coating was applied in a perforated basin-type coating using different proportions of Surelease® and chondroitin sulfate. The tablets were assessed according to the criteria of mean weight, hardness, and friability. The dissolution test was performed in the dissolver IV apparatus, in media simulating the gastrointestinal system environments (pH 1.2-pH 6.0 and pH 7.2) for 420 min. The results were analyzed by statistical analysis and factorial design.Results: The results of mean weight, hardness, and friability met the pharmacopeial specifications. In the dissolution test, the results obtained demonstrated that Surelease® is able to offer effective protection to the drug, releasing minimum rates when used at 6% or 10% of the tablet's weight gain. The experiments showed that the drug was not able to spread through the coatings manufactured exclusively with Surelease® or even when SC was incorporated in different proportions. Only in the formulation where SC was included in the highest proportion (10%), and the weight gain of the tablet was lower (6%), the release of dapsone increased, reaching 9.5% of drug released. Through factorial planning, it was observed that the drug release rate increases when the weight gain of the tablet remains at the lower level (6%), while the amount of polysaccharide is increased (90:10).Conclusions: The data indicate that the proportion of polysaccharide for ethyl cellulose in the film and the thickness of the coating are the key parameters in controlling the release of the drug from the system.
Collapse
|
10
|
de Oliveira Cardoso VM, Evangelista RC, Daflon Gremião MP, Stringhetti Ferreira Cury B. Insights into the impact of cross-linking processes on physicochemical characteristics and mucoadhesive potential of gellan gum/retrograded starch microparticles as a platform for colonic drug release. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101445] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Benzine Y, Siepmann F, Neut C, Danede F, Willart J, Siepmann J, Karrout Y. Hot melt extruded polysaccharide blends for controlled drug delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Kotla NG, Rana S, Sivaraman G, Sunnapu O, Vemula PK, Pandit A, Rochev Y. Bioresponsive drug delivery systems in intestinal inflammation: State-of-the-art and future perspectives. Adv Drug Deliv Rev 2019; 146:248-266. [PMID: 29966684 DOI: 10.1016/j.addr.2018.06.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/27/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Oral colon-specific delivery systems emerged as the main therapeutic cargos by making a significant impact in the field of modern medicine for local drug delivery in intestinal inflammation. The site-specific delivery of therapeutics (aminosalicylates, glucocorticoids, biologics) to the ulcerative mucus tissue can provide prominent advantages in mucosal healing (MH). Attaining gut mucosal healing and anti-fibrosis are main treatment outcomes in inflammatory bowel disease (IBD). The pharmaceutical strategies that are commonly used to achieve a colon-specific drug delivery system include time, pH-dependent polymer coating, prodrug, colonic microbiota-activated delivery systems and a combination of these approaches. Amongst the different approaches reported, the use of biodegradable polysaccharide coated systems holds great promise in delivering drugs to the ulcerative regions. The present review focuses on major physiological gastro-intestinal tract challenges involved in altering the pharmacokinetics of delivery systems, pathophysiology of MH and fibrosis, reported drug-polysaccharide cargos and focusing on conventional to advanced disease responsive delivery strategies, highlighting their limitations and future perspectives in intestinal inflammation therapy.
Collapse
Affiliation(s)
- Niranjan G Kotla
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway, Ireland.
| | - Shubhasmin Rana
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Gandhi Sivaraman
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bengaluru 560062, India
| | - Omprakash Sunnapu
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bengaluru 560062, India
| | - Praveen K Vemula
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bengaluru 560062, India
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Yury Rochev
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway, Ireland; Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russian Federation.
| |
Collapse
|
13
|
Wahlgren M, Axenstrand M, Håkansson Å, Marefati A, Lomstein Pedersen B. In Vitro Methods to Study Colon Release: State of the Art and An Outlook on New Strategies for Better In-Vitro Biorelevant Release Media. Pharmaceutics 2019; 11:E95. [PMID: 30813323 PMCID: PMC6410320 DOI: 10.3390/pharmaceutics11020095] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022] Open
Abstract
The primary focus of this review is a discussion regarding in vitro media for colon release, but we also give a brief overview of colon delivery and the colon microbiota as a baseline for this discussion. The large intestine is colonized by a vast number of bacteria, approximately 1012 per gram of intestinal content. The microbial community in the colon is complex and there is still much that is unknown about its composition and the activity of the microbiome. However, it is evident that this complex microbiota will affect the release from oral formulations targeting the colon. This includes the release of active drug substances, food supplements, and live microorganisms, such as probiotic bacteria and bacteria used for microbiota transplantations. Currently, there are no standardized colon release media, but researchers employ in vitro models representing the colon ranging from reasonable simple systems with adjusted pH with or without key enzymes to the use of fecal samples. In this review, we present the pros and cons for different existing in vitro models. Furthermore, we summarize the current knowledge of the colonic microbiota composition which is of importance to the fermentation capacity of carbohydrates and suggest a strategy to choose bacteria for a new more standardized in vitro dissolution medium for the colon.
Collapse
Affiliation(s)
- Marie Wahlgren
- Department of Food technology engineering and nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Magdalena Axenstrand
- Department of Food technology engineering and nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Åsa Håkansson
- Department of Food technology engineering and nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Ali Marefati
- Department of Food technology engineering and nutrition, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Betty Lomstein Pedersen
- Ferring International PharmaScience Center (IPC), Kay Fiskers Plads 11, 2300 Copenhagen, Denmark.
| |
Collapse
|
14
|
Shahdadi Sardo H, Saremnejad F, Bagheri S, Akhgari A, Afrasiabi Garekani H, Sadeghi F. A review on 5-aminosalicylic acid colon-targeted oral drug delivery systems. Int J Pharm 2019; 558:367-379. [PMID: 30664993 DOI: 10.1016/j.ijpharm.2019.01.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 02/08/2023]
Abstract
Site-specific colon drug delivery is a practical approach for the treatment of local diseases of the colon with several advantages such as rapid onset of action and reduction of the dosage of the drug as well as minimization of harmful side effects. 5-aminosalicylic acid (5-ASA) is a drug of choice in the treatment of inflammatory bowel disease and colitis. For the efficient delivery of this drug, it is vital to prevent 5-ASA release in the upper part of the gastrointestinal tract and to promote its release in the proximal colon. Different approaches including chemical manipulation of drug molecule for production of prodrugs or modification of drug delivery systems using pH-dependent, time-dependent and/or bacterially biodegradable materials have been tried to optimize 5-ASA delivery to the colon. In the current review, the different strategies utilized in the design and development of an oral colonic delivery dosage form of 5-ASA are presented and discussed.
Collapse
Affiliation(s)
- Hossein Shahdadi Sardo
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farinaz Saremnejad
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Bagheri
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hadi Afrasiabi Garekani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadeghi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Gough R, Cabrera Rubio R, O'Connor PM, Crispie F, Brodkorb A, Miao S, Hill C, Ross RP, Cotter PD, Nilaweera KN, Rea MC. Oral Delivery of Nisin in Resistant Starch Based Matrices Alters the Gut Microbiota in Mice. Front Microbiol 2018; 9:1186. [PMID: 29963017 PMCID: PMC6013561 DOI: 10.3389/fmicb.2018.01186] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/16/2018] [Indexed: 12/19/2022] Open
Abstract
There is a growing recognition of the role the gastrointestinal microbiota plays in health and disease. Ingested antimicrobial proteins and peptides have the potential to alter the gastrointestinal microbiota; particularly if protected from digestion. Nisin is an antimicrobial peptide that is used as a food preservative. This study examined the ability of nisin to affect the murine microbiota when fed to mice in two different starch based matrices; a starch dough comprising raw starch granules and a starch gel comprising starch that was gelatinized and retrograded. The effects of the two starch matrices by themselves on the microbiota were also examined. Following 16S rRNA compositional sequencing, beta diversity analysis highlighted a significant difference (p = 0.001, n = 10) in the murine microbiota between the four diet groups. The differences between the two nisin containing diets were mainly attributable to differences in the nisin release from the starch matrices while the differences between the carriers were mainly attributable to the type of resistant starch they possessed. Indeed, the differences in the relative abundance of several genera in the mice consuming the starch dough and starch gel diets, in particular Akkermansia, the relative abundance of which was 0.5 and 11.9%, respectively (p = 0.0002, n = 10), points to the potential value of resistance starch as a modulator of beneficial gut microbes. Intact nisin and nisin digestion products (in particular nisin fragment 22-31) were detected in the feces and the nisin was biologically active. However, despite a three-fold greater consumption of nisin in the group fed the nisin in starch dough diet, twice as much nisin was detected in the feces of the group which consumed the nisin in starch gel diet. In addition, the relative abundance of three times as many genera from the lower gastrointestinal tract (GIT) were significantly different (p < 0.001, n = 10) to the control for the group fed the nisin in starch gel diet, implying that the starch gel afforded a degree of protection from digestion to the nisin entrapped within it.
Collapse
Affiliation(s)
- Ronan Gough
- Teagasc Food Research Centre, Fermoy, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Raúl Cabrera Rubio
- Teagasc Food Research Centre, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paula M. O'Connor
- Teagasc Food Research Centre, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Song Miao
- Teagasc Food Research Centre, Fermoy, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Reynolds P. Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- College of Science, Engineering, and Food Science, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Mary C. Rea
- Teagasc Food Research Centre, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Recife ACD, Meneguin AB, Cury BSF, Evangelista RC. Evaluation of retrograded starch as excipient for controlled release matrix tablets. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Dheer D, Arora D, Jaglan S, Rawal RK, Shankar R. Polysaccharides based nanomaterials for targeted anti-cancer drug delivery. J Drug Target 2016; 25:1-16. [DOI: 10.3109/1061186x.2016.1172589] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Carbinatto FM, Ribeiro TS, Colnago LA, Evangelista RC, Cury BS. Preparation and Characterization of Amylose Inclusion Complexes for Drug Delivery Applications. J Pharm Sci 2016; 105:231-41. [DOI: 10.1002/jps.24702] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/13/2015] [Accepted: 09/22/2015] [Indexed: 11/10/2022]
|
19
|
Nieto-Bobadilla M, Siepmann F, Djouina M, Dubuquoy L, Tesse N, Willart JF, Dubreuil L, Siepmann J, Neut C. Controlled delivery of a new broad spectrum antibacterial agent against colitis: In vitro and in vivo performance. Eur J Pharm Biopharm 2015. [DOI: 10.1016/j.ejpb.2015.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
In vivo efficacy of microbiota-sensitive coatings for colon targeting: A promising tool for IBD therapy. J Control Release 2015; 197:121-30. [DOI: 10.1016/j.jconrel.2014.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 11/02/2014] [Accepted: 11/03/2014] [Indexed: 01/02/2023]
|
21
|
Electrosprayed inulin microparticles for microbiota triggered targeting of colon. Carbohydr Polym 2014; 112:225-34. [DOI: 10.1016/j.carbpol.2014.05.087] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/13/2014] [Accepted: 05/18/2014] [Indexed: 11/23/2022]
|
22
|
Chen T, Chen L, Li H, Chen Y, Guo H, Shu Y, Chen Z, Cai C, Guo L, Zhang X, Zhou L, Zhong Q. Design and in vitro evaluation of a novel poly(methacrylic acid)/metronidazole antibacterial nanogel as an oral dosage form. Colloids Surf B Biointerfaces 2014; 118:65-71. [PMID: 24727529 DOI: 10.1016/j.colsurfb.2014.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 12/26/2022]
Abstract
To overcome the undesirable side-effects of metronidazole (MTZ), ethylene glycol dimethacrylate is used as the cross-linker, and a series of poly(methacrylic acid) (PMAA) nanogels were prepared to load the MTZ. We investigated the morphology, size, in vitro release property in the simulated gastrointestinal medium, long-term antibacterial performance against Bacteroides fragilis, cytotoxicity, stability and activity of this novel MTZ/PMAA nanogel. The results indicate that the MTZ/PMAA nanogel sustained the release of MTZ in long-term antibacterial activity in the simulated gastrointestinal medium. This MTZ/PMAA nanogel exhibits less cytotoxicity than MTZ alone, suggesting that MTZ/PMAA nanogel is a more useful dosage form than MTZ for mild-to-moderate Clostridium difficile infections. The novel aspects of this study include the synthesis of a nanogel and the three-phase study of the release profile, which might be useful for other researchers in this field.
Collapse
Affiliation(s)
- Tao Chen
- Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China; Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China
| | - Liang Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China
| | - Haicheng Li
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China
| | - Yuhui Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China
| | - Huixin Guo
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China
| | - Yang Shu
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China
| | - Zhiyu Chen
- Anti-tuberculosis Institute of Jiangmen City, Jiangmen 529020, China
| | - Changhui Cai
- The Second People's Hospital of Zhongshan City, Zhongshan 528447, China
| | - Lina Guo
- GuangDong Provincial Hospital of Chinese Traditional Medicine, 510120, China
| | - Xianen Zhang
- Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China.
| | - Lin Zhou
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China.
| | - Qiu Zhong
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China.
| |
Collapse
|
23
|
Film coatings for oral colon delivery. Int J Pharm 2013; 457:372-94. [DOI: 10.1016/j.ijpharm.2013.05.043] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 01/07/2023]
|
24
|
Wu QX, Yao SJ. Novel NaCS–CS–PPS microcapsules as a potential enzyme-triggered release carrier for highly-loading 5-ASA. Colloids Surf B Biointerfaces 2013; 109:147-53. [DOI: 10.1016/j.colsurfb.2013.03.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 12/12/2022]
|
25
|
Lai H, Lin K, Zhang W, Zhang Z, Jie L, Wu Y, He Q. Development of pH- and enzyme-controlled, colon-targeted, pulsed delivery system of a poorly water-soluble drug: preparation and in vitro evaluation. Drug Dev Ind Pharm 2012; 36:81-92. [PMID: 19640246 DOI: 10.3109/03639040903092335] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND As conventional pH-controlled colon-targeted system used for oral drug delivery often shows a poor performance, a more effective way to preserve poorly water-soluble drug from releasing in upper gastrointestinal tract should be researched. METHOD The objective of this study was to develop a novel colon-targeted drug delivery system using guar gum and Eudragit as enzyme- and pH-based materials. Lansoprazole, a poorly water-soluble drug was used as model drug. Under three different conditions, the in vitro drug release behaviors of this newly developed system was evaluated, using β-mannanase, rat cecal content, and human fecal media to simulate the pH and enzyme during intestinal transit to the colon. RESULTS The released amount of lansoprazole in simulated small intestine fluid (pH 6.8) after 5 hours was less than 10% from the pH- and enzyme-controlled tablets compared with 80.01±0.3% in rat cecal content medium (pH 7.4).The degradation ability of human fecal slurries on PECCT-PT was independent of human age and gender. β-Mannanase did not have a similar effect on the degradation of polysaccharide as rat cecal enzymes and human fecal enzymes in our study. Scanning electron microscope study indicated that the dissolution mechanism of PECCT-PT should be corrosion. CONCLUSION The above results indicated this system could be served as a potential carrier to deliver poorly water-soluble drug specifically to the colon.
Collapse
Affiliation(s)
- Huiming Lai
- Key Laboratory of Drug Targeting, Ministry of Education, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | |
Collapse
|
26
|
Chang C, Wang ZC, Quan CY, Cheng H, Cheng SX, Zhang XZ, Zhuo RX. Fabrication of a novel pH-sensitive glutaraldehyde cross-linked pectin nanogel for drug delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012. [DOI: 10.1163/156856207794761925] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Cong Chang
- a Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430072, P. R. China; Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Zong-Chun Wang
- b Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430072, P. R. China; Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Chang-Yun Quan
- c Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Han Cheng
- d Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Si-Xue Cheng
- e Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Zhang
- f Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Ren-Xi Zhuo
- g Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
27
|
Segura-Campos M, Chel-Guerrero L, Betancur-Ancona D, Hernandez-Escalante VM. Bioavailability of Bioactive Peptides. FOOD REVIEWS INTERNATIONAL 2011. [DOI: 10.1080/87559129.2011.563395] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Shah N, Shah T, Amin A. Polysaccharides: a targeting strategy for colonic drug delivery. Expert Opin Drug Deliv 2011; 8:779-96. [DOI: 10.1517/17425247.2011.574121] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Karrout Y, Neut C, Wils D, Siepmann F, Deremaux L, Flament MP, Dubreuil L, Desreumaux P, Siepmann J. Peas starch-based film coatings for site-specific drug delivery to the colon. J Appl Polym Sci 2010. [DOI: 10.1002/app.32802] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Cai X, Yang L, Zhang LM, Wu Q. Evaluation of amylose used as a drug delivery carrier. Carbohydr Res 2010; 345:922-8. [PMID: 20231017 DOI: 10.1016/j.carres.2010.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 11/17/2022]
Abstract
The enzyme-dependent conjugates of indomethacin and amylose (Am-IND) were synthesized at room temperature using N,N'-dicyclohexylcarbodiimide (DCC) as a coupling agent and 4-(N,N'-dimethylamino) pyridine (DMAP) as a catalyst. Their structures were characterized by FTIR and (1)H NMR analyses, and the results indicated that the IND residues were conjugated with amylose backbones through ester bonds. For the conjugate with a lower IND content, the better water absorption property was advantageous for enzymes diffusing into the swollen conjugate, resulting in biodegradation of the conjugates and release of IND. In vitro biodegradation evaluation indicated that the Am-IND conjugates were biodegraded in the simulated media of the intestines. In vitro drug release experiments showed that the Am-IND conjugates exhibited a sustained release behavior in the simulated media of the intestines, while IND was hardly released in the simulated gastric fluid. These features provide a great opportunity to use the conjugates as a prodrug for intestinally targeted and controlled release of IND through oral administration. This study may lead to the development of effective methods for utilizing amylose as a new drug delivery carrier.
Collapse
Affiliation(s)
- Xiang Cai
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, BME Center, State Key Laboratory of Optoelectronic Materials and Technologies, DSAPM Lab and PCFM Lab, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | |
Collapse
|
31
|
Wei H, Li-Fang F, Yong-Zhen C, Bai X, Qing D, Min B, Feng W, Min Q, De-Ying C. Pectin/Kollicoat SR30D isolated films for colonic delivery [I]: a comparison of normal and colitis-induced models to assess the efficiency of microbially triggered drug delivery. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.02.0005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Objectives
The purpose of the study was to evaluate digestion of pectin/Kollicoat SR30D free films for colonic delivery in vitro and in vivo.
Methods
Free films containing different ratios of pectin to Kollicoat SR30D were prepared by casting/solvent evaporation method. An in-vitro comparison of swelling, degradation and permeability of the free films was carried out in simulated colon fluids containing caecal contents from normal rats with colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) or oxazolone. A comparative in-vivo evaluation of degradation was also conducted in normal and colitis-induced model rats.
Key findings
The pectin within the mixed films was susceptible to rat colonic bacterial enzymes. The extent of digestion correlated with the amount of pectin present within the film. In vitro, the swelling index, drug permeability and extent of film digestion in simulated colon fluids with caecal contents obtained from normal rats were higher than from TNBS- or oxazolone-induced model rats, whereas in-vivo degradation was similar in the three groups of rats. The pectin/Kollicoat SR30D free films were completely degraded in the colitis-induced rats.
Conclusions
Pectic/Kollicoat SR30D films may be useful as coatings to target delivery of drugs to the colon.
Collapse
Affiliation(s)
- He Wei
- Department of Pharmaceutics, School of Pharmaceutical Science, Hebei Medical University, ShiJiaZhuang, PR China
- CSPC Pharmaceutical Technology Co. Ltd, ShiJiaZhuang, PR China
| | - Fan Li-Fang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Science, Hebei Medical University, ShiJiaZhuang, PR China
- Department of Hebei Yiling Pharmaceutical Group, Medicine Institute, Beijing, PR China
| | - Chang Yong-Zhen
- Department of Pharmaceutics, XingTai Medical School Facial Feature & Medical Treatment Technic Faculty, XingTai Medical College, XingTai, PR China
| | - Xiang Bai
- Department of Pharmaceutics, School of Pharmaceutical Science, Hebei Medical University, ShiJiaZhuang, PR China
| | - Du Qing
- Department of Pharmaceutics, School of Pharmaceutical Science, Hebei Medical University, ShiJiaZhuang, PR China
| | - Bai Min
- CSPC Pharmaceutical Technology Co. Ltd, ShiJiaZhuang, PR China
| | - Wang Feng
- Department of Hepatitis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Qing Min
- Department of Gastroenterology, Liuzhou Worker Hospital, Liuzhou, PR China
| | - Cao De-Ying
- Department of Pharmaceutics, School of Pharmaceutical Science, Hebei Medical University, ShiJiaZhuang, PR China
| |
Collapse
|
32
|
Assessing the digestibility of genetically modified soybean: Physiologically based in vitro digestion and fermentation model. Food Res Int 2010. [DOI: 10.1016/j.foodres.2009.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Karrout Y, Neut C, Wils D, Siepmann F, Deremaux L, Flament MP, Dubreuil L, Desreumaux P, Siepmann J. Enzymatically activated coated multiparticulates containing theophylline for colon targeting. J Drug Deliv Sci Technol 2010. [DOI: 10.1016/s1773-2247(10)50029-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
34
|
Cai X, Yang L, Zhang LM, Wu Q. Synthesis and anaerobic biodegradation of indomethacin-conjugated cellulose ethers used for colon-specific drug delivery. BIORESOURCE TECHNOLOGY 2009; 100:4164-4170. [PMID: 19409774 DOI: 10.1016/j.biortech.2009.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 03/21/2009] [Accepted: 04/02/2009] [Indexed: 05/27/2023]
Abstract
Water soluble cellulose ethers, including methylcellulose and two hydroxyethylcelluloses with different molecular weights, were conjugate with indomethacin at room temperature. The chemical structures of the conjugates were characterized by FTIR, (1)H NMR and UV-vis spectroscopy. The results confirmed that different amounts of IND residues were covalently bonded to cellulose ether backbones through ester linkages. Their anaerobic biodegradation in colonic fermentation was investigated by gel permeation chromatography, gas chromatography and UV-vis spectroscopy. These conjugates were found to have different biodegradabilities, depending on the cellulose ether used and the amount of conjugated indomethacin residues. In vitro release experiments showed that hydroxyethylcellulose-based conjugates with low IND residues content could exhibit a sustained drug release behavior in colonic fermentation and were stable in the simulated media of the stomach and small intestine. Therefore, they are promising candidates for future applications in colon-specific drug delivery.
Collapse
Affiliation(s)
- Xiang Cai
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Xingang West Road 135, Guangzhou, Guangdong 510275, PR China
| | | | | | | |
Collapse
|
35
|
Studies of chitosan/Kollicoat SR 30D film-coated tablets for colonic drug delivery. Int J Pharm 2009; 375:8-15. [DOI: 10.1016/j.ijpharm.2009.03.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 01/31/2009] [Accepted: 03/08/2009] [Indexed: 11/20/2022]
|
36
|
Basit AW, Short MD, McConnell EL. Microbiota-triggered colonic delivery: Robustness of the polysaccharide approach in the fed state in man. J Drug Target 2009; 17:64-71. [DOI: 10.1080/10611860802455805] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm 2008; 363:1-25. [DOI: 10.1016/j.ijpharm.2008.07.009] [Citation(s) in RCA: 446] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 12/23/2022]
|
38
|
Prabhu S, Kanthamneni N, Ma C. Novel Combinations of Rate-Controlling Polymers for the Release of Leuprolide Acetate in the Colon. Drug Deliv 2008; 15:119-25. [DOI: 10.1080/10717540801905157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Ji C, Xu H, Wu W. In vitroevaluation and pharmacokinetics in dogs of guar gum and Eudragit FS30D-coated colon-targeted pellets of indomethacin. J Drug Target 2008; 15:123-31. [PMID: 17365283 DOI: 10.1080/10611860601143727] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A pH- and enzyme-dependent colon-targeted multi-unit delivery system of indomethacin was developed by coating guar gum and Eudragit FS30D sequentially onto drug-loaded pellets in a fluidized bed coater. In vitro studies showed that smaller coating weight gain of guar gum resulted in reduced release lag time t10 (10% release time), but favored degradation by enzymes (galactomannanase). A cumulative weight gain (CWG) of 44% provided sufficient enzymatic sensitivity and protection of the core. Under gradient pH conditions (pH = 1.2, 6.8, 7.4 and 6.5 for 2, 2, 1 and 15 h, respectively), indomethacin was released from Eudragit FS30D-coated pellets quickly after changing pH to 7.4. For guar gum/Eudragit FS30D double-coated pellets, only about 5% of the drug was released after another 1 h, showing retarding effect by guar gum coating. After changing pH to 6.5 and addition of galactomannanase, enzyme-dependent drug release was observed. Pharmacokinetic study in beagle dogs showed that fastest absorption with the smallest Tmax and Tlag was observed for uncoated pellets. The Tmax and Tlag of Eudragit FS30D-coated pellets were postponed to about 2.5 and 1 h, respectively. After a further guar gum coating, Tlag was further postponed to about 2.8 h, about 2 h of additional lag time on the basis of Eudragit FS30D coating. It is indicated that the guar gum/Eudragit FS30D-coated system has potential to be used to deliver drugs to the colon.
Collapse
Affiliation(s)
- Chongmin Ji
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 200032, P. R. China
| | | | | |
Collapse
|
40
|
McConnell EL, Short MD, Basit AW. An in vivo comparison of intestinal pH and bacteria as physiological trigger mechanisms for colonic targeting in man. J Control Release 2008; 130:154-60. [DOI: 10.1016/j.jconrel.2008.05.022] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 05/12/2008] [Accepted: 05/23/2008] [Indexed: 12/01/2022]
|
41
|
Bayat A, Dorkoosh FA, Dehpour AR, Moezi L, Larijani B, Junginger HE, Rafiee-Tehrani M. Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin: Ex vivo and in vivo studies. Int J Pharm 2008; 356:259-66. [DOI: 10.1016/j.ijpharm.2007.12.037] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 11/14/2007] [Accepted: 12/18/2007] [Indexed: 01/10/2023]
|
42
|
Biorelevant dissolution testing of colon-specific delivery systems activated by colonic microflora. J Control Release 2008; 125:77-86. [DOI: 10.1016/j.jconrel.2007.10.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Accepted: 10/29/2007] [Indexed: 12/23/2022]
|
43
|
Picker-Freyer KM, Dürig T. Physical mechanical and tablet formation properties of hydroxypropylcellulose: in pure form and in mixtures. AAPS PharmSciTech 2007; 8:E92. [PMID: 18181552 PMCID: PMC2750559 DOI: 10.1208/pt0804092] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2006] [Revised: 03/14/2007] [Accepted: 03/18/2007] [Indexed: 11/30/2022] Open
Abstract
The aim of the study was to analyze hydroxypropylcellulose (HPC) in pure form and in excipient mixtures and to relate its physical and chemical properties to tablet binder functionality. The materials used were Klucel hydroxypropylcellulose grades ranging from low to high molecular weight (80-1000 kDa) of regular particle size (250 microm mean size) and fine particle size (80 microm mean size). These were compared with microcrystalline cellulose, spray-dried lactose, and dicalcium phosphate dihydrate. Thermal behavior of HPC was analyzed by modulated temperature differential scanning calorimetry (MTDSC). Tablets of the pure materials and of dry blends with 4% low viscosity, fine particle HPC and 30% high viscosity, fine particle HPC were produced on an instrumented eccentric tableting machine at 3 relative humidities. The 3-dimensional (3-D) model with the parameters time plasticity d, pressure plasticity e, and the twisting angle omega, the inverse of fast elastic decompression was compared with the Heckel method for characterization of compaction. Elastic recovery and compactibility were also studied. The results show that HPC tablet formation is characterized by high plastic deformation. The d, e, and omega values were markedly higher as compared with the reference materials. Plasticity was highest for the fine particle size HPC types. Maximum compactibility was observed for low molecular weight, fine particle size HPC. Tableting of the mixtures showed deformation, which was strongly influenced by HPC. Plasticity and crushing force of formed tablets was increased. In conclusion, HPC is characterized by strong plastic deformation properties, which are molecular weight and particle size dependent.
Collapse
Affiliation(s)
- Katharina M Picker-Freyer
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmaceutics and Biopharmaceutics, Wolfgang-Langenbeck-Str 4, 06120 Halle/Saale, Germany.
| | | |
Collapse
|
44
|
Tang ESK, Liew CV, Er DZL, Liu X, Wigmore AJ, Heng PWS. Study of coat quality of tablets coated by an on-line Supercell coater. AAPS PharmSciTech 2007; 8:E63. [PMID: 17915813 DOI: 10.1208/pt0803063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to investigate the nature of Supercell coating, an on-line tablet coater that employed a unique pattern of airflow. Tablets coated at different spray rates (4, 6, 8, 10, and 12 mL/min) were analyzed to investigate the influence of different wetting conditions on the quality of coats formed. Scanning electron micrographs showed that tablet coats formed at a spray rate of 4 mL/min consisted of spray-dried droplets that did not coalesce. At a spray rate of 6 mL/min, surface roughness was found to be lower than at the other spray rates, and the coat appeared smoothest, whereby droplets seemed fused together. At higher spray rates, the droplets appeared as branching arms and scale-like structures. This was attributed to the spread of spray droplets by the processing air and mass transfer of wet coating materials between tablets. Further tests showed that coats formed at higher spray rates had higher drug yield, drug uniformity, color uniformity, and density. However, the variability in coat thickness was increased due to the mass transfer of coats and dissolution of tablet core surfaces by the coating material. Since coats of different characteristics can be formed in Supercell coating, the choice of wetting conditions would depend on the type of coat required and the coating materials used.
Collapse
|
45
|
Gao C, Huang J, Jiao Y, Shan L, Liu Y, Li Y, Mei X. In vitro release and in vivo absorption in beagle dogs of meloxicam from Eudragit® FS 30 D-coated pellets. Int J Pharm 2006; 322:104-12. [PMID: 16806752 DOI: 10.1016/j.ijpharm.2006.05.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 04/30/2006] [Accepted: 05/17/2006] [Indexed: 11/20/2022]
Abstract
The objective of this study was to develop meloxicam-loaded colon-specific pellets coated with Eudragit FS 30 D and further evaluate their in vitro release and in vivo absorption in beagle dogs. Meloxicam-loaded cores (drug loading, 4.8%, w/w) were prepared by layering drug-binder (HPMC)-solubilizer (beta-cyclodextrin) solution onto nonpareils (710-850 microm) and then coated with a copolymer of methyl acrylate, methyl methacrylate and methacrylic acid (Eudragit FS 30 D). The obtained pellets with 15% (w/w) coating level had a spherical form and a smooth surface with coating thickness approximately 28 microm. The in vitro drug release from the pellets was pH-dependent with sufficient gastric resistance (pH 1.2: no release; pH 6.8: 6%; pH 7.0: 52%; pH 7.2: 100%; pH 7.4: 100%, after 3 h incubation). In vivo study was carried out using pentagastrin-pretreated beagle dogs. The onset of meloxicam absorption from the coated pellets with 15% (w/w) Eudragit FS 30 D (3.0+/-0.8 h) was significantly delayed (p<0.05) compared to that from the uncoated drug-layered cores (0.6+/-0.3 h). The area under the meloxicam plasma concentration-time curve (AUC(0-->96)(h) was not significantly different between the two preparations (p>0.05), although AUC(0-->96)(h) obtained after oral administration of coated pellets (142.5+/-59.6 microg h/ml) was lower than that obtained after administration of uncoated drug-layered cores (180.8+/-61.9 microg h/ml). These results suggested that meloxicam could be delivered to the colon with 15% (w/w) coating level of Eudragit FS 30 D and this polymer coating had no significant influence on the relative bioavailability of meloxicam of the pellets.
Collapse
Affiliation(s)
- Chunsheng Gao
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, PR China
| | | | | | | | | | | | | |
Collapse
|
46
|
Ibekwe VC, Fadda HM, Parsons GE, Basit AW. A comparative in vitro assessment of the drug release performance of pH-responsive polymers for ileo-colonic delivery. Int J Pharm 2006; 308:52-60. [PMID: 16356670 DOI: 10.1016/j.ijpharm.2005.10.038] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2005] [Revised: 10/17/2005] [Accepted: 10/18/2005] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the in vitro dissolution characteristics of pH-responsive polymers in a variety of simulated fluids. Prednisolone tablets were fabricated and coated with the following polymer systems: Eudragit S (organic solution), Eudragit S (aqueous dispersion), Eudragit FS (aqueous dispersion) and Eudragit P4135 (organic solution). Dissolution tests were conducted using a pH change method whereby tablets were transferred from acid to buffer. Three different buffer media were investigated: two compendial phosphate buffers (pH range 6.8-7.4) and a physiological buffer solution (Hanks buffer) with very similar ionic composition to intestinal fluid (pH 7.4). There was considerable drug release from tablets coated with Eudragit P4135 in acid, prompting discontinuation of further investigations of this polymer. Eudragit S (organic solution), Eudragit S (aqueous dispersion) and Eudragit FS on the other hand prevented drug release in acid, though subsequent drug release in the buffer media was found to be influenced by the duration of tablet exposure to acid. At pH 7.4 drug release rate from the polymer coated tablets was similar in the two compendial media, however in the physiological buffer, they were found to differ in the following order: Eudragit S (aqueous dispersion)>Eudragit FS>Eudragit S (organic solution). The results indicate that the tablets coated with the newer Eudragit FS polymer would be more appropriate for drug delivery to the ileo-colonic region in comparison to the more established Eudragit S. More importantly, however, dissolution in the physiological buffer was found to be markedly slower for all the coated tablets than in the two compendial buffers, a result akin to reported slower dissolution of enteric coated tablets in vivo. There is therefore the need to adequately simulate the ionic composition of the intestinal fluid in the dissolution media.
Collapse
Affiliation(s)
- Valentine C Ibekwe
- Department of Pharmaceutics, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK
| | | | | | | |
Collapse
|