1
|
Dykman L, Khlebtsov B, Khlebtsov N. Drug delivery using gold nanoparticles. Adv Drug Deliv Rev 2025; 216:115481. [PMID: 39617254 DOI: 10.1016/j.addr.2024.115481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Modern nanotechnologies provide various possibilities for efficiently delivering drugs to biological targets. This review focuses on using functionalized gold nanoparticles (GNPs) as a drug delivery platform. Owing to their exceptional size and surface characteristics, GNPs are a perfect drug delivery vehicle for targeted and selective distribution. Several in vitro and in vivo tests have shown how simple it is to tailor these particles to administer chemical medications straight to tumors. The GNP surface can also be coated with ligands to modify drug release or improve selectivity. Moreover, the pharmacological activity can be enhanced by using the photothermal characteristics of the particles.
Collapse
Affiliation(s)
- Lev Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Nikolai Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia; Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia.
| |
Collapse
|
2
|
Djermane R, Nieto C, Vega MA, Del Valle EMM. EGFR-targeting polydopamine nanoparticles co-loaded with 5-fluorouracil, irinotecan, and leucovorin to potentially enhance metastatic colorectal cancer therapy. Sci Rep 2024; 14:29265. [PMID: 39587206 PMCID: PMC11589782 DOI: 10.1038/s41598-024-80879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024] Open
Abstract
Despite all prevention programs, many cases of colorectal cancer (CRC) are diagnosed when they have already metastasized. Herein, chemotherapy is required, and combination of 5-fluorouracil, irinotecan, and leucovorin (FOLFIRI) is one of the first-line treatments chosen. However, it is so toxic that compromises patient outcomes. Thus, with the aim of improving FOLFIRI pharmacokinetics while reducing its side effects, the three compounds that make it up were simultaneously absorbed in this work into polydopamine nanoparticles (PDA NPs), also loaded with an antibody to target CRC cells overexpressing the epithermal growth factor receptor (EGFR). All adsorptions, which were successfully executed without toxic solvents, were electrostatic in nature according to the calorimetry results obtained. Otherwise, based on the experiments done, 5-flurouracil, irinotecan, and leucovorin release from PDA NPs followed a burst-like pattern, which was possibly mediated by Fickian diffusion mechanisms. Finally, the assays performed with two EGFR-overexpressing CRC cell lines showed that the uptake of the nanosystem was rapid, and that its therapeutic effect was very significant. It managed to greatly reduce the viability of these cells to 22-30% after 72 h of incubation. Furthermore, when tumor spheroids were developed and treated with PDA NPs loaded with FOLFIRI and the anti-EGFR antibody (FOLFIRI-CTX@PDA NPs), these demonstrated to continue to have very marked therapeutic activity. In addition, FOLFIRI-CTX@PDA NPs affected to a lesser extent the survival rate of stromal cells, with which viability experiments were also done. Therefore, the novel developed PDA nanocarrier could be a promising strategy to enhance metastatic CRC therapy hereafter.
Collapse
Affiliation(s)
- Rania Djermane
- Departamento de Ingeniería Química y Textil, Universidad de Salamanca, Plaza de los Caídos s/n, 37008, Salamanca, Spain
| | - Celia Nieto
- Departamento de Ingeniería Química y Textil, Universidad de Salamanca, Plaza de los Caídos s/n, 37008, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial de Salamanca, Paseo de San Vicente, 58, 37007, Salamanca, Spain
| | - Milena A Vega
- Departamento de Ingeniería Química y Textil, Universidad de Salamanca, Plaza de los Caídos s/n, 37008, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial de Salamanca, Paseo de San Vicente, 58, 37007, Salamanca, Spain.
| | - Eva M Martín Del Valle
- Departamento de Ingeniería Química y Textil, Universidad de Salamanca, Plaza de los Caídos s/n, 37008, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial de Salamanca, Paseo de San Vicente, 58, 37007, Salamanca, Spain.
| |
Collapse
|
3
|
Aflakian F, Mirzavi F, Aiyelabegan HT, Soleimani A, Gholizadeh Navashenaq J, Karimi-Sani I, Rafati Zomorodi A, Vakili-Ghartavol R. Nanoparticles-based therapeutics for the management of bacterial infections: A special emphasis on FDA approved products and clinical trials. Eur J Pharm Sci 2023; 188:106515. [PMID: 37402428 DOI: 10.1016/j.ejps.2023.106515] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/06/2023]
Abstract
Microbial resistance has increased in recent decades as a result of the extensive and indiscriminate use of antibiotics. The World Health Organization listed antimicrobial resistance as one of ten major global public health threats in 2021. In particular, six major bacterial pathogens, including third-generation cephalosporin-resistant Escherichia coli, methicillin-resistant Staphylococcus aureus, carbapenem-resistant Acinetobacter baumannii, Klebsiella pneumoniae, Streptococcus pneumoniae, and Pseudomonas aeruginosa, were found to have the highest resistance-related death rates in 2019. To respond to this urgent call, the creation of new pharmaceutical technologies based on nanoscience and drug delivery systems appears to be the promising strategy against microbial resistance in light of recent advancements, particularly the new knowledge of medicinal biology. Nanomaterials are often defined as substances having sizes between 1 and 100 nm. If the material is used on a small scale; its properties significantly change. They come in a variety of sizes and forms to help provide distinguishing characteristics for a wide range of functions. The field of health sciences has demonstrated a strong interest in numerous nanotechnology applications. Therefore, in this review, prospective nanotechnology-based therapeutics for the management of bacterial infections with multiple medication resistance are critically examined. Recent developments in these innovative treatment techniques are described, with an emphasis on preclinical, clinical, and combinatorial approaches.
Collapse
Affiliation(s)
- Fatemeh Aflakian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Anvar Soleimani
- Department of Medical Microbiology, College of Health Sciences, Cihan University-Sulaimaniya, Sulaimaniya, 46001, Kurdistan Region, Iraq
| | | | - Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Li Y, Zeng Q, Deng H, Xiang T, Qi W, Wu D. Ameliorating effect of gold nanoparticles decorated on biodegradable apple pectin modified magnetic nanoparticles on epididymo-orchitis inducing alterations in sperm quality and spermatogenic cells apoptosis. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Faid AH, Shouman SA, Badr YA, Sharaky M. Enhanced cytotoxic effect of doxorubicin conjugated gold nanoparticles on breast cancer model. BMC Chem 2022; 16:90. [PMID: 36352463 PMCID: PMC9648023 DOI: 10.1186/s13065-022-00889-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background The difficulty of achieving targeted drug delivery following administration of presently marketed anticancer therapeutics is still a concern. Metallic nanoparticles (NPs) appear to be promising in this regard. The present study focused on the use of gold nanoparticles (AuNPs) as a drug carrier for anticancer Doxorubicin (DOX) forming DOX–AuNPs nanocomposite. The anticancer effect of the prepared nanocomposite was evaluated using SRP essay on breast cancer cell line (MCF7) for different incubation times (24 h,48, and72hr). The prepared DOX–AuNPs nanocomposite was investigated by UV–visible spectroscopy, TEM, fluorescence spectroscopy, and FTIR spectroscopy. Results Our results showed that the prepared AuNPs and DOX–AuNPs nanocomposite have spherical and small size10 ± 2 nm and 12 ± 2 nm respectively. The potential cytotoxicity of the DOX-AuNPs nanocomposite on the MCF7 cell line was significantly increased compared to free DOX. The 20 µM DOX- AuNPs nanocomposite produced a similar decrease in cell survival as 80 µM free DOX. Conclusion Future work is in progress to investigate the positive effects of the prepared nanocomposite for chemo-photothermal combination treatment.
Collapse
|
6
|
Optimization and evaluation of anticancer, antifungal, catalytic, and antibacterial activities: biosynthesis of spherical-shaped gold nanoparticles using Pistacia vera hull extract (AuNPs@PV). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Samy M, Abdallah HM, Awad HM, Ayoub MMH. Preparation, Characterization and In vitro Biological activity of 5-Fluorouracil Loaded onto poly (D, L-lactic-co-glycolic acid) Nanoparticles. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractNanoscale devices offer a lot of potential in drug delivery because of their small size. The goal of this work was to increase the oral bioavailability of the anti-cancer hydrophilic drug as 5-fluorouracil (5-FU) by incorporating it into poly (D, L-lactide-co-glycolide) nanoparticles (PLGNPs) using the double emulsion process, 5-FU- PLGNPs nanoparticles were created. Various factors, such as drug, polymer, and stabilizer concentrations, were investigated for assembly in order to arrive at the most effective formulation of 5-FU-PLGNPs. PLGNPs had a drug encapsulation efficiency of 9.75 to 24.8%. The prepared nanoparticles had a spherical shape and an average size of 212.3–285 nm, as shown by TEM. The dispersion of the drug into the prepared PLGNPs was confirmed by XRPD and FTIR. The optimized nanoparticles (F225) had high encapsulation efficiency 24.8 ± 0.21%, low particles size 212.3 ± 48.2 nm with an appropriate PDI value of 0.448, and ZP of − 48.3 ± 2.7 mV. The molecular dispersion of the medication within the system was validated by thermal behavior studies (DSC). In vitro drug release from the best-selected formulations revealed a sustained release of nanoparticles, with slower release reported when lower PVA concentrations were utilized. Three 5-FU-PLGNPs formulations were tested for anticancer efficacy against cell cultures of HCT-116 (human colorectal carcinoma), MCF-7 (human breast carcinoma), and HepG2 (human hepatocellular carcinoma). The created formulations were examined for in vitro cytotoxic activity, revealing that they appeared to be promising effective anticancer formulations when compared to the positive controlled (doxorubicin).
Collapse
|
8
|
Nanoencapsulation of aptamer-functionalized 5-Fluorouracil liposomes using alginate/chitosan complex as a novel targeting strategy for colon-specific drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Sibuyi NRS, Moabelo KL, Fadaka AO, Meyer S, Onani MO, Madiehe AM, Meyer M. Multifunctional Gold Nanoparticles for Improved Diagnostic and Therapeutic Applications: A Review. NANOSCALE RESEARCH LETTERS 2021; 16:174. [PMID: 34866165 PMCID: PMC8645298 DOI: 10.1186/s11671-021-03632-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/21/2021] [Indexed: 05/07/2023]
Abstract
The medical properties of metals have been explored for centuries in traditional medicine for the treatment of infections and diseases and still practiced to date. Platinum-based drugs are the first class of metal-based drugs to be clinically used as anticancer agents following the approval of cisplatin by the United States Food and Drug Administration (FDA) over 40 years ago. Since then, more metals with health benefits have been approved for clinical trials. Interestingly, when these metals are reduced to metallic nanoparticles, they displayed unique and novel properties that were superior to their bulk counterparts. Gold nanoparticles (AuNPs) are among the FDA-approved metallic nanoparticles and have shown great promise in a variety of roles in medicine. They were used as drug delivery, photothermal (PT), contrast, therapeutic, radiosensitizing, and gene transfection agents. Their biomedical applications are reviewed herein, covering their potential use in disease diagnosis and therapy. Some of the AuNP-based systems that are approved for clinical trials are also discussed, as well as the potential health threats of AuNPs and some strategies that can be used to improve their biocompatibility. The reviewed studies offer proof of principle that AuNP-based systems could potentially be used alone or in combination with the conventional systems to improve their efficacy.
Collapse
Affiliation(s)
- Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Koena Leah Moabelo
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Martin Opiyo Onani
- Organometallics and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa.
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville, South Africa.
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa.
| |
Collapse
|
10
|
Gan C, Liu P. Adsorption behavior of anticancer drug on the aluminum nitride surface: Density functional theory evolution. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1966428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Changyin Gan
- College of Materials and Chemical Engineering, Hainan University, Haikou, Hainan, China
| | - Peng Liu
- School of Science & Engineering, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
11
|
Lipid Nanocarriers for Hyperproliferative Skin Diseases. Cancers (Basel) 2021; 13:cancers13225619. [PMID: 34830774 PMCID: PMC8615830 DOI: 10.3390/cancers13225619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Different drugs, including antiproliferative and corticosteroids in general, are recommended for the treatment of hyperproliferative skin diseases (HSD). The effectiveness of many of these drugs is limited due to their low solubility in water and low penetration in the skin. The loading of these drugs in lipid nanocarriers, such as lipid nanoparticles and liposomes, has been considered as a successful solution to improve the drug bioavailability through the skin, to control their release kinetics and thus reduce the risk of potential side effects. In this work, we discuss the use of lipid nanocarriers loading drugs against HSD. Abstract Hyperproliferative skin diseases (HSD) are a group of diseases that include cancers, pre-cancerous lesions and diseases of unknown etiology that present different skin manifestations in terms of the degree and distribution of the injuries. Anti-proliferative agents used to treat these diseases are so diverse, including 5-aminolevulinic acid, 5-fluorouracil, imiquimod, methotrexate, paclitaxel, podophyllotoxin, realgar, and corticosteroids in general. These drugs usually have low aqueous solubility, which consequently decreases skin permeation. Thus, their incorporation in lipid nanocarriers has been proposed with the main objective to increase the effectiveness of topical treatment and reduce side effects. This manuscript aims to describe the advantages of using lipid nanoparticles and liposomes that can be used to load diversity of chemically different drugs for the treatment of HSD.
Collapse
|
12
|
Lakkakula JR, Krause RWM, Divakaran D, Barage S, Srivastava R. 5-Fu inclusion complex capped gold nanoparticles for breast cancer therapy. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
León-Buitimea A, Garza-Cervantes JA, Gallegos-Alvarado DY, Osorio-Concepción M, Morones-Ramírez JR. Nanomaterial-Based Antifungal Therapies to Combat Fungal Diseases Aspergillosis, Coccidioidomycosis, Mucormycosis, and Candidiasis. Pathogens 2021; 10:pathogens10101303. [PMID: 34684252 PMCID: PMC8539376 DOI: 10.3390/pathogens10101303] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/23/2022] Open
Abstract
Over the last years, invasive infections caused by filamentous fungi have constituted a serious threat to public health worldwide. Aspergillus, Coccidioides, Mucorales (the most common filamentous fungi), and Candida auris (non-filamentous fungus) can cause infections in humans. They are able to cause critical life-threatening illnesses in immunosuppressed individuals, patients with HIV/AIDS, uncontrolled diabetes, hematological diseases, transplantation, and chemotherapy. In this review, we describe the available nanoformulations (both metallic and polymers-based nanoparticles) developed to increase efficacy and reduce the number of adverse effects after the administration of conventional antifungals. To treat aspergillosis and infections caused by Candida, multiple strategies have been used to develop new therapeutic alternatives, such as incorporating coating materials, complexes synthesized by green chemistry, or coupled with polymers. However, the therapeutic options for coccidioidomycosis and mucormycosis are limited; most of them are in the early stages of development. Therefore, more research needs to be performed to develop new therapeutic alternatives that contribute to the progress of this field.
Collapse
Affiliation(s)
- Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza C.P. 66455, Mexico; (A.L.-B.); (J.A.G.-C.); (D.Y.G.-A.); (M.O.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca C.P. 66628, Mexico
| | - Javier A. Garza-Cervantes
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza C.P. 66455, Mexico; (A.L.-B.); (J.A.G.-C.); (D.Y.G.-A.); (M.O.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca C.P. 66628, Mexico
| | - Diana Y. Gallegos-Alvarado
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza C.P. 66455, Mexico; (A.L.-B.); (J.A.G.-C.); (D.Y.G.-A.); (M.O.-C.)
| | - Macario Osorio-Concepción
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza C.P. 66455, Mexico; (A.L.-B.); (J.A.G.-C.); (D.Y.G.-A.); (M.O.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca C.P. 66628, Mexico
| | - José Ruben Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza C.P. 66455, Mexico; (A.L.-B.); (J.A.G.-C.); (D.Y.G.-A.); (M.O.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca C.P. 66628, Mexico
- Correspondence:
| |
Collapse
|
14
|
Yuksel N, Fellah MF. Host–guest complex properties of calix[4]arene derivatives: a DFT study of adsorption and sensing of an anticancer drug, 5-fluorouracil. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02736-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Amina SJ, Guo B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Int J Nanomedicine 2020; 15:9823-9857. [PMID: 33324054 PMCID: PMC7732174 DOI: 10.2147/ijn.s279094] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Metal nanoparticles are being extensively used in biomedical fields due to their small size-to-volume ratio and extensive thermal stability. Gold nanoparticles (AuNPs) are an obvious choice for biomedical applications due to their amenability of synthesis, stabilization, and functionalization, low toxicity, and ease of detection. In the past few decades, various chemical methods have been used for the synthesis of AuNPs, but recently, newer environment friendly green approaches for the synthesis of AuNPs have gained attention. AuNPs can be conjugated with a number of functionalizing moieties including ligands, therapeutic agents, DNA, amino acids, proteins, peptides, and oligonucleotides. Recently, studies have shown that gold nanoparticles not only infiltrate the blood vessels to reach the site of tumor but also enter inside the organelles, suggesting that they can be employed as effective drug carriers. Moreover, after reaching their target site, gold nanoparticles can release their payload upon an external or internal stimulus. This review focuses on recent advances in various methods of synthesis of AuNPs. In addition, strategies of functionalization and mechanisms of application of AuNPs in drug and bio-macromolecule delivery and release of payloads at target site are comprehensively discussed.
Collapse
Affiliation(s)
- Sundus Jabeen Amina
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Bin Guo
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX77204, USA
| |
Collapse
|
16
|
Sharma S, Tiwari M, Tiwari V. Therapeutic strategies against autophagic escape by pathogenic bacteria. Drug Discov Today 2020; 26:704-712. [PMID: 33301978 DOI: 10.1016/j.drudis.2020.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022]
Abstract
Growing multidrug-resistant (MDR) strains of various infectious bacterial species are hindering research aiming to eliminate such infections. During a bacterial infection, the host response eliminates the pathogen via fusion of the endocytic vesicles with lysosomes, called xenophagy. However, MDR bacteria have evolved strategies to escape xenophagy. In this review, we propose novel therapeutics for overcoming such escape, including chimeric antibiotics, nanoformulations for the induction of autophagy in infected cells, and small interfering (si)RNA-mediated silencing of genes to inhibit the host-pathogen interaction. We also discuss the role of combinations of antibiotics showing synergy, the administrative routes of differentially capped nanoparticles (NPs), and the use of different types of nanoformulations for eliminating pathogenic bacteria from the host.
Collapse
Affiliation(s)
- Saroj Sharma
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
17
|
Influence of decoration with Si and Ge atoms on the sensitivity of boron nitride nanocone towards temozolomide anticancer drugs. Struct Chem 2020. [DOI: 10.1007/s11224-020-01576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Coumarin substituted 4–aryl–1,2,4–triazolium salts and their silver(I) N–heterocyclic carbene complexes: Effects of counterions on the antioxidant and antihaemolytic properties. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Wang C, Shen L, Wu L. Adsorption and sensing of an anticancer drug on the boron nitride nanocones; a computational inspection. Comput Methods Biomech Biomed Engin 2020; 24:151-160. [PMID: 32909473 DOI: 10.1080/10255842.2020.1815716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The electrical response of boron nitride nanocones (BNNCs) to 5-Fluorouracil (5FU) drug was investigated by first-principle density functional theory (DFT). The adsorption of 5FU causes a significant decrease in the BNNCs HOMO-LUMO gap (from 4.60 to 3.39 eV), thereby, the electrical conductivity has also increased. It indicates that the BNNCs could be an appropriate candidate for 5FU detection and may be used in the electronic sensors. Furthermore, the work function of BNNCs is influenced by the 5FU adsorption and the work function of BNNCs is reduce about 18.99%, it could also be a work function based sensor for the detection of 5FU. The BNNCs have also the advantage of short recovery time about 4.25 ms for desorption of 5FU.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Lizhen Shen
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,School of Computer Science and Technology, Nanjing Tech University, Nanjing, China
| | - Liang Wu
- College of Science, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
20
|
Riaz S, Fatima Rana N, Hussain I, Tanweer T, Nawaz A, Menaa F, Janjua HA, Alam T, Batool A, Naeem A, Hameed M, Ali SM. Effect of Flavonoid-Coated Gold Nanoparticles on Bacterial Colonization in Mice Organs. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1769. [PMID: 32906828 PMCID: PMC7559771 DOI: 10.3390/nano10091769] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022]
Abstract
Multidrug resistance (MDR) has been a potentiator for the exploration of antibiotics. Nano drug delivery systems have opened new avenues to overcome this challenge. Although antibacterial nanocarriers are extensively realized, their effect on the bacteria residing inside the tissues and their toxicity is rarely explored. This study investigated the effects of flavonoid coated gold nanoparticles (FAuNPs) on the colonization of Enterococcus faecalis in the mouse liver and kidneys. Flavonoids were extracted from the leaves of Berberis lycium Royle and used to stabilize gold following a green synthesis approach. FAuNPs were characterized by ultraviolet-visible (UV-Vis) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning transmission electron microscopy (STEM), X-ray powder diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). FAuNPs showed significantly higher reduction in bacterial counts in in-vitro and in-vivo in mice organs as compared to the free flavonoids owing to their biocompatibility and effectiveness.
Collapse
Affiliation(s)
- Sundus Riaz
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences & Technology, Islamabad 44000, Pakistan; (S.R.); (T.T.); (A.N.); (A.B.); (A.N.); (M.H.)
- Ministry of National Food Security and Research, Pakistan Agricultural Research Council, Karachi 75270, Pakistan
| | - Nosheen Fatima Rana
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences & Technology, Islamabad 44000, Pakistan; (S.R.); (T.T.); (A.N.); (A.B.); (A.N.); (M.H.)
| | - Irshad Hussain
- School of Science and Engineering, Lahore University of Management Sciences, Lahore 54000, Pakistan;
| | - Tahreem Tanweer
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences & Technology, Islamabad 44000, Pakistan; (S.R.); (T.T.); (A.N.); (A.B.); (A.N.); (M.H.)
| | - Afrah Nawaz
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences & Technology, Islamabad 44000, Pakistan; (S.R.); (T.T.); (A.N.); (A.B.); (A.N.); (M.H.)
| | - Farid Menaa
- Department of Internal Medicine and Nanomedicine, California Innovations Corporation, San Diego, CA 92093, USA;
| | - Hussnain A. Janjua
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad 44000, Pakistan; (H.A.J.); (T.A.)
| | - Tahseen Alam
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad 44000, Pakistan; (H.A.J.); (T.A.)
| | - Amna Batool
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences & Technology, Islamabad 44000, Pakistan; (S.R.); (T.T.); (A.N.); (A.B.); (A.N.); (M.H.)
| | - Ayesha Naeem
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences & Technology, Islamabad 44000, Pakistan; (S.R.); (T.T.); (A.N.); (A.B.); (A.N.); (M.H.)
| | - Maryam Hameed
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences & Technology, Islamabad 44000, Pakistan; (S.R.); (T.T.); (A.N.); (A.B.); (A.N.); (M.H.)
| | - Syed Mohsin Ali
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences & Technology, Islamabad 44000, Pakistan; (S.R.); (T.T.); (A.N.); (A.B.); (A.N.); (M.H.)
| |
Collapse
|
21
|
Song H, Gao J, Wu L. Fluorouracil drug sensing characteristics of pristine and Al-doped BC3 nanosheets: Quantum chemical study. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Adsorption of temozolomide chemotherapy drug on the pristine BC3NT: quantum chemical study. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01232-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Mohammed AM, Osman SK, Saleh KI, Samy AM. In Vitro Release of 5-Fluorouracil and Methotrexate from Different Thermosensitive Chitosan Hydrogel Systems. AAPS PharmSciTech 2020; 21:131. [PMID: 32405869 PMCID: PMC7220897 DOI: 10.1208/s12249-020-01672-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
5-Fluorouracil is a member of cytotoxic drugs with poor selectivity to cancer cells. Currently, systemic administration of this anti-cancer drug (oral or injection) exposes normal tissues to the drug-induced toxicity. Nowadays, attention has been greatly directed towards in situ gel-forming systems that can be injected into the affected tissues in its sol form with a minimally invasive technique. More specifically, chitosan hydrogel systems were in focus due to their antibacterial effect as well as their biodegradable, biocompatible, and mucoadhesive properties. In the present work, 5-fluorouracil was loaded on various thermosensitive chitosan hydrogel systems cross linked with different linking agents like β-glycerophosphate, pluronic F127, and hydroxyapatite. Also, methotrexate was added to 5-fluorouracil in order to gain its previously reported synergistic effects. Firstly, a compatibility study was performed using UV-spectrophotometric, infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) techniques to exclude the possibility of any physical or chemical interactions between the selected drugs and excipients. The prepared hydrogel systems were characterized for their physicochemical properties including organoleptic, pH, syringeability and injectability, viscosity, and gelation temperature (Tgel) by various analysis techniques. Moreover, the in vitro release behavior of 5-fluorouracil and methotrexate was determined with a modified analytical method. The results indicated that chitosan hydrogel system cross-linked with a combination of β- glycerophosphate, and 10 % pluronicF127 (F4) showed the most suitable physicochemical properties and release profile. Accordingly, this formula can be considered as a missionary system for localized sustained delivery of cytotoxic drugs.
Collapse
Affiliation(s)
- Ahmed M Mohammed
- Department of Pharmaceutics and Industrial pharmacy, College of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Shaaban K Osman
- Department of Pharmaceutics and Industrial pharmacy, College of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Khaled I Saleh
- Department of Pharmaceutics and Industrial pharmacy, College of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ahmed M Samy
- Department of Pharmaceutics and Industrial pharmacy, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
24
|
New reductant-free synthesis of gold nanoparticles-doped chitosan-based semi-IPN nanogel: A robust nanoreactor for exclusively sensitive 5-fluorouracil sensor. Int J Biol Macromol 2020; 148:79-88. [DOI: 10.1016/j.ijbiomac.2020.01.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/03/2020] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
|
25
|
Abstract
The metallopeptidases thimet oligopeptidase (THOP, EC 3.4.24.25) and neurolysin (NEL, EC 3.4.24.26) are enzymes that belong to the zinc endopeptidase M13 family. Numerous studies suggest that these peptidases participate in the processing of bioactive peptides such as angiotensins and bradykinin. Efforts have been conducted to develop biotechnological tools to make possible the use of both proteases to regulate blood pressure in mice, mainly limited by the low plasmatic stability of the enzymes. In the present study, it was investigated the use of nanotechnology as an efficient strategy for to circumvent the low stability of the proteases. Recombinant THOP and NEL were immobilized in gold nanoparticles (GNPs) synthesized in situ using HEPES and the enzymes as reducing and stabilizing agents. The formation of rTHOP-GNP and rNEL-GNP was characterized by the surface plasmon resonance band, zeta potential and atomic force microscopy. The gain of structural stability and activity of rTHOP and rNEL immobilized on GNPs was demonstrated by assays using fluorogenic substrates. The enzymes were also efficiently immobilized on GNPs fabricated with sodium borohydride. The efficient immobilization of the oligopeptidases in gold nanoparticles with gain of stability may facilitate the use of the enzymes in therapies related to pressure regulation and stroke, and as a tool for studying the physiological and pathological roles of both proteases.
Collapse
|
26
|
Sreedharan SM, Singh R. Ciprofloxacin Functionalized Biogenic Gold Nanoflowers as Nanoantibiotics Against Pathogenic Bacterial Strains. Int J Nanomedicine 2019; 14:9905-9916. [PMID: 31908448 PMCID: PMC6927271 DOI: 10.2147/ijn.s224488] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/09/2019] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Antibiotics are currently being rendered non-functional by the rising incidence of multi-drug resistance amongst pathogenic bacteria. Research has now been focused on developing solutions to this problem by creating new antibiotics and enhancing the functionality of the existing ones. PATIENTS AND METHODS In the present study, ciprofloxacin was conjugated to biogenic gold nanoflowers (GNFs) from Bacillus subtilis RSB64 by a robust adsorption method under optimized conditions. The resultant drug-nanoflower conjugate was characterized by UV-visible spectroscopy and Fourier transform infrared spectroscopy (FTIR). Addition of ciprofloxacin to gold nanoflowers changed the extinction spectrum towards longer wavelength. The ciprofloxacin-conjugated gold nanoflowers were tested for the drug release statistically. The prepared nanoflower-drug conjugate was subjected to an in vitro microbiological assay against different Gram-positive and Gram-negative bacterial strains to verify the effect of GNF-ciprofloxacin conjugate on the cell growth inhibitory activity of ciprofloxacin. RESULTS The GNF-ciprofloxacin conjugates demonstrated enhanced bactericidal activity against Gram-negative bacteria as compared to Gram-positive. The enhancement of the antibacterial activity of the nanoflower-drug conjugate could be attributed to the interaction of the conjugate with phosphate/amine group of the outer membrane of Gram-negative bacterial cell wall making them susceptible to the antibacterial effect of the conjugate. CONCLUSION This study demonstrates the positive attributes of GNF-ciprofloxacin conjugates as a promising antibacterial therapeutic agent against pathogens.
Collapse
Affiliation(s)
- Smitha Mony Sreedharan
- Amity Institute of Microbial Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh201313, India
| | - Rajni Singh
- Amity Institute of Microbial Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh201313, India
| |
Collapse
|
27
|
Jelinkova P, Mazumdar A, Sur VP, Kociova S, Dolezelikova K, Jimenez AMJ, Koudelkova Z, Mishra PK, Smerkova K, Heger Z, Vaculovicova M, Moulick A, Adam V. Nanoparticle-drug conjugates treating bacterial infections. J Control Release 2019; 307:166-185. [DOI: 10.1016/j.jconrel.2019.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022]
|
28
|
Khan H, Ullah H, Martorell M, Valdes SE, Belwal T, Tejada S, Sureda A, Kamal MA. Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Semin Cancer Biol 2019; 69:200-211. [PMID: 31374244 DOI: 10.1016/j.semcancer.2019.07.023] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/20/2019] [Accepted: 07/27/2019] [Indexed: 02/05/2023]
Abstract
The conventional therapies for cancer have a major concern of poor accessibility to tumor tissues. Furthermore, the requirement of higher doses and non-selective nature of therapeutic are associated with a range of adverse drug reactions (ADRs). However, flavonoids are documented to be effective against various types of cancer, but they are not evaluated for their safety profile and tumor site-specific action. Low solubility, rapid metabolism and poor absorption of dietary flavonoids in gastrointestinal tract hinder their pharmacological potential. Some studies have also suggested that flavonoids may act as pro-oxidant in some cases and may interact with other therapeutic agents, especially through biotransformation. Nanocarriers can alter pharmacokinetics and pharmacodynamic profile of incorporating drug. Moreover, nanocarriers are designed for targeted drug delivery, improving the bioavailability of poorly water-soluble drugs, delivery of macromolecules to site of action within the cell, combining therapeutic agents with imaging techniques which may visualize the site of drug delivery and co-delivery of two or more drugs. Combining two or more anti-cancer agents can reduce ADRs and nanotechnology played a pivotal role in this regard. In vitro and in vivo studies have shown the potential of flavonoids nano-formulations, especially quercetin, naringenin, apigenin, catechins and fisetin in the prevention and treatment of several types of cancer. Similarly, clinical trials have been conducted using flavonoids alone or in combination, however, the nano-formulations effect still needs to be elucidated. This review focuses on the impact of flavonoids nano-formulations on the improvement of their bioavailability, therapeutic and safety profile and will open new insights in the field of drug discovery for cancer therapeutics.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan; Novel Global Community Educational Foundation, Australia.
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan; Novel Global Community Educational Foundation, Australia
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, 4070386, Chile; Novel Global Community Educational Foundation, Australia
| | - Susana Esteban Valdes
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands, Ctra. Valldemossa, Km 7.5, Balears, Palma, 07122, Spain; Novel Global Community Educational Foundation, Australia
| | - Tarun Belwal
- Centre for Biodiversity Conservation and Management, G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, India; Novel Global Community Educational Foundation, Australia
| | - Silvia Tejada
- Laboratory of Neurophysiology, Biology Department, and CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, Palma de Mallorca, E-07122, Spain; Novel Global Community Educational Foundation, Australia
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, Balearic Islands, E-07122, Spain; Novel Global Community Educational Foundation, Australia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah, 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
29
|
Dykman LA, Khlebtsov NG. Gold nanoparticles in chemo-, immuno-, and combined therapy: review [Invited]. BIOMEDICAL OPTICS EXPRESS 2019; 10:3152-3182. [PMID: 31467774 PMCID: PMC6706047 DOI: 10.1364/boe.10.003152] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 05/19/2023]
Abstract
Functionalized gold nanoparticles (GNPs) with controlled geometrical and optical properties have been the subject of intense research and biomedical applications. This review summarizes recent data and topical problems in nanomedicine that are related to the use of variously sized, shaped, and structured GNPs. We focus on three topical fields in current nanomedicine: (1) use of GNP-based nanoplatforms for the targeted delivery of anticancer and antimicrobial drugs and of genes; (2) GNP-based cancer immunotherapy; and (3) combined chemo-, immuno-, and phototherapy. We present a summary of the available literature data and a short discussion of future work.
Collapse
Affiliation(s)
- L A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - N G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
- Saratov National Research State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| |
Collapse
|
30
|
Godugu D, Beedu SR. Synthesis, characterisation and anti-tumour activity of biopolymer based platinum nanoparticles and 5-fluorouracil loaded platinum nanoparticles. IET Nanobiotechnol 2019; 13:282-292. [PMID: 31053691 DOI: 10.1049/iet-nbt.2018.5171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A facile and green synthesis of platinum nanoparticles [gum kondagogu platinum nanoparticles (GKPtNP)] using biopolymer- gum kondagogu was developed. The formation of GKPtNP was confirmed by ultraviolet (UV)-visible spectroscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, Zeta potential, Fourier transform infrared, inductively coupled plasma mass spectroscopy. The formed GKPtNP are well dispersed, homogeneous with a size of 2-4 ± 0.50 nm, having a negative zeta potential (-46.1 mV) indicating good stability. 5-Fluorouracil (5FU) was loaded onto the synthesised GKPtNP, which leads to the development of a new combination of nanomedicine (5FU-GKPtNP). The in vitro drug release studies of 5FU-GKPtNP in pH 7.4 showed a sustained release profile over a period of 120 min. Agrobacterium tumefaciens induced in vitro potato tumour bioassay was employed for screening the anti-tumour potentials of GKPtNP, 5FU, and 5FU-GKPtNP. The experimental results suggested a complete tumour inhibition by 5FU-GKPtNP at a lower concentration than the GKPtNP and 5FU. Furthermore, the mechanism of anti-tumour activity was assessed by their interactions with DNA using agarose gel electrophoresis and UV-spectroscopic analysis. The electrophoresis results revealed that the 5FU-GKPtNP totally diminishes DNA and the UV-spectroscopic analysis showed a hyperchromic effect with red shift indicating intercalation type of binding with DNA. Over all, the present study revealed that the combined exposure of the nanoformulation resulted in the enhanced anti-tumour effect.
Collapse
Affiliation(s)
- Deepika Godugu
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad-500 007, Telangana, India
| | - Sashidhar Rao Beedu
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad-500 007, Telangana, India.
| |
Collapse
|
31
|
Imidazole-molecule-capped chitosan–gold nanocomposites with enhanced antimicrobial activity for treating biofilm-related infections. J Colloid Interface Sci 2018; 531:269-281. [DOI: 10.1016/j.jcis.2018.07.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/09/2018] [Accepted: 07/14/2018] [Indexed: 12/25/2022]
|
32
|
Lu B, Lu F, Ran L, Yu K, Xiao Y, Li Z, Dai F, Wu D, Lan G. Self-assembly of natural protein and imidazole molecules on gold nanoparticles: Applications in wound healing against multi-drug resistant bacteria. Int J Biol Macromol 2018; 119:505-516. [DOI: 10.1016/j.ijbiomac.2018.07.167] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/19/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
|
33
|
Kailasa SK, Koduru JR, Desai ML, Park TJ, Singhal RK, Basu H. Recent progress on surface chemistry of plasmonic metal nanoparticles for colorimetric assay of drugs in pharmaceutical and biological samples. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
34
|
Emmanuel R, Saravanan M, Ovais M, Padmavathy S, Shinwari ZK, Prakash P. Antimicrobial efficacy of drug blended biosynthesized colloidal gold nanoparticles from Justicia glauca against oral pathogens: A nanoantibiotic approach. Microb Pathog 2017; 113:295-302. [DOI: 10.1016/j.micpath.2017.10.055] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 11/28/2022]
|
35
|
Raghav S, Painuli R, Kumar D. Multifunctional Nanomaterials for Multifaceted Applications in Biomedical Arena. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.890.906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Graphene oxides/multi-walled carbon nanotubes hybrid-modified carbon electrodes for fast and sensitive voltammetric determination of the anticancer drug 5-fluorouracil in spiked human plasma samples. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0295-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Ahangari A, Salouti M, Saghatchi F. Gentamicin-gold nanoparticles conjugate: a contrast agent for X-ray imaging of infectious foci due to Staphylococcus aureus. IET Nanobiotechnol 2017; 10:190-4. [PMID: 27463788 DOI: 10.1049/iet-nbt.2015.0034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
There is no optimal imaging method for the detection of unknown infectious foci in some diseases. This study introduces a novel method in X-ray imaging of infection foci due to Staphylococcus aureus by developing a contrast agent based on gold nanoparticles (GNPs). GNPs in spherical shape were synthesised by the reduction of tetrachloroauric acid with sodium citrate. Then gentamicin was bound directly to citrate functionalised GNPs and the complex was stabilised by polyethylene glycol. The interaction of gentamicin with GNPs was confirmed by ultraviolet-visible and Fourier transform infrared spectroscopies. The stability of complex was studied in human blood up to 6 h. The stability of conjugate was found to be high in human blood with no aggregation. The biodistribution study showed localisation of gentamicin-GNPs conjugate at the site of Staphylococcal infection. The infection site was properly visualised in X-ray images in mouse model using the gentamicin-GNPs conjugate as a contrast agent. The results demonstrated that one may consider the potential of new nanodrug as a contrast agent for X-ray imaging of infection foci in human beings which needs more investigations.
Collapse
Affiliation(s)
- Azam Ahangari
- Young Researchers and Elite Club, Hidaj Branch, Islamic Azad University, Hidaj, Iran
| | - Mojtaba Salouti
- Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| | - Faranak Saghatchi
- Department of Radiology, Faculty of Paramedical and Health Sciences, Zanjan University of Medical Science, Zanjan, Iran
| |
Collapse
|
38
|
Tripathi A, Melo JS. Development of Nano-Antimicrobial Biomaterials for Biomedical Applications. ADVANCES IN BIOMATERIALS FOR BIOMEDICAL APPLICATIONS 2017; 66. [PMCID: PMC7122509 DOI: 10.1007/978-981-10-3328-5_12] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Around the globe, there is a great concern about controlling growth of pathogenic microorganisms for the prevention of infectious diseases. Moreover, the greater incidences of cross contamination and overuse of drugs has contributed towards the development of drug resistant microbial strains making conditions even worse. Hospital acquired infections pose one of the leading complications associated with implantation of any biomaterial after surgery and critical care. In this regard, developing non-conventional antimicrobial agents which would prevent the aforementioned causes is under the quest. The rapid development in nanoscience and nanotechnology has shown promising potential for developing novel biocidal agents that would integrate with a biomaterial to prevent bacterial colonization and biofilm formation. Metals with inherent antimicrobial properties such as silver, copper, zinc at nano scale constitute a special class of antimicrobials which have broad spectrum antimicrobial nature and pose minimum toxicity to humans. Hence, novel biomaterials that inhibit microbial growth would be of great significance to eliminate medical device/instruments associated infections. This chapter comprises the state-of-art advancements in the development of nano-antimicrobial biomaterials for biomedical applications. Several strategies have been targeted to satisfy few important concern such as enhanced long term antimicrobial activity and stability, minimize leaching of antimicrobial material and promote reuse. The proposed strategies to develop new hybrid antimicrobial biomaterials would offer a potent antibacterial solution in healthcare sector such as wound healing applications, tissue scaffolds, medical implants, surgical devices and instruments.
Collapse
Affiliation(s)
- Anuj Tripathi
- Nuclear Agriculture & Biotechnology Div, Bhabha Atomic Research Centre, Mumbai, Maharashtra India
| | - Jose Savio Melo
- Nuclear Agriculture & Biotechnology Div, Bhabha Atomic Research Centre, Mumbai, Maharashtra India
| |
Collapse
|
39
|
Bagga P, Ansari TM, Siddiqui HH, Syed A, Bahkali AH, Rahman MA, Khan MS. Bromelain capped gold nanoparticles as the novel drug delivery carriers to aggrandize effect of the antibiotic levofloxacin. EXCLI JOURNAL 2016; 15:772-780. [PMID: 28337108 PMCID: PMC5318683 DOI: 10.17179/excli2016-710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/04/2016] [Indexed: 01/08/2023]
Abstract
To develop bromelain capped gold nanoparticles (BRN capped Au-NPs) as the effective drug delivery carriers of the antibiotic levofloxacin (LvN) and evaluate antibacterial potential of its bioconjugated form compared to pure LvN. BRN capped Au-NPs were synthesized by in vitro method and bioconjugated to LvN using 1-ethyl-3-(3-dimethylamino-propyl)-carbodiimide as activator to form Au-BRN-LvN-NPs. These were characterized for mean particle size by dynamic light scattering analysis, zeta potential by Zetasizer nanosystem analysis and transmission electron microscopy (TEM) on carbon coated TEM copper grids by TEM respectively. Drug loading efficiency of LvN was calculated using UV-visible spectroscopy by standard curve of pure LvN. Antibacterial efficacy of Au-BRN-LvN-NPs and pure LvN was determined by evaluating minimum inhibitory concentration (MIC) against Staphylococcus aureus and Eschereschia coli. Two peaks were observed in Au-BRN-LvN-NPs spectrum one at 307 nm and other at 526 nm while one peak in BRN capped Au-NPs at 522 nm during UV spectroscopy suggesting red shift. The drug loading efficiency of LvN was found to be 84.8 ± 2.41 %. The diameter of Au-BRN-LvN-NPs and BRN capped Au-NPs were found to be (58.65 ± 2 nm, 38.11 ± 2 nm), zeta potential (-9.01 mV, -13.8 mV) and surface morphology (~13.2 nm, 11.4 nm) respectively. The MICs against S. aureus and E. coli were found to be (0.128 µg/mL, 1.10 µg/mL) for Au-BRN-LvN-NPs and (0.547 µg/mL, 1.96 µg/mL) for pure LvN. The results suggested that BRN capped Au-NPs can be used as effective drug delivery carriers of the antibiotic LvN. The Au-BRN-LvN-NPs exhibited enhanced antibacterial activity compared to pure LvN alone. (Graphical abstract see Figure 1(Fig. 1))
Collapse
Affiliation(s)
- Paramdeep Bagga
- Department of Pharmacy, Integral University, Lucknow, Uttar Pradesh 226026 (India)
| | | | | | - Asad Syed
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali H Bahkali
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Md Azizur Rahman
- Department of Pharmacy, Integral University, Lucknow, Uttar Pradesh 226026 (India)
| | - Mohd Sajid Khan
- Nanotechnology Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026 (India)
| |
Collapse
|
40
|
Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen. NANOMATERIALS 2016; 6:nano6040071. [PMID: 28335198 PMCID: PMC5302575 DOI: 10.3390/nano6040071] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/29/2016] [Accepted: 02/24/2016] [Indexed: 12/03/2022]
Abstract
Enteric bacterial human pathogens, i.e., Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Klebsiella pneumoniae, are the major cause of diarrheal infections in children and adults. Their structure badly affects the human immune system. It is important to explore new antibacterial agents instead of antibiotics for treatment. This project is an attempt to explain how gold nanoparticles affect these bacteria. We investigated the important role of the mean particle size, and the inhibition of a bacterium is dose-dependent. Ultra Violet (UV)-visible spectroscopy revealed the size of chemically synthesized gold nanoparticle as 6–40 nm. Atomic force microscopy (AFM) analysis confirmed the size and X-ray diffractometry (XRD) analysis determined the polycrystalline nature of gold nanoparticles. The present findings explained how gold nanoparticles lyse Gram-negative and Gram-positive bacteria.
Collapse
|
41
|
Bukkitgar SD, Shetti NP. Electrochemical Sensor for the Determination of Anticancer Drug 5- Fluorouracil at Glucose Modified Electrode. ChemistrySelect 2016. [DOI: 10.1002/slct.201600197] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Shikandar D. Bukkitgar
- Department of Chemistry; K.L.E. Institution of Technology; Opposite to airport, Gokul, Hubballi- 580030 Karnataka India
| | - Nagaraj P. Shetti
- Department of Chemistry; K.L.E. Institution of Technology; Opposite to airport, Gokul, Hubballi- 580030 Karnataka India
- Affiliated to Visvesvaraya Technological University, Belgavi; Karnataka India
| |
Collapse
|
42
|
Li W, Tan XN, Luo T, Huang X, Wang Q, Yang YJ, Wang MJ, Liu LF. Formation of pH-responsive drug-delivery systems by electrospinning of vesicle-templated nanocapsule solutions. RSC Adv 2016. [DOI: 10.1039/c5ra26866d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A novel nanofibrous membrane, which contains chitosan/sodium alginate nanocapsules constructed by vesicle systems, has been fabricated via an electrospinning process as a drug-delivery system.
Collapse
Affiliation(s)
- W. Li
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| | - X. N. Tan
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| | - T. Luo
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| | - X. Huang
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| | - Q. Wang
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| | - Y. J. Yang
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| | - M. J. Wang
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| | - L. F. Liu
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| |
Collapse
|
43
|
Makumire S, Revaprasadu N, Shonhai A. DnaK protein alleviates toxicity induced by citrate-coated gold nanoparticles in Escherichia coli. PLoS One 2015; 10:e0121243. [PMID: 25837593 PMCID: PMC4383610 DOI: 10.1371/journal.pone.0121243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/30/2015] [Indexed: 11/18/2022] Open
Abstract
A number of previously reported studies suggest that synthetic gold nanoparticles (AuNPs) are capable of stabilising proteins against heat stress in vitro. However, it remains to be understood if AuNPs confer stability to proteins against cellular stress in vivo. Heat shock proteins (Hsps) are conserved molecules whose main role is to facilitate folding of other proteins (chaperone function). Hsp70 (called DnaK in prokaryotes) is one of the most prominent molecular chaperones. Since gold nanoparticles exhibit chaperone-like function in vitro, we investigated the effect of citrate-coated gold nanoparticles on the growth of E. coli BB1553 cells that possess a deleted dnaK gene. We further investigated the effects of the AuNPs on the solubility of the E. coli BB1553 proteome. E. coli BB1553 cells exposed to AuNPs exhibited cellular defects such as filamentation and plasma membranes pulled off the cell wall. The toxic effects of the AuNPs were alleviated by transforming the E. coli BB1553 cells with a construct expressing DnaK. We also noted that cells in which DnaK was restored exhibited distinct zones to which the nanoparticles were restricted. Our study suggests a role for DnaK in alleviating nanoparticle induced stress in E. coli.
Collapse
Affiliation(s)
- Stanley Makumire
- Department of Biochemistry, School of Mathematics & Natural Sciences, University of Venda, Thohoyandou, South Africa
- Department of Biochemistry & Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | | | - Addmore Shonhai
- Department of Biochemistry, School of Mathematics & Natural Sciences, University of Venda, Thohoyandou, South Africa
- Department of Biochemistry & Microbiology, University of Zululand, KwaDlangezwa, South Africa
- * E-mail:
| |
Collapse
|
44
|
Facile synthesis of gold nanorods/hydrogels core/shell nanospheres for pH and near-infrared-light induced release of 5-fluorouracil and chemo-photothermal therapy. Colloids Surf B Biointerfaces 2015; 128:498-505. [PMID: 25794443 DOI: 10.1016/j.colsurfb.2015.02.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/29/2015] [Accepted: 02/26/2015] [Indexed: 12/24/2022]
Abstract
We described a facile synthesis of pH and near-infrared (NIR) light dual-sensitive core/shell hybrid nanospheres, consisting of gold nanorods (GNR) as the core and poly(N-isopropylacrylamide-co-methacrylic acid) as the shell, p(NIPAM-MAA). The resultant GNR/p(NIPAM-MAA) nanospheres showed a core/shell structure, with an average diameter of ∼110nm and a strong longitudinal surface plasmon band at NIR region. Due to the photothermal effect of GNR and pH/thermal-sensitive volume transition of p(NIPAM-MAA) hydrogels, the nanospheres with loading of 5-fluorouracil (5-FU) by electrostatic interactions were developed as a smart carrier for pH- and photothermal-induced release of 5-FU. Experimental results testified that the cumulative release of 5-FU from nanospheres was markedly increased in a mild acidic medium. Moreover, a NIR light (808nm) irradiation triggered a greater and faster release of 5-FU, which was further testified by relevant results from in vitro cytotoxicity assay, in vivo tumor growth inhibition and histological images of ex vivo tumor sections. These results revealed significant applications of GNR/p(NIPAM-MAA) nanospheres in controlled release of anticancer agents and photothermal ablation therapy of tumor tissues, accompanied by synergistic effect of chem-photothermal therapy.
Collapse
|
45
|
Yu M, Pan L, Sun L, Li J, Shang J, Zhang S, Liu D, Li W. Supramolecular assemblies constructed from β-cyclodextrin-modified montmorillonite nanosheets as carriers for 5-fluorouracil. J Mater Chem B 2015; 3:9043-9052. [DOI: 10.1039/c5tb01513h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5-Fluorouracil-loaded supramolecular assemblies formed from self-assembling β-cyclodextrin modified montmorillonite nanosheets exhibit better antitumor activity and lower cytotoxicity in vitro.
Collapse
Affiliation(s)
- Mingan Yu
- Department of Medicinal Chemistry
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Lijun Pan
- Pharmaceutical Teaching Laboratory
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Lili Sun
- Department of Medicinal Chemistry
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Jing Li
- Department of Medicinal Chemistry
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Jingchuan Shang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Shurong Zhang
- Department of Medicinal Chemistry
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Duqiang Liu
- Department of Medicinal Chemistry
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Wei Li
- Department of Medicinal Chemistry
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| |
Collapse
|
46
|
Lu S, Ning L, Gao T, Wu X, Yin Y, Li G. Electrochemical method to characterize multidrug resistance. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-4153-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Salouti M, Heidari Z, Ahangari A, Zare S. Enhanced delivery of gentamicin to infection foci due to Staphylococcus aureus using gold nanorods. Drug Deliv 2014; 23:49-54. [DOI: 10.3109/10717544.2014.903533] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mojtaba Salouti
- Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran and
| | - Zahra Heidari
- Department of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Azam Ahangari
- Department of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Somayeh Zare
- Department of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
48
|
Mocan L, Ilie I, Matea C, Tabaran F, Kalman E, Iancu C, Mocan T. Surface plasmon resonance-induced photoactivation of gold nanoparticles as bactericidal agents against methicillin-resistant Staphylococcus aureus. Int J Nanomedicine 2014; 9:1453-61. [PMID: 24711697 PMCID: PMC3968082 DOI: 10.2147/ijn.s54950] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Systemic infections caused by methicillin-resistant Staphylococcus aureus (MRSA) and other bacteria are responsible for millions of deaths worldwide, and much of this mortality is due to the rise of antibiotic-resistant organisms as a result of natural selection. Gold nanoparticles synthesized using the standard wet chemical procedure were photoexcited using an 808 nm 2 W laser diode and further administered to MRSA bacteria. Flow cytometry, transmission electron microscopy, contrast phase microscopy, and fluorescence microscopy combined with immunochemical staining were used to examine the interaction of the photoexcited gold nano-particles with MRSA bacteria. We show here that phonon–phonon interactions following laser photoexcitation of gold nanoparticles exhibit increased MRSA necrotic rates at low concentrations and short incubation times compared with MRSA treated with gold nanoparticles alone. These unique data may represent a step forward in the study of bactericidal effects of various nanomaterials, with applications in biology and medicine.
Collapse
Affiliation(s)
- Lucian Mocan
- 3rd Surgery Clinic, Department of Nanomedicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Ilie
- Department of Endocrinology, Department of Nanomedicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Matea
- 3rd Surgery Clinic, Department of Nanomedicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Flaviu Tabaran
- 3rd Surgery Clinic, Department of Nanomedicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ersjebet Kalman
- 3rd Surgery Clinic, Department of Nanomedicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornel Iancu
- 3rd Surgery Clinic, Department of Nanomedicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Teodora Mocan
- Department of Physiology, Department of Nanomedicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
49
|
Ahangari A, Salouti M, Heidari Z, Kazemizadeh AR, Safari AA. Development of gentamicin-gold nanospheres for antimicrobial drug delivery to Staphylococcal infected foci. Drug Deliv 2013; 20:34-9. [PMID: 23311651 DOI: 10.3109/10717544.2012.746402] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Even though the therapeutic efficacy of numerous antimicrobial drugs has been well established, inefficient delivery can result in an inadequate therapeutic index. Gold nanoparticles have unique physicochemical properties such as large surface area to mass ratio and functionalizable structure. These properties can be applied to facilitate the administration of antimicrobial drugs, thereby overcoming some of the limitations in traditional antimicrobial therapeutics. In this study, gold nanospheres were used as a drug carrier system for gentamicin delivery to Staphylococcal infected foci. Conjugation of gentamicin with gold nanospheres was performed in HEPES buffer. The attachment of gentamicin to gold nanospheres was confirmed by UV/Vis spectroscopy. The HPLC and atomic absorption spectrometer analyses showed that 347 gentamicin molecules were attached to each gold nanosphere. Minimum inhibitory concentration and minimum bactericidal concentration studies showed the enhanced antibacterial effect of gentamicin-gold nanospheres complex in comparison with free gentamicin. The biodistribution study showed the localization of the complex at the site of Staphylococcal infection foci with high sensitivity in mouse model.
Collapse
Affiliation(s)
- Azam Ahangari
- Department of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | | | | | | |
Collapse
|
50
|
Li J, Quan J, Du J, Liu M. Chemiluminescence determination of trimetazidine via inducing the aggregation of gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 114:33-37. [PMID: 23747432 DOI: 10.1016/j.saa.2013.04.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/14/2013] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
A simple, rapid and sensitive chemiluminescence (CL) method combined with flow injection analysis was developed for the determination of trimetazidine. Trimetazidine was found to significantly increase the CL signal arising from N-bromosuccinimide-luminol reaction in the presence of gold nanoparticles. The enhanced CL intensity was proportional to trimetazidine concentration in the range of 0.01-5.0 μg/mL, with a limit of detection (3 sb) of 6.7 ng/mL. The relative standard deviation was 2.8% for 11 repetitive measurements of 0.1 μg/mL trimetazidine solution. The practicality of the method was evaluated by determining trimetazidine in pharmaceutical formulations and in spiked human serum samples. Moreover, the possible CL reaction mechanism was also discussed.
Collapse
Affiliation(s)
- Jiao Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | | | | | | |
Collapse
|